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How do humans want to interact with collaborative robots? As robots become more

common and useful not only in industry but also in the home, they will need to interact

with humans to complete many varied tasks. Previous studies have demonstrated that

autonomous robots are often more efficient and preferred over those that need to be

commanded, or those that give instructions to humans. We believe that the types of

actions that make up a task affect the preference of participants for different interaction

styles. In this work, our goal is to explore tasks with different action types together with

different interaction styles to find the specific situations in which different interaction styles

are preferred. We have identified several classifications for table-top tasks and have

developed a set of tasks that vary along two of these dimensions together with a set of

different interaction styles that the robot can use to choose actions. We report on results

from a series of human-robot interaction studies involving a PR2 completing table-top

tasks with a human. The results suggest that people prefer robot-led interactions for

tasks with a higher cognitive load and human-led interactions for joint actions.

Keywords: HRI, cooperation, PR2, joint action, collaboration, shared autonomy, robotics, interaction

1. INTRODUCTION

As robots become more common in industrial and private settings, they need to be able to interact
collaboratively with humans. Research in the Human-Robot Interaction field often draws on
previous research on human interactions, but there are still many unanswered questions regarding
how people want to interact with collaborative robots. How should the robot choose which action
to perform? When should the robot watch or ask questions rather than acting? When do people
appreciate verbal assistance from the robot?

In situations in which humans and robots collaboratively work in close proximity, the actions
of the agents need to be coordinated so that the human and the robot can efficiently work together
without hindering each other. Previous work has focused on different coordination mechanisms
that can be used for a human and a robot to communicate about which actions should be performed
next (Lallée et al., 2013; Devin et al., 2017) and designing interactions with different roles with
respect to the planning and execution of actions (Shah et al., 2011; Baraglia et al., 2016; Roncone
et al., 2017). Key mechanisms for achieving effective coordination include joint attention, action
observation, task-sharing, action coordination, and perception (Mutlu et al., 2013). A variety of
robot systems have been designed to improve specific elements of human-robot interaction.
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Gaze cues have been shown to enable more effective joint
attention and to improve both task performance and the
perception of the robot for a task in which a robot instructs
participants to sort objects based on color and shape (Mutlu et al.,
2013) and to reduce task completion times when a robot instructs
participants which target block to move (Boucher et al., 2012).
Gaze information has also been used to indicate current state
and intentions so that a robot can identify the best action to
assist a human assembling a LEGO object based on a memorized
plan (Sakita et al., 2004). Additionally, task performance and
user experience can be improved when the robot monitors task
progress for an assembly task and provides appropriate feedback
to rectify problems (Mutlu et al., 2013). Social cues, such as
nods, gestures, and gaze, have been shown to improve teamwork
efficiency and robustness, with people able to coordinate their
behavior with a robot when performing a button naming and
pressing task (Breazeal et al., 2005). The cognitive load of the
human partner can be reduced when the robot assists in the
planning part of the task. When the robot assists in planning
for collaboratively building a stool, lower task completion times
are achieved than for when the human does all of the planning
(Roncone et al., 2017). Communicating about shared plans using
gaze and speech aids effective collaboration for a task in which a
human and robot work together to uncover a toy that is covered
by a box (Lallée et al., 2013). Specifically, a robot without a joint
plan resulted in lower cooperation and success than when the
robot had a joint plan that it communicated to the human with
either language, gaze, or both. A way to implicitly communicate
about a shared plan is to simply make the correct action at
the appropriate time, thereby reducing verbalizations. A robot
that makes the right decision at the right time during a block
world construction task, with a conflict regarding whether the
human or the robot should place a particular block, showed
improved efficiency, fluency, and acceptability (Devin et al.,
2017). Perspective taking, which is vital for efficient human-robot
interactions that use language to describe spatial relationships,
has been successfully integrated into a cognitive architecture
to assist in accurate understanding of navigation instructions
(Trafton et al., 2005).

Another strategy for improving coordination between
humans and robots is for both the robot and the human to
adapt to each others’ preferences and abilities. For the robot,
this can be achieved by forming user profiles with respect to a
variety of different behaviors (Rossi et al., 2017). These profiles
may include how the human physically moves with respect to
where, how, and how fast movements should be made; what
decisions the human makes cognitively with respect to planning,
perspective taking, and collaborating; and how the human acts
socially with respect to reciprocal behaviors, personality, and
non-verbal cues. In practice, this can be performed by keeping
track of interactions with the human over time and modeling
human knowledge so that an appropriate level of guidance can
be provided, for example by determining the current knowledge
of a human for a cooking task (Milliez et al., 2016). Alternatively,
a robot can use a learning algorithm to update action selection
strategies over iterations of interactions. In a study investigating
consecutive assembly of a toolbox, the feedback from the human

partner decreased over time, showing that the robot was able
to learn user preferences (Munzer et al., 2017b). In a study
involving a set of interaction behaviors, a robot was able to
use gaze and movement as signals of human comfort to adjust
interaction distances, gaze, and motion speed and timing to
individual preferences with moderate success (Mitsunaga et al.,
2008). The robot can also act in a way that allows the human to
efficiently adapt to the robot, for example, by showing the human
that it cannot see an object by knocking it over or cannot hold a
heavy object by dropping it (Nikolaidis et al., 2017). While such
actions are obviously not optimal for completing the current
task, they may improve the successful completion of future tasks.

Interaction style, or how a robot interacts with the humanwith
respect to autonomous action or command-driven action, can
also affect the efficiency of interactions and perceptions about
the robot. There are three main styles for these interactions:
autonomous, human-led, or robot led interactions. Baraglia et al.
(2016) found that a robot that proactively helps the human or
one that is controlled by the human is preferred to one that waits
before proposing help for a table-top placement task, with better
team fluency and higher subjective ratings. In simple situations,
proactive action selection can speed up task completion, and in
complex situations, it can aid in the robot’s understanding of
the human’s intentions by provoking a reaction by the human
to confirm or disprove the information (Schrempf et al., 2005).
A robot using Chaski, a robot plan execution system, was able
to perform better than a robot that was verbally commanded by
the human teammate for a collaborative task involving collecting
blocks and assembling structures (Shah et al., 2011). Munzer et al.
(2017a) compared a semi-autonomous robot with an instructed
robot, and found that the semi-autonomous robot was preferred,
and that for the toolbox assembly task investigated, people would
prefer a robot with even more autonomy. A robot system has
been designed for taking a leader or a follower role for solving
a physical labyrinth game with preliminary results indicating
that the role taken by the robot may affect human perceptions
of the safety and intelligence of the robot (Beton et al., 2017).
A robot system has also been designed for flexible execution of
collaborative tasks by either leading the interactions or acting
as an assistant for a task involving cleaning furniture (Fiore
et al., 2016). This system is an example of a robot able to switch
between leading or following which may be desired behavior for
a collaborative robot.

During collaborative task executions the agents need to work
together on a task specified by a shared plan. The design of the
task is a key consideration for human-robot interaction. Task
design ranges from simple tasks, such as removing objects from a
table (Nikolaidis et al., 2017), to complex tasks, like assembling
structures (Munzer et al., 2017b). While simple tasks do not
have a fixed order of action selection a complex task can have
dependencies of actions and can even require the agents to do
something at the same time, for example, one agent might have
to lift an object while the other agent does something below
(Lallée et al., 2013). There are many features of the task that may
affect the interaction between humans and robots, including the
number of agents, the environment of the task, the mobility of
the agents, the position of the agents, the development of a shared
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plan, the knowledge of the task, and the level of communication.
We consider two dimensions to be of particular interest for task
design: fixed vs. any order actions and independent vs. joint action.

In previous work, tasks involving any order actions are
typically clearing (Nikolaidis et al., 2017) or cleaning (Fiore et al.,
2016) tasks, where each action can be completed independently.
There may be some actions that can only be performed by one
of the agents, for example due to lack of mobility of the robot.
Tasks in which at least some actions must be completed in a set
order include construction of furniture (Roncone et al., 2017),
building structures (Devin et al., 2017), cooking (Milliez et al.,
2016), and table-top placement tasks (Baraglia et al., 2016). Many
actions in previous studies are independent actions, meaning that
a single agent can perform the action, for example moving an
object (Baraglia et al., 2016; Nikolaidis et al., 2017) or collecting
pieces for later construction (Shah et al., 2011). The alternative is
joint action, where two agents are needed to successfully perform
the action. In previous work, joint action typically involves the
robot holding a part while the human performs the construction,
for example of the toolbox (Munzer et al., 2017b) or furniture
(Roncone et al., 2017). Another example of joint action is where
one agent picks up a box so that the other agent can retrieve the
toy hidden underneath (Lallée et al., 2013).

While previous work has typically found that autonomous
action is more efficient, it is unclear whether humans always
prefer autonomous action, or whether there are some situations
for which explicit commands by either the human or the robot
are preferred. We believe that the type of task being executed will
make a difference with respect to how efficient the collaborations
are with different styles of interaction. The interaction style and
task completed may also affect how the collaboration is perceived
by the human with respect to efficiency, comfort, safety, and
fluency.

In this work, we study different interaction styles for a
robot to use when interacting with a human to complete table-
top tasks. We aim to identify situations in which different
interaction styles are preferred. We have conducted a series
of three experiments investigating human-robot interaction for
collaborative table-top tasks. In the first of these experiments
we explore five different interaction strategies on a table-top
blocks construction task. In the second experiment we chose
three interaction strategies (Autonomous, Human-Commands,
and Robot-Commands) to test on four different tasks which differ
in whether actions may be completed in any order or a fixed
order, and whether independent or joint action is required (Sort,
Stack, Build, Balance). In the final experiment, we designed an
Information interaction strategy based on our findings about
human preferences in particular situations and compare it to the
Autonomous strategy over the same four tasks.

In the following section we first discuss task design and
interaction styles for human-robot interaction. We then present
our robot system for performing collaborative table-top tasks, the
experimental design for the series of experiments on interaction
styles over a variety of tasks, the results, and a discussion of the
experiments. The results confirm previous studies finding that
Autonomous action is more efficient for all tasks. However, we
have also identified situations in which human partners prefer

more control or less cognitive demand, and have shown that,
respectively, human-led and robot-led interactions are preferred
in these situations.

This paper extends our previous work on interaction styles
(Schulz et al., 2017).

2. INTERACTIONS

One domain in which collaborative robots can be used is on-
table tasks. In a collaborative on-table task, agents manipulate
objects on a table to complete a task. The robot needs to be able
to perceive the table and objects and be able to manipulate the
objects. Ideally, the human and the robot can work out a strategy
to complete the task efficiently without hindering each other. In
this section, we discuss both our task design and the interaction
styles used by the robot to determine how and when to act.

2.1. Task Design
In developing robot systems for studying human-robot
interactions, a key consideration is the design of the task to be
collaboratively completed by the human and the robot. The ideal
task is sufficiently complex to allow interesting collaborative
actions to be investigated, while remaining simple enough so
that a useful analysis of the interactions can be performed. There
are many features of the task that may affect the interaction
between humans and robots, including the number of agents, the
environment of the task, the mobility of the agents, the position
of the agents, the development of a shared plan, the knowledge
of the task, and the level of communication.

In our setup the human sits on a chair on one side of the
table. The robot is located on the opposite side of the table.
Having the agents on opposite sides of the table allows freedom in
moving and positioning arms without hindering the other agent.
Moreover, the counterpart is clearly visible so that actions can
be seen early and a large area of the table is covered. Objects of
different shapes, sizes, and colors can be placed on the table. Both
agents can manipulate objects on the table, for example, to place
them at specific positions. Both agents have knowledge about the
target state and can determine what actions need to be completed
to reach this state.We have designed a set of tasks that vary across
two dimensions: order of actions and independent vs. joint action.

Order of Actions: Tasks can have different dependencies
between subtasks. For example, the subtasks can have relations
that enforce a fixed order of actions. These dependencies can
mean that one action must be completed before another action,
influencing the order of action selection. Consider a task to place
blocks in a predefined target structure. Three tasks that vary in
the constraints of actions are (1) building a tower of three blocks,
(2) placing three blocks in a row across the table, and (3) building
a bridge with two blocks on the table and a larger block on top
of those two blocks. For the tower, a fixed order of actions is
required to accomplish the task. For the row of blocks, there is
no relation between the actions and they can be scheduled in any
order. For the bridge, a partially fixed order of actions is required,
as the two smaller blocks can be placed in any order, but both
must be placed before the larger block.
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Independent vs. joint action: A further property of on-table
tasks is the level of collaboration. For instance, a task involving
joint action includes subtasks in which agents have to do specific
actions at the same time, such as one holding a tool while
another agent attaches objects to the tool. In contrast, a task
involving only independent actions can be done by one agent
on its own, for example, removing objects from a table. In some
situations, agents can execute independent actions concurrently,
for example, by removing different objects, thereby reducing the
task completion time.

We designed and implemented four tasks in which the human
and the robot should place the blocks in the middle of the table
in a collaborative manner (see target states in Figure 1). The
objective is to place the six blocks in a predefined way to reach
a target state known to both the human and the robot. The
four tasks are intentionally designed to be very similar, using the
same objects and environment, so that they are comparable and
controllable. The tasks are named Sort, Stack, Build, and Balance,
and differ in whether the comprising actions are fixed vs. any
order and whether they require independent vs. joint action.

• Sort: In the Sort task, the blocks should be sorted into four
piles, dependent on the color of the block (red, green, yellow,
and blue). The blocks can be placed in any order. All actions
are independent.

• Stack: In the Stack task, the blocks should be placed onto
a single stack, with a particular order for which block is at
each position in the stack. There is a fixed order for block
placement. All actions are independent.

• Build: In the Build task, the blocks should be used to build a
bridge, with the blocks in particular positions in the bridge.
There is a partially fixed order for block placement. All actions
are independent.

• Balance: In the Balance task, the blocks should be used to
build an upside down bridge balancing on the medium block,
with the blocks in particular positions in the bridge. The small
blocks at the same height in the structure should be placed at
the same time so that the structure does not fall down. There
is a fixed order for block placement. The first two actions are
independent and the balanced blocks require joint action.

The tasks increase in difficulty from Sort, where the placement
locations are given by the targets on the table and any order is
permitted, to Stack, where the locations are all in the centre of
the table and the order is set, to Build, where the locations are
partially given by the targets and otherwise set in the information
sheet and the order is also partially set, to Balance, where the
locations are partially given and otherwise set in the information
sheet and the actions must also be co-ordinated.

2.2. Interaction Styles
The three interaction styles of interest for the current
domain are autonomous action, human-led action, and robot-
led action. In this section we describe the seven interaction
strategies explored in the studies that are variations on
autonomous, human-led, and robot-led interaction styles:

Autonomous, Proactive, Reactive, Human-Requested, Human-
Commands, Robot-Commands, and Information. Details about
the implementation of these strategies are included in section 3.4.

• Autonomous: In the Autonomous strategy, both the
participant and the robot decide how and when to act in
order to complete the task together. The robot obtains the
actions that are needed to reach the next sub-task state. If
one of the actions can be performed by the robot, the robot
autonomously performs the action. If no action is possible,
the robot will wait until the state changes.

• Proactive: The robot in Proactive mode is similar to the robot
in Autonomous mode. However, if none of the actions needed
to reach the next subtask state can be performed by the robot,
it will start doing an action that needs to be performed later.
For example, the robot could grasp an object that needs to be
placed on top of a second object that is not yet placed.

• Reactive: In Reactive mode, the robot observes the state and
monitors the human’s actions. If the next subtask state is not
reached in a predefined time window, the robot will assume
difficulties in performing the action. As a consequence, the
robot will perform an action leading to the next subtask, if
possible. This mode is similar to the reactivemode by Baraglia
et al. (2016).

• Human-Requested: In the Human-Requested mode, the
participant decides how and when to act, and requests help
from the robot when needed. The robot observes the state, and
when the human requests help, the robot checks which actions
reach the next subtask and performs one of them. This mode is
similar to the human-requestedmode by Baraglia et al. (2016).

• Human-Commands: In the Human-Commands strategy, the
participant decides how and when to act, and also tells the
robot how and when to act. The participant specifies which
block the robot should move by color and size. For example,
“Robot, can you place the small blue block.” The robot obtains
the actions that are needed to reach the next sub-task state.
If the action is possible, the robot will perform the action. If
the block specified is not reachable or not in the set of actions
needed to reach the next sub-task state, then the robot waits
for another command.

• Robot-Commands: In the Robot-Commands strategy,
the robot decides how and when to act, and also tells the
participant how and when to act. The robot obtains the
actions that are needed to reach the next sub-task state. If
one of the actions can be performed by the robot, the robot
autonomously performs the action. Otherwise, if one of the
actions can be performed by the human, the robot will ask the
human to perform the action. For example, the robot might
say “Can you please place the small red block?” The block is
specified by color and size. The participant then works out
where to place the block based on the task description.

• Information: The robot using the Information strategy
chooses actions in the same way as the robot using the
Autonomous strategy, however, the robot also tells the
participant what it expects the participant to be doing based
on its own plan for the task. At each step the robot first checks
if it can do anything, and then checks if the participant can
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FIGURE 1 | Tasks: (A) Sort (any order, independent actions), (B) Stack (fixed order, independent actions), (C) Build (partially fixed order, independent actions), and (D)

Balance (fixed order, partially joint actions).

do anything either at the same time as the robot or after the
robot has placed the current block. The robot then performs
an available action and makes an available request of the
participant, including asking the participant to indicate when
a block should be placed for joint action.

3. MATERIALS AND METHODS

In this section, we present the robotic platform, the environment,
the perception of the robot, the states and actions of the tasks, and
the general experimental protocol.

3.1. Robotic Platform
A basic system for collaborative task-execution needs to be able to
fulfill specific hardware and software requirements. The system
needs to be able to perceive objects on the table and identify
the pose of the objects. The system should detect the specific
objects and obtain semantic relations, such as which object is
placed on top of an other object. As the pose of objects might
change due to manipulations of the human, the system should
monitor changes and keep track of objects thatmight be currently
undetectable. Furthermore, the system also needs to be able to
pick an object and place it in another pose on top of the table.
We use the PR2 robotics and research platform (see Figure 2).
To perceive objects on the table we use the robot stereo camera,
a Microsoft Kinect, that is attached to the head. The head can
be panned by 150◦ and tilted by 115◦. As a consequence, the
stereo camera can, for example, be aligned to look at the center
of the table so that all objects on a table are in the field of view
of the sensor. Moreover, the robot has two 7-degree of freedom
arms with attached grippers that can be used for on-table pick
and place actions. The upper arm has a length of 40 cm and
the forearm a length of 32 cm. As a consequence, the robot can
reach objects that are approximately up to 70 cm far away from

the robot. Furthermore, the robot is equipped with a telescoping
spine. This allows to extend the robot torso by 31.5 cm. This helps
the robot adapt to different table heights.

3.2. Environment
The participant and the robot sit on opposite sides of a table.
A camera behind the participant records the study. A smaller
table with information sheets and the questionnaire is placed
near to the participant. The table between the robot and the
participant has a size of 80 cm×80 cm and a height of 70 cm.
Four small blocks of different colors (red, blue, green, and yellow)
of the size 6 cm×6 cm×4cm, a medium red block of the size
6 cm×18 cm×4cm, and a large blue block of the size 6 cm×27
cm×4 cm were placed on the table. Three blocks are initially
placed close to the robot and three close to the participant.
Due to the range of the robot not all of the objects can be
picked by the robot. In such situations the human has to pick
the object. Accordingly we assume that not all objects can be
easily reached by the human. As a consequence, we have three
areas of the table: a human-only, a robot-only, and a common
area.

3.3. Perception
The robot obtains point clouds of tabletop objects by using the
depth values of the stereo camera. We use a discretization step
to obtain discretized objects with a predefined size and color.
This allows a better assignment of detected objects to real world
objects. If an object is placed on top of another object, only one
point cloud is detected. As a consequence, the system need to
keep track of the objects in the scene and adds below-relations
when another object is placed on top. The perception step is used
to update the state of the system, which is used by the robot to
select an action.
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FIGURE 2 | PR2 across the table from the participant, with the blocks and a

sheet of paper indicating the target positions for the tasks.

3.4. State and Actions
The state, S, of the system is described by the state of the table,
Stable, and the agent states, Shuman and Srobot . Stable consists of
the position and orientation of the objects that are located on
the table. Objects located in the hand/gripper of the agent are
described by the agent states Srobot and Shuman. The state Stable
can be influenced by both agents while Srobot and Shuman only can
be influenced by the particular agent.

Both agents can perform actions to manipulate objects on the
table or influence the actions of the other agent. Possible actions
are to pick up an object, place an object, wait, and communicate.
In our system, communication by both the human and the
robot is in the form of commands. Both agents follow an action
selection policy, π(S,C) = a, that selects actions based on the
current state and command, C, if a command has been given,
otherwise using an action selection policy, π(S) = a, that selects
actions based only on the current state.

Commands take the form of requesting help or specifying
which object the other agent should place next. It is then assumed
that the other agent will be able to work out where to place
the object. Commands from the robot occur only in the Robot-
Commands and Information strategies and are converted from
text-to-speech using the ROS sound_play 1. Speech-to-text is not

1http://wiki.ros.org/sound_play

yet implemented in our system. Commands from the human
participants are translated by the researcher into a keyboard
command (numbers 1 through 6) selecting the object specified
for Human-Commands, or a single command indicating that
help has been requested for Human-Requested or that the
balanced object should be placed for Information.

Both the robot and the participant know which task is
currently being completed, and can determine what actions are
needed to complete each task. The robot has complete knowledge
of actions to be performed to complete the task from states
normally reached when completing the task. The participant has
an information sheet with a description of the target state for each
of the tasks.

In choosing which action to take, the robot first determines
the current state of task completion. It then determines which
actions are needed to reach the next sub-task state, and creates a
possible-action list. Blocks that are reachable by the robot may be
selected for a pick-and-place action. Blocks that are not reachable
by the robot may be selected for a command for the human.
Depending on the current interaction strategy, the robot may
wait for a command, choose a reachable block on the possible-
action list for a pick-and-place action, or choose a non-reachable
block on the possible-action list for a command for the human.

If there are reachable blocks on the possible-action list, there
are several behaviors possible depending on the current strategy.
For the Autonomous, Proactive, Reactive, Robot-Commands,
and Information strategies, the robot will choose a reachable
block on the possible-actions list for a pick-and-place action,
noting that the Reactive strategy will first wait for a pre-
defined time of inaction. The Information strategy will also
determine if the human can execute an action at the same time,
choosing a non-reachable block on the possible-action list for a
command for the human. In the Human-Requested and Human-
Commands strategies, the robot will wait for a command. After
a command in the Human-Requested strategy, the robot will
choose a reachable block on the possible-action list for a pick-
and-place action. After a command in the Human-Commands
strategy, if the block indicated in the command is reachable and
on the possible-action list, this block will be picked up and placed
by the robot. In either case, if the command cannot be executed,
the robot will wait for the state to change or for a new command.

If there are no reachable blocks on the possible-actions
list, the behaviors possible also depend on the strategy. For
the Autonomous, Reactive, Human-Requested, and Human-
Commands strategies, the robot will wait for the state to change.
For the Proactive strategy, the robot will determine if a pick
action can be executed for a later place action. For the Robot-
Commands and Information strategy, the robot will choose a
non-reachable block on the possible-actions list for a command
for the human.

3.5. Experimental Protocol
A series of three Human-Robot Interaction experiments were
performed with the PR2 collaborative robot system described in
the previous sections. Here we describe the general experimental
protocol, with specifics for the three studies described in the
following sections.
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Participants were recruited from Stuttgart University through
mailing lists. After welcoming our participants, they fill in a
consent form and a demographics questionnaire. The interaction
strategies and tasks are explained. As the participants need
to interact differently with the robot for each strategy, they
are informed in advance how to interact with the robot. For
the Autonomous, Proactive, Reactive, and Information modes
they are told that “both you and the robot will decide how
and when to act in order to complete the task together.”
For the Information mode, they are also informed that the
robot will provide instructions based on its plan for how to
complete the task. For the Human-Commands and Human-
Requested modes they are told that “you will decide how and
when to act, and will also tell the robot how and when to
act,” together with details about how to instruct the robot.
For the Robot-Commands mode they are told that “the robot
will decide how and when to act, and will also tell you how
and when to act,” together with details about how the robot
will instruct them. Each participant performs the set of tasks
with the robot. The blocks are initially placed in the same
position for each task. The researcher replaces the blocks in
the initial position after the completion of each task. After
the interactions, the participant responds to statements about
the interactions on a 7-point Likert scale. The questions were
inspired by those used by Shah et al. (2011) and Baraglia et al.
(2016). A small number of questions are included due to the
relatively large number of interaction styles and tasks. The
questions were also updated between the different experiments.
To gain qualitative feedback about the system, the participant is
asked for general comments and improvements for the system
after all of the tasks are completed. They are also asked which
interaction strategy they preferred both overall and for each
task.

4. EXPERIMENT

A series of three Human-Robot Interaction experiments were
performed with the PR2 collaborative robot system described
in the previous sections. The first study explores five different
interaction styles. The second study compares three interaction
styles over four different tasks, and the final study compares two
interaction styles over the same four tasks. For each experiment
we report the participants’ responses to the statements, the
task completion times, the rankings of the interaction styles,
and general comments. We performed two-tailed unpaired t-
tests on the completion times in the different conditions and
Wilcoxon Signed-Rank tests on the participants’ responses to
the statements. Due to the small numbers of participants only
a small number of significant differences were found, and the
ranking of the interaction strategies and the general comments
made are more informative for gaining an understanding
of how the robot was perceived when it used different
strategies.

4.1. Interaction Styles Experiment
In the Interaction Styles experiment, we test five different
interaction styles on the one collaborative table-top task:

a bridge building task. This task is similar to the Build
task described earlier (see Figure 1C), without the medium
red block placed on top. The five interaction styles tested
were Proactive, Autonomous, Reactive, Human-Requested, and
Human-Commands. The order of the interaction styles was
randomized. The participants rated the interactions on the
following statements:

• The robot and I worked efficiently together
• The collaboration with the robot felt natural
• I was relaxed during the task execution
• The robot was intelligent
• I was surprised by what the robot was doing

The aim of this experiment was to determine preferred
interaction styles for a single table-top block construction task.
We hypothesize that the Autonomous and Proactive modes are
more efficient than the other modes, as found in Baraglia et al.
(2016).

4.1.1. Results

We conducted a lab study with 10 participants (2 female) aged
between 21 and 51 (M = 29.3, SD = 9.29). We compared
the responses for efficiency, naturalness, relaxedness, intelligence,
and surprise (see Table 1). We performed Wilcoxon Signed-
Rank Tests on the differences in ratings between the interaction
styles. The Proactive strategy is rated as significantly more
efficient than the Requested strategy, the Reactive strategy is rated
as significantly less efficient than the Proactive, Autonomous,
and Human-Commands strategies (p ≤ 0.05). The Human-
Requested strategy is rated as significantly less natural than
the Autonomous strategy, and the Reactive strategy is rated
as significantly less natural than the Proactive, Autonomous,
and Human-Commands strategies (p ≤ 0.05). No statistically
significant differences were found for relaxedness, intelligence,
and surprise. We compared the difference in rating for
efficiency and naturalness between the interaction styles for
each participant, and have summarized the average difference
in Tables 2, 3, bold values correspond to statistically significant
differences. For the Proactive and the Autonomous mode
the values are very similar. In our setting the participants
often performed their action before the robot finished its
action so that it was not necessary to perform an action
proactively.

TABLE 1 | Rating of the collaboration with the robot as reported by the

participants (From 0-strongly disagree to 6-strongly agree).

Proactive Autonomous Requested Commands Reactive

Efficient 5.30 (0.37) 5.20 (0.42) 4.30 (0.54) 4.90 (0.41) 3.40 (0.52)

Natural 4.40 (0.37) 4.50 (0.34) 3.90 (0.41) 4.30 (0.37) 3.30 (0.33)

Relaxed 5.20 (0.25) 5.10 (0.31) 5.10 (0.23) 5.10 (0.28) 5.00 (0.47)

Intelligent 4.80 (0.29) 4.50 (0.31) 4.60 (0.31) 4.70 (0.52) 3.80 (0.42)

Surprised 1.40 (0.56) 2.30 (0.75) 1.50 (0.62) 1.40 (0.60) 1.50 (0.40)

Mean (standard error of the mean (SEM)).
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TABLE 2 | Comparison of the perception of efficiency between the different interaction styles.

Proactive Autonomous Requested Commands Reactive

Proactive n/a 0.10 (0.18) 1.00 (0.47) 0.40 (0.27) 1.90 (0.28)

Autonomous −0.10 (0.18) n/a 0.90 (0.55) 0.30 (0.40) 1.80 (0.36)

Human Request −1.00 (0.47) −0.90 (0.55) n/a −0.60 (0.45) 0.90 (0.50)

Human Commands −0.40 (0.27) −0.30 (0.40) 0.60 (0.45) n/a 1.50 (0.31)

Reactive −1.90 (0.28) −1.80 (0.36) −0.90 (0.50) −1.50 (0.31) n/a

A positive number indicates that the interaction style of the row is rated as more efficient than the interaction style of the column. Bold values indicate statistically significant differences.

Mean (SEM).

TABLE 3 | Comparison of the perception of naturalness between the different interaction styles.

Proactive Autonomous Requested Commands Reactive

Proactive n/a −0.10 (0.18) 0.50 (0.27) 0.10 (0.35) 1.10 (0.28)

Autonomous 0.10 (0.18) n/a 0.60 (0.16) 0.20 (0.33) 1.20 (0.33)

Human Request −0.50 (0.27) −0.60 (0.16) n/a −0.40 (0.40) 0.60 (0.40)

Human Commands −0.10 (0.35) −0.20 (0.33) 0.40 (0.40) n/a 1.00 (0.21)

Reactive −1.10 (0.28) −1.20 (0.33) −0.60 (0.40) −1.00 (0.21) n/a

A positive number indicates that the interaction style of the row is rated as more natural than the interaction style of the column. Bold values indicate statistically significant differences.

Mean (SEM).

Regarding task completion times, the Proactive mode (M =

60.40 s, SEM = 9.03) and the Autonomous mode (M =

64.20 s, SEM = 17.55) were the fastest, followed by the Human-
Requested mode (M = 82.60 s, SEM = 22.41) and the Human-
Commands mode (M = 84.00 s, SEM = 33.40). In Reactive
mode the task lasted the longest (M = 117.90 s, SEM = 12.72).
Two-tailed unpaired t-tests found that completion times for the
Proactive strategy were significantly shorter than for Human-
Requested, Human-Commands, and Reactive strategies, and that
completion times for the Reactive strategy were significantly
longer than for all other strategies.

4.1.2. Discussion

The results of the Interaction Styles study confirm our hypothesis
that the Autonomous and Proactive modes are more efficient
than the other modes for completing the bridge-building task.
The most promising interaction styles were Autonomous and
Human-Commands. Proactive was found to be very similar
to Autonomous for this task and this is likely to be true
for most tasks in the domain of building structures with
blocks on a table when actions are interleaved between the
robot and the participant. In situations in which the robot
must wait for the participant to execute several actions, the
Proactive strategy may be more efficient than the Autonomous
strategy. Human-Commands and Human-Requested were also
similar, but Human-Commands was considered more efficient
and natural. The Reactive strategy took the longest for task
completion, and was considered less efficient and natural than the
other strategies. In considering the results from the Interaction
Styles study, we have also identified another possible interaction
style that involves robot-led interactions: Robot-Commands.

4.2. Different Tasks Experiment
In the Different Tasks study, we test the three promising
interaction styles identified in the previous study on four different
tasks to determine if there are particular types of actions that are
more favorable for certain interaction styles. The four tasks are
Sort, Stack, Build, and Balance. The three interaction styles are
Autonomous, Human-Commands, and Robot-Commands. The
participant has an information sheet describing the interaction
strategies and tasks to refer to as needed during the study.
Each participant performs the set of four tasks with the robot
three times, once for each interaction strategy. The order
of the interaction strategies is counterbalanced between the
participants. The order of the four tasks is kept the same
within each strategy in the order of increasing difficulty: Sort,
Stack, Bridge, Balance. The blocks are initially placed with
three blocks close to the robot and three blocks close to the
participant to maximize interleaving of actions for the tasks.
The researcher replaces the blocks in the initial position after
the completion of each task. We refined the statements for the
participants to rate the interactions to get a better understanding
of the interactions. The participants rate the interactions on the
following statements:

• I was comfortable working with the robot
• I was confused working with the robot
• The interactions felt natural
• The interactions were fluent
• The interactions were efficient
• The robot was a good partner

The aim of this study is to determine preferred interaction
styles for tasks that vary with respect to action order and the
independence of actions. For this study, following pilot studies
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with the authors interacting with the robot using the different
interaction styles, we hypothesize that:

• Autonomous interactions are more efficient for all tasks.
• Tasks involving joint action are perceived as more efficient in

human-led interactions.
• Tasks with higher cognitive load are perceived as easier in

robot-led interactions.
• Participants feel less comfortable in robot-led interactions.

4.2.1. Results

We conducted a lab study with 12 participants (4 female) aged
between 21 and 30 (M = 25.4, SD = 2.71). The average

completion time for each task was quickest for the Autonomous
strategy (see Tables 4–6). The participants’ responses were fairly
similar across all tasks and strategies, with less than 2 points
difference on average between the responses for the different
interaction styles (see Tables 4–6, bold values correspond to
statistically significant differences). The Autonomous strategy
was preferred over the other strategies by 6 participants overall,
but the other strategies were also preferred by some participants
overall and for specific tasks (see Table 7).

Two-tailed unpaired t-tests found that completion times
for Sort, Build, and Overall were significantly shorter for the
Autonomous strategy compared to the Human-Commands
strategy, that completion times for all tasks and overall were

TABLE 4 | Comparison of the Autonomous strategy to the Human Commands strategy for ratings reported by the participants and time taken for task completion in

seconds.

Sort Stack Build Balance Overall

Comfortable 0.00 (0.39) −0.33 (0.48) 0.00 (0.25) 0.00 (0.79) −0.08 (0.25)

Confused 0.25 (0.81) 0.67 (0.70) 0.42 (0.76) −0.25 (0.80) 0.27 (0.38)

Natural 0.17 (0.55) −0.08 (0.51) 0.25 (0.52) 0.00 (0.65) 0.08 (0.27)

Fluent 0.42 (0.38) −0.25 (0.55) 0.50 (0.36) 0.42 (0.36) 0.27 (0.21)

Efficient 0.42 (0.42) −0.08 (0.58) 0.08 (0.40) −0.17 (0.69) 0.06 (0.26)

Good Partner 0.75 (0.46) −0.08 (0.60) 0.50 (0.50) 0.33 (0.75) 0.38 (0.29)

Time −33.83 (9.96) −7.92 (4.26) −16.17 (6.42) −21.08 (11.36) −19.75 (4.32)

Positive values correspond to higher values for the Autonomous strategy. Bold values indicate statistically significant differences. Mean (SEM).

TABLE 5 | Comparison of the Autonomous strategy to the Robot-Commands strategy for ratings reported by the participants and time taken for task completion in

seconds.

Sort Stack Build Balance Overall

Comfortable 0.75 (0.59) 0.00 (0.67) 0.50 (0.36) 0.08 (0.68) 0.33 (0.29)

Confused 0.33 (0.76) 1.08 (0.56) 0.75 (0.46) 0.50 (0.42) 0.67 (0.28)

Natural 1.50 (0.57) 1.08 (0.51) 1.42 (0.53) 0.83 (0.89) 1.21 (0.31)

Fluent 1.17 (0.61) 0.58 (0.68) 1.33 (0.43) 0.83 (0.61) 0.98 (0.29)

Efficient 1.83 (0.88) 0.42 (0.85) 0.75 (0.73) 0.42 (0.92) 0.85 (0.42)

Good Partner 1.08 (0.57) −0.08 (0.71) 0.92 (0.38) 0.50 (0.80) 0.60 (0.31)

Time −49.67 (10.68) −21.50 (4.09) −35.08 (7.21) −21.08 (2.99) −31.83 (3.76)

Positive values correspond to higher values for the Autonomous strategy. Bold values indicate statistically significant differences. Mean (SEM).

TABLE 6 | Comparison of the Human-Commands strategy to the Robot-Commands strategy for ratings reported by the participants and time taken for task completion

in seconds.

Sort Stack Build Balance Overall

Comfortable 0.75 (0.54) 0.33 (0.50) 0.50 (0.42) 0.08 (0.79) 0.42 (0.28)

Confused 0.08 (0.63) 0.42 (0.53) 0.33 (0.57) 0.75 (0.63) 0.40 (0.29)

Natural 1.33 (0.40) 1.17 (0.37) 1.17 (0.37) 0.83 (0.39) 1.13 (0.19)

Fluent 0.75 (0.55) 0.83 (0.39) 0.83 (0.51) 0.42 (0.58) 0.71 (0.25)

Efficient 1.42 (0.71) 0.50 (0.51) 0.67 (0.51) 0.58 (0.70) 0.79 (0.30)

Good Partner 0.33 (0.74) 0.00 (0.60) 0.42 (0.60) 0.17 (0.73) 0.23 (0.33)

Time −15.83 (10.17) −13.58 (2.68) −18.92 (2.42) 0.00 (12.66) −12.08 (4.16)

Positive values correspond to higher values for the Human-Commands strategy. Bold values indicate statistically significant differences. Mean (SEM).
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TABLE 7 | Number of participants choosing each strategy as preferred for each

task and overall.

Sort Stack Build Balance Overall

Autonomous 8 5 6 3 6

Human-Commands 1 3 2 7 4

Robot-Commands 3 4 4 2 2

significantly shorter for the Autonomous strategy compared to
the Robot-Commands strategy, and that completion times for
the Build task and overall were significantly shorter for the
Human-Commands strategy compared to the Robot-Commands
strategy.

We performed Wilcoxon Signed-Rank Tests on the
differences in ratings between the interaction styles. No
statistically significant differences were found between
the Autonomous and Human-Commands strategy. The
Autonomous strategy is rated as significantly more natural
for the Sort and Build tasks, and as more fluent and as a
better partner for the Build task when compared to the Robot-
Commands strategy (p≤‘0.05). The Human-Commands strategy
is rated as significantly more natural for the Sort, Stack, and
Build tasks when compared to the Robot-Commands strategy
(p ≤ 0.05).

The results of the preferred interaction strategy overall and
for each task indicates that this preference is very individual (see
Table 7). Although each strategy was preferred by at least one
participant for each task, there are clear trends in preference
between the tasks. Eight participants preferred the Autonomous
strategy for the Sort task, which reduced to five, six, and three for
the Stack, Build, and Balance tasks. Seven participants preferred
the Human-Commands strategy for the Balance task, citing their
desire for control in completing this task. Overall, six participants
preferred Autonomous, four preferred Human-Commands, and
two preferred Robot-Commands. The participants who preferred
Robot-Commands commented that they appreciated not needing
to remember which block to place next.

4.2.2. Discussion

The results of the Different Tasks study confirm three of our four
hypotheses. Autonomous interactions were found to be more
efficient for all tasks. While tasks involving joint action were
not found to be perceived as more efficient in the human-led
interactions, participants preferred Human-Commands for the
Balance task as they wanted more control over joint actions.
We found evidence for tasks with higher cognitive load being
perceived as easier in robot-led interactions. Overall the robot-
led interactions resulted in lower values for naturalness, fluency,
efficiency, and whether the robot was a good partner.

The study identified two situations in which human-led
or robot-led interactions might be preferred over autonomous
interactions: participants prefer to have control over the
interactions for tasks involving joint action and tasks that
have higher cognitive load are perceived as easier in robot-led
interactions.

4.3. Information Experiment
For the Information experiment, we developed a strategy that
acted as the Autonomous strategy previously, but also gave
helpful commands and asked for timing commands from
the human partner for joint actions. These improvements
corresponded to situations from the previous experiments that
were highlighted as requiring extra communication between the
robot and the participant. Half of the participants performed
the tasks with the Autonomous strategy first and the other half
performed the tasks with the Information strategy first. The order
of the four tasks is kept the same within each strategy in the
order of increasing difficulty: Sort, Stack, Bridge, Balance. The
participants rate the interactions on the same statements as the
previous study, as well as a statement about how easy the task
was:

• I was comfortable working with the robot
• I was confused working with the robot
• The interactions felt natural
• The interactions were fluent
• The interactions were efficient
• The robot was a good partner
• The task was easy

Our aim for this study was to develop a system that could be
preferred over the Autonomous system. With the Information
strategy developed to be useful for these tasks, we hypothesize
that:

• The Autonomous and Information strategies have similar
efficiency for these tasks.

• Tasks are perceived as easier with the Information strategy.
• Tasks are perceived as more confusing with the Autonomous

strategy
• Participants prefer the Information strategy for all tasks and

overall

4.3.1. Results

We conducted a lab study with 10 participants (3 female) aged
between 20 and 68 (M = 33.6, SD = 18.2). Two-tailed unpaired
t-tests found that completion times for all tasks were significantly
shorter for the Autonomous strategy when compared to the
Information strategy. The responses were fairly similar across
most statements for the different tasks and strategies (see Table 8,
bold values correspond to statistically significant differences).
We performed Wilcoxon Signed-Rank Tests on the differences
in ratings between the interaction styles. The Autonomous
strategy is rated as significantly more fluent overall compared
to the Information strategy (p ≤ 0.05), but no other statistically
significant differences were found between the Autonomous
and Information strategies. However, for the Sort task, the
Information strategy was rated as less fluent, less efficient, and the
task was harder. For the Stack task, the Information strategy was
rated as more natural, and for the Balance task, the Information
strategy was rated as less confusing and the task was easier.
Overall, the Information strategy was preferred by six of the
ten participants (see Table 9). The Autonomous strategy was
considered better for the Sort task by seven of the ten participants.
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TABLE 8 | Comparison of the Autonomous strategy to the Information strategy for ratings reported by the participants and time taken for task completion in seconds.

Sort Stack Build Balance Overall

Comfortable 0.20 (0.33) −0.20 (0.20) −0.10 (0.23) −0.70 (0.45) −0.20 (0.16)

Confused −0.10 (0.55) 0.00 (0.00) 0.40 (0.31) 0.80 (0.53) 0.28 (0.21)

Natural 0.00 (0.98) −1.00 (0.56) −0.20 (0.57) −0.50 (0.70) −0.43 (0.35)

Fluent 1.00 (0.71) 0.60 (0.31) 0.40 (0.22) 0.20 (0.29) 0.55 (0.21)

Efficient 1.20 (0.63) 0.00 (0.42) −0.30 (0.40) −0.30 (0.50) 0.15 (0.26)

Good partner 0.00 (0.37) 0.30 (0.26) 0.60 (0.37) 0.30 (0.52) 0.30 (0.19)

Easy 0.60 (0.45) 0.00 (0.15) −0.30 (0.26) −0.80 (0.33) −0.13 (0.17)

Time −17.50 (3.39) −7.50 (1.30) −9.90 (3.01) −9.90 (2.15) −11.20 (1.38)

Positive values correspond to higher values for the Autonomous strategy. Bold values indicate statistically significant differences. Mean (SEM).

TABLE 9 | Number of participants choosing each strategy as preferred for each

task and overall.

Sort Stack Build Balance Overall

Autonomous 7 5 4 4 4

Information 3 5 6 6 6

Five participants preferred each strategy for the Stack task, and
six participants preferred the Information strategy for both the
Build and the Balance task.

All four of the participants who preferred the Autonomous
strategy overall commented that they could see that the
Information strategy could be useful if the tasks were more
difficult or complicated. Three of these four participants
performed the tasks with the Information strategy first, so had the
extra experience of performing these tasks before interacting with
the Autonomous strategy. Also, one of these participants chose
the Information strategy as preferred for the Sort task, stating that
they did so probably because it was the first task they performed
with the robot, so the extra help was appreciated while they were
working out what they were meant to be doing.

Five participants reported that they found the robot to be slow.
Four participants commented that they liked it when the robot
waited for them to say when to release the block for the Balance
task. Five participants commented that for some tasks, it was
useful to have the robot tell them what to do next, so that they
did not have to work it out for themselves.

4.3.2. Discussion

The results of the Information study show that the Autonomous
mode is more efficient for all tasks, although the difference was
smaller for the more complex tasks. Some participants found the
tasks easier with the Information strategy and more confusing
with the Autonomous strategy, and overall there is a trend that
the Information strategy is preferred for more complex tasks.
However, a limitation of this study was the difficulty of the
tasks. While some participants found the tasks difficult enough to
appreciate the assistance of the robot in the Information strategy,
others found the tasks so simple that the extra information was

unnecessary. We predict that the Information strategy would be
preferred if this study was repeated with more complex tasks.

Despite this limitation, the study shows that the Information
strategy is useful when completing tasks that participants
consider difficult. In particular, the trend of the Information
strategy being preferred more often for the more complex tasks
of Build and Balance indicates the usefulness of the strategy in
these situations. The qualitative feedback from the participants
confirms that being told which action to take next is often
appreciated and that controlling timing for joint action is also
often desired. The key for future strategy improvement is for the
robot to identify when its human partner considers a task difficult
and therefore may appreciate extra information.

5. GENERAL DISCUSSION

In this paper, we investigated human-robot collaboration for
on-table tasks. We presented a robot system for collaborating
across the table from a human to build structures using colored
blocks. Our first study confirmed that a robot acting in a
Proactive or Autonomous manner is preferred over a robot
acting Reactively (Baraglia et al., 2016). We found that the
Proactive and Autonomous interaction styles were very similar
for the bridge-building task, particularly as most actions were
interleaved between the robot and human. We also found that
the Human-Commands mode was preferred over the Human-
Requested mode, as participants found it more natural to specify
a particular action for the robot to take, rather than simply asking
for help. The results from the second study also confirmed that
the tasks are completed more efficiently when the participant
and robot act autonomously. Tasks with fixed or partially fixed
action order (Stack and Build) were rated as less confusing
with robot-led interactions. Some participants indicated that
they appreciated not needing to remember which block to place
next for these tasks. Human-led interactions were preferred by
the majority of participants for the task including joint actions
(Balance), as they wanted to have more control for these actions.
Our final study presented here confirmed that an interaction
style that allows robot-led interactions for higher cognitive load
actions and human-led interactions for joint actions can be
preferred. The autonomous interactions were still preferred by
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approximately half of the participants, likely due to these tasks
being easy for some people to complete without additional help
from the robot.

We have confirmed our belief that different interaction styles
are preferred for different tasks with respect to independent
vs. joint action, and fixed vs. any order actions. It is
therefore important to consider the type of task for designing
robot interactions. For tasks involving joint action, including
constructing furniture (Roncone et al., 2017) and complex
structures (Munzer et al., 2017b), care should be taken to allow
the robot to act autonomously for efficient task completion, but
to allow the human to take control over interactions to allow
for more natural collaborations. The Autonomous strategy was
preferred for tasks involving independent actions that can be
performed in any order (Sort). Collaborative clearing (Nikolaidis
et al., 2017) and cleaning (Fiore et al., 2016) tasks can probably
be efficiently executed with minimal communication between the
agents. Our results indicate that tasks involving a set order of
actions, including construction (Roncone et al., 2017), cooking
(Milliez et al., 2016), and placement (Baraglia et al., 2016) tasks,
would benefit from communication about the shared plan at
the time when the human should take an action. However,
as different people find different tasks easy or hard, a system
that also adapts to the humans knowledge would be beneficial
(Milliez et al., 2016). It is also important to consider how the
findings from a “toy” task, such as the block building tasks
used in this study, will be applicable in real world tasks (Mutlu
et al., 2013). We believe that the effects found in our simple
tasks here will be even more clear in more complex real world
tasks involving actions with complicated dependencies and joint
actions.

To answer the question: how do humans want to interact with
collaborative robots? In the domain of table-top collaborative
robots, interactions in which both humans and robots act
autonomously result in more efficient interactions, but in

joint action situations human-led interactions are preferred
and in high cognitive load situations robot-led interactions
are preferred. Specifically, joint actions benefit from timing
information being communicated between the human and the
robot, and in our studies, people preferred to provide this
information. Additionally, actions that have a higher cognitive
load benefit from the robot providing extra information for
the human, by communicating its shared plan about what the
human should be doing. A robot that can identify joint actions
as well as actions that may require a higher cognitive load and
act appropriately would result in both more efficient and more
natural interactions.
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