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Objective: The brain age gap estimate (BrainAGE) is the difference between the

estimated age and the individual chronological age. BrainAGEwas studied primarily using

MRI techniques. EEG signals in combination with machine learning (ML) approaches

were not commonly used for the human age prediction, and BrainAGE. We investigated

whether age-related changes are affecting brain EEG signals, andwhether we can predict

the chronological age and obtain BrainAGE estimates using a rigorous ML framework

with a novel and extensive EEG features extraction.

Methods: EEG data were obtained from 468 healthy, mood/anxiety, eating and

substance use disorder participants (297 females) from the Tulsa-1000, a naturalistic

longitudinal study based on Research Domain Criteria framework. Five sets of

preprocessed EEG features across channels and frequency bands were used with

different ML methods to predict age. Using a nested-cross-validation (NCV) approach

and stack-ensemble learning from EEG features, the predicted age was estimated. The

important features and their spatial distributions were deduced.

Results: The stack-ensemble age prediction model achieved R2 = 0.37 (0.06),

Mean Absolute Error (MAE) = 6.87(0.69) and RMSE = 8.46(0.59) in years. The age

and predicted age correlation was r = 0.6. The feature importance revealed that age

predictors are spread out across different feature types. The NCV approach produced a

reliable age estimation, with features consistent behavior across different folds.

Conclusion: Our rigorous ML framework and extensive EEG signal features allow a

reliable estimation of chronological age, and BrainAGE. This general framework can be

extended to test EEG association with and to predict/study other physiological relevant

responses.

Keywords: aging, human brain, EEG, machine learning, feature extraction, BrainAGE

INTRODUCTION

Brain changes due to age have been studied for decades (e.g., Lindsley, 1939; Harmony et al.,
1990; Lao et al., 2004) and more recently using genetics Lu et al. (2017). The term BrainAGE
(the difference between predicted age—chronological age) was introduced to examine and capture
any disease-related deviations from natural aging, by comapring BrainAGE estimates in disease
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group to healthy control group. Magnetic Resonance Imaging
(MRI) has been widely used to build predictive models for age
by utilizing white matter (WM) and graymatter (GM) properties.
Franke et al. (2010) employed T1-weighted (T1w)MRI structural
images to establish a framework (using a kernel method for
regression) for automatically and efficiently estimating the age
of healthy individuals. This framework proved to be a reliable,
scanner-independent, and efficient method for age estimation
in healthy subjects, yielding a correlation of r = 0.92 between
the estimated and the real age in the test samples and a mean
absolute error of 5 years. Similarly, Cole et al. (2017) used Deep
Learning (DL) to study BrainAGE using both pre-processed
and raw T1w MRI images. Their approach predicted age with
minimal efforts by achieving a correlation between age and
predicted-age of r = 0.96 and MAE= 4.16 years. Also, Valizadeh
et al. (2017) obtained R2 = 0.77 from large healthy subjects
(n = 3,144) by training features from various anatomical brain
regions. Càmara et al. (2007) studied age-related changes in water
self-diffusion in cerebral white matter using Diffusion Tensor
Imaging (DTI). Their results revealed white matter changes with
age in different brain regions, like the corpus callosum, prefrontal
regions, the internal capsule, the hippocampal complex, and
the putamen. Functional MRI (fMRI) imaging was also used to
predict age alone, or combined with other imaging approach.
For instance, Dosenbach et al. (2010) were able to explain
up to 55% of their sample variance from the functional MRI
connectivity (fcMRI) data. Likewise, Qin et al. (2015) related
the developmental changes in the amplitude of low-frequency
spontaneous fluctuations in resting-state fMRI to age. They
reported MAE of 4.6 years between chronological age and
predicted-age. More recently, Liem et al. (2017) utilized cortical
anatomy and whole-brain functional connectivity for predicting
brain-based age achieving MAE = 4.29 year. Several BrainAGE
studies revealed changes and differences among clinical groups.
For example, BrainAGE estimations in schizophrenia patients
was attributed to accelerated aging when compared to healthy
and bipolar subjects (Nenadić et al., 2017). In additions,
individuals diagnosed with medically refractory epilepsy had a
higher predicted age than health subjects (Pardoe et al., 2017).

Herein, we focus on studying BrainAGE using EEG signals.
Several studies have demonstrated that EEG features like EEG
rhythmic activity (e.g., delta, theta, alpha, beta, and gamma)
changes as a function of age (Matthis et al., 1980; Clarke et al.,
2001; Marshall et al., 2002; Ashburner, 2007; Cragg et al., 2011).
For instance, Benninger et al. (1984) found theta band showed
an increase in power spectra, while delta exhibited decrease for
healthy children between 4 and 17 years. Gasser et al. (1988)
showed that: (i) the relative power increases with age in fast
bands, while decreases for the slow bands in healthy children
and adolescent (6–17 years), (ii) all bands showed increase in the
absolute power except for alpha-2. Analyzing the coherence of
EEG in resting state revealed that younger healthy subjects had
a lower coherence than elderly ones for theta, alpha-3, beta-2,
and beta-2 (Kikuchi et al., 2000). The beta relative power was
positively correlated with age for older subjects for resting with
eye closed condition (Marciani et al., 1994). The alpha reactivity
decreased and showed negative correlation with age in the older

group when performing mental tasks (Marciani et al., 1994). The
theta power was shown to increase from resting to arithmetic
task for younger group, while decreasing for the older group
(Widagdo et al., 1998). Moreover, the delta band beta-3 power
showed an increase from resting to arithmetic tasks, while alpha
was decreased (Widagdo et al., 1998). A more recent study used
four channels EEG recording to investigate age-related changes
in EEG power from thousands of subjects throughout adulthood
(Hashemi et al., 2016). Their findings showed an overall age-
related shift in band power from lower to a higher frequency and
a gradual slowing of the peak α frequency with age. Furthermore,
studying the source of cortical rhythm suggested that occipital
delta and posterior cortical alpha rhythms decrease in magnitude
during physiological aging with both linear and nonlinear trends
(Babiloni et al., 2006). Age prediction from EEG was studied
in Dimitriadis and Salis (2017), where authors used functional
connectivity features from EEG to predict age from 94 healthy
subjects. Their results showed accuracy of R2 = 0.60 for eyes-
open and R2 = 0.48 for eyes-closed.

The influence of diseases on EEG features were investigated
elsewhere. For instance, Saletu et al. (1995) used the mean EEG
power spectrum to study group differences between multi-infract
dementia (MID) and dementia of Alzheimer’s disease (AD) and
compared it a healthy group. MID group showed a significant
increase of theta activity in occipital regions and decrease in
alpha activity. Abnormalities in cortical neural synchronization
for subjects were observed in subjects with mild cognitive
impairment due to AD (ADMCI) and to Parkinson Disease
(PDMCI) in delta and alpha (Babiloni et al., 2016). Differentiating
subjects with Alzheimer’s disease from healthy ones was studied
in Babiloni et al. (2016). Authors reported 70% accuracy using
the power and functional connectivity of cortical sources, which
was later improved to 77% using Artificial Neural Network
(Triggiani et al., 2017). Table 1 provides a summary of studies
that specifically reported age prediction performance from brain
imaging data.

In this study, we proposed a robust and rigorous framework
to predict BrainAGE using different features of EEG signals
recorded during fMRI. First, we extended a recent open-source
EEG feature extraction software in Matlab (Toole and Boylan,

TABLE 1 | A summary of related work for predicting age from brain imaging data.

Work Data No. of

Samples

Performance

Franke et al., 2010 MRI 650 r = 0.92, MAE = 5 years

Cole et al., 2017 MRI 2,001 r = 0.96, MAE = 4.16

years

Dosenbach et al.,

2010

fMRI 238 R2 = 0.55

Qin et al., 2015 fMRI 183 MAE = 4.6 years

Valizadeh et al.,

2017

MRI 3,144 R2 = 0.77

Dimitriadis and

Salis, 2017

EEG 94 R2 = 0.6 for eyes open

R2 = 0.48 for eyes closed

Liem et al., 2017 fMRI + MRI 2,354 MAE = 4.29 years
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2017) to provide a feature representation of individual subjects.
Then, we applied a set of machine learning (ML) methods
to predict age from features. Our proposed framework and
a proof-of-concept analysis revealed that robust BrainAGE
predictors span multiple EEG signal features, including separate
channels, and frequencies. The overall accuracy elaborated
that EEG BrainAGE is a promising approach to study brain
maturity and has capacity to reveal different factors that affect
natural aging.

METHODS

Participants
Participants were selected from the first 500 subjects of the
Tulsa 1000 (T-1000), a naturalistic study that is assessing
and longitudinally following 1,000 individuals, including
healthy comparisons and treatment-seeking individuals with
mood disorders and/or anxiety, substance use, and eating
disorders. The T-1000 aims to determine how disorders of
affect, substance use, and eating behavior organize across
different levels of analysis with a focus on predictors of long-
term prognosis, symptom severity, and treatment outcome
(Victor et al., 2018). The T-1000 study is conducted at the
Laureate Institute for Brain Research. The study human research
protocol was approved by the Western Institutional Review
Board. All participants provided written informed consent
and received financial compensation for participation. As
described in details in Victor et al. (2018), the study participants
were screened on the basis of a treatment-seeking history
and dimensional psychopathology scores: Patient Health
Questionnaire (PHQ-9) ≥ 10 and/or Overall Anxiety Severity
and Impairment Scale (OASIS) ≥ 8, Drug Abuse Screening
Test (DAST-10) score > 3, or Eating Disorder Screen (SCOFF)
score ≥ 2. Each participant underwent approximately 24 h
of testing over the course of 1 year including a standardized
diagnostic assessment, self-report questionnaires, behavioral and
physiological measurements indexing RDoC domains, magnetic
resonance imaging focusing on brain structure and reward-
related processing, fear processing, cognitive control/inhibition,
interoceptive processing, and blood/microbiome
collection. Please refer to Figure S1 in Supplementary
for the detailed information about the demographics of
the dataset.

EEG Recording
EEG signals were recorded simultaneously with fMRI using a 32-
channel MR-compatible EEG system arranged according to the
international 10–20 system from Brain Products GmbH. ECG
signal was recorded using an electrode on the subject’s back. In
order to synchronize the EEG system clock with the 10MHzMRI
scanner clock, a Brain Products’ SyncBox device was utilized.
The EEG acquisition temporal resolution, and measurement
resolution were 0.2ms (i.e., 16-bit 5 kS/s sampling) and 0.1 µV
respectively. A hardware filtering throughout the acquisition in
a frequency band between 0.016 and 250Hz was applied to EEG
signals.

We included EEG data collected from 468 subjects (mean
age: 34.8 years, 297 females). One resting EEG-fMRI run was
conducted for each subject; lasting 8min. The participants
were instructed to relax and keep their eyes open and fixate
on a cross.

Magnetic resonance (MR) images were acquired
simultaneously via a General Electric Discovery MR750
whole-body 3 T MRI scanner with a standard 8-channel,
receive-only head coil array. A single-shot gradient-recalled EPI
sequence with Sensitivity Encoding (SENSE) was employed for
the fMRI acquisition. The fMRI data has not been used in this
paper.

EEG Data Preprocessing
For each scan the EEG data was preprocessed with an in-house
script developed in MATLAB. The script was designed to remove
the MR gradient artifact and cardioballistic artifact from the
EEG data. The details about the preprocessing script are given
as follow. The MR gradient artifact was first removed from the
EEG data using optimal basis sets (Allen et al., 2000; Delorme
and Makeig, 2004; Niazy et al., 2005). Then the EEG data was
band-pass filtered between 1 and 70Hz, down-sampled to 4ms
temporal resolution, and band-stop filtered (1Hz bandwidth) at
the harmonics of the fMRI slice selection frequency (19.5Hz),
AC power line frequency (60Hz), and a 26Hz vibration artifact
frequency (Mayeli et al., 2016). Then the cardioballistic artifact
was corrected using optimal basis sets subtraction (Niazy et al.,
2005), which requires the timing of the artifact cycle. In order
to achieve a robust artifact cycle determination, the script
determined the artifact cycle using the cardioballistic component
directly from the EEG-fMRI data (Wong et al., 2018), which
was extracted by independent component analysis (Bell and
Sejnowski, 1995) and was automatically identified (Wong et al.,
2016).

EEG Feature Extraction
Feature extraction is a quintessential phase in any EEG analysis
that depends on finding common features representation among
EEG samples. The existing literature provides quite extensive
span of features extraction using variety of signal processing
approaches (Jenke et al., 2014). Choosing feature extraction
method relies on the applications of the prediction and the
compromisation between interpretation and performance. For
instance, advanced features extractionmethods can be used at the
cost of interpretation, where such approaches have been shown to
outperform the typical approaches (Dimitriadis and Salis, 2017;
Al Zoubi et al., 2018). In our case, BrainAGE emphasizes on the
interpretation and understanding of the predictors since the goal
is to find those features that influence BrainAGEmodeling. Thus,
we adopted the similar set of features used by Toole and Boylan
(2017), which extracts a wide range of commonly used features
from EEG. However, our work takes an extensive approach to
survey all features from all channels and bands without reducing
features by averaging as done in Toole and Boylan (2017). That is,
all features from all possible channels, bands and across different
types of features were extracted from EEG. In addition, the
types of features used here are commonly used in literature to
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analyze EEG data. That is, the interpretation and replication of
such features are less challenging than using uncommon features.
However, our approach results in a relatively large number of
features from EEG. Therefore, a feature selection and suitable
ML algorithms are needed to deduce the important predictors.
All features were extracted from each subject independently and
arranged in one row/sample.

General Configuration
EEG bands of interest are [δ = 0.5–4; θ = 4–7; α = 7–13; β = 13–
30;W = 0.5–30] Hz using the bipolar montage of the EEG, with
W denotes the whole frequency range of EEG. We denoted EEG
time series as xi [n] with frequency bands of i = α, β , θ , γ , W
and n is channel’s index (the total number of channels isN = 31).
We selected five types of features as follows: amplitude, range,
spectral, connectivity, and fractal dimension. We divided the
EEG recordings from each subject into 60 s and 50% overlap
among epochs (14 epochs). Figure 1 elaborates on the features
extraction process. For each channel, we divided the signal intom
epochs, then we filtered each epoch into corresponding frequency
bands. A specific feature extraction was applied to each sub-
segment yielding m values. Finally, we estimated the channel-
level feature for the corresponding frequency band as the average
across all epochs. The process is slightly different for Fractal
Dimension (FD) features, since we estimate the features without
filtering into the frequency bands.

Amplitude Domain Features
The amplitude features characterize the statistical properties of
the signal power Ai

power and the signal envelope Eimean. We
calculated: (i) the mean, (ii) standard deviation, (iii) skewness,
and (iv) kurtosis for each channel across frequency bands. The
Eimean is calculated using mean of the envelop e[n]i, which is
identified in complex notation as: ei [n] = |xi [n]+ jH {xi [n]} |

2,
with which is the Hilbert transformation.

Range Domain Features (rEEG)
Range features account for the peak-to-peak voltages changes
and characterize changes in the signal over the time. To achieve
that, we segmented each epoch into short-time portions eachwith
a window size of w = 2 s and overlap = 50%. Then, for each
segment, we calculated the corresponding range of peak-to-peak.
This produced samples from each epoch to estimate the mean,
median, 5th and 95th percentiles, standard deviation, coefficient
of variation and the measure of symmetry.

Spectral Domain Features
Spectral features have been the most commonly used features
for EEG. To extract the spectral features, we applied Welch
periodgram to estimate the power spectral density (PSD) and
the hamming window with a length of 2 s and overlap of 50%.
The following spectral features have been extracted: (1) power,
(2) relative power, (3) entropy (using Wiener and Shannon
methods), (4) edge frequency (the cut-off frequency at which
encompasses 95% of spectral power), and (5) differences between
consecutive short-time spectral estimations.

Connectivity Domain Features
We calculated the brain symmetry index (BSI) as the mean of
PSD difference between the left and right hemispheres for each
frequency band (K = δ, θ, α, β, γ).

Let ai and bi be the lower and upper frequency limit of band i,
the BSI for band i is:

Ci
BSI =

1

(bi − ai)

bi∑

k=ai

∣∣∣∣∣
Pleft [K] − Pright [K]

Pleft [K] + Pright [K]

∣∣∣∣∣ (1)

With

Pleft [K] =

∑n/2
m=1 Pm[K]

n/2
and Pright [K] =

∑M
m=M

2 +1
Pm[K]

n/2
(2)

Also, we calculated the median and lag of maximum correlation
coefficient of the Spearman correlation between envelopes of
hemisphere-paired channels and coherence between channel
pairs.

Fractal Dimension Domain Features
Fractal dimension for time series is a value that estimates to what
extent the fractal pattern changes with respect to the scale at
which it embeds. We applied Higuchi method with k = 6 for
each EEG channel to estimate the FD.

Table 2 summarizes the extracted set of features from EEG
data.

Feature Reduction
After feature extraction, we eliminated features that are either
low in variation among subjects or highly correlated with other
features using the “findCorrelation” function in the “caret”
package (Kuhn, 2008), version “6.0-78.” The “findCorrelation”
evaluates the pair-wise correlation of features. Then, it finds
the highest absolute pair-wise correlation, if two features have
a high correlation (r ≥ 0.9 Pearson’s correlation), it eliminates
the feature with the highest mean absolute correlation. It should
be noted that other feature selection methods could be used
to select the best features using NCV approach. However, the
interpretation of such approach could be challenging i.e., the
selected features from the inner loop of the NCVmay vary across
folds. In addition, using other feature selections should be applied
within each loop of NCV, which increases the computational
overhead. Thus, removing correlated features provides a better
way to select features in this case. Figures S2, S3 in Supplementary
shows the correlation matrices before and after removing the
correlated features.

Machine Learning Methods
Selecting appropriate ML algorithms is a critical step to achieve
robust BrainAGE estimation. Having represented each subject’s
features in one row, the final dataset dimension is x = n × m,
with n = 468 and m = 863. We used R package “caret”
to perform a set of regression algorithms: Elastic Net (ENET),
Support Vector Regression (SVR), Random Forest (RF), extreme
gradient boosting tree (XgbTree), and Gaussian Process with
Polynomial Kernel (gaussprPoly). The aim is to test different
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FIGURE 1 | Feature extraction procedure. Each channel is divided into m epoch. From there, we filtered each epoch into α, β, θ, γ, and W frequency bands. Then, for

each filtered epoch, we applied the desired feature. This resulted in m feature value from all epochs, which are then averaged to estimate the channel-level feature. In

the figure, we represent each feature using three indices: f(channel, epoch, band) with channel = [1..N], epoch = [1..m], and band = [α, β, θ, γ, W]. The final out is a

channel-level feature and represented with two indices f(channel, band).

ML techniques in order to provide a better estimation for
age. First, ENEST is a linear regression technique that uses
L1 and L2 regularization to prevent overfitting. Second, SVR
uses optimization to build the regression model, but in high
dimensional version of the training data. In our case, we used
a kernel with radial basis function to project the data into
high dimension space. Third, RF is one of the most common
ensemble techniques, where it performs subsampling for the
feature space of training data to build multi weak learners.
Thus, different models from the training data are produced
and then averaged to minimize the variance across models.

Fourth, XgbTree utilizes a combination of ensemble learning,
optimization and regularization to build generalized model from
training data. Finally, gaussprPoly is a probabilistic approach
to build a regression model by learning the distribution of the
training data given the response (age). Similar to the kernel
function in SVR, gaussprPoly adopts a polynomial kernel to
project data into high dimension space.

To provide un-biased prediction for age, the nested cross
validation was adopted in building age prediction models
(Varma and Simon, 2006). Figure 2 depicts the NCV procedure
consisting of two main loops: the inner and outer loops. The
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TABLE 2 | The extracted features from EEG data.

Feature group Subset of features Across

bands

Across

channels

Number of

features

Amplitude Total power, mean, standard deviation, skewness, kurtosis, envelope mean, and standard

deviation

Yes Yes 6× 4× 31

Peak-to-peak Mean, median, 5th and 95th percentiles, standard deviation, the coefficient of variation and the

measure of symmetry

Yes Yes 7× 4× 31

Spectral power Spectral power and relative power, spectral entropy (using Wiener and Shannon methods),

spectral edge frequency (the cut-off frequency at which encompasses 95% of spectral power)

and spectral differences between consecutive short-time spectral estimations

Yes Yes 6× 4 × 31

Connectivity Brain symmetry index, correlation, mean and maximum of frequency at which the maximum

coherence is achieved

Yes No 5× 4

Fractal dimension Fractal dimension No Yes 31

FIGURE 2 | The nested-cross-validation procedure for predicting age. The example here demonstrates the first fold of the outer loop. The procedure consists of an

inner loop (blue color) and outer loop. The inner loop is used to find the best models to predict the age. The outer loop uses those models to predict the age on the

testing set. The process is repeated for all folds of the outer loop, which results in building a prediction of age from all samples.

inner loop is used to find the best parameters from training set,
while the outer loop is used to evaluate the best parameters on
the testing set. To elaborate on the NCV, let the subscript refers
to data andmodels from inner loop of NCV, while the superscript
represents the ones from outer loop. In our run, we used 10-
fold cross-validation (KI = 10) for the inner and 10-fold cross-
validation for outer loop (KO = 10). The inner loop was used
to estimate the best parameters on training data (Tr1) using a
grid search and the one-standard error rule. Each inner loop
consists of 5-repeat (R = 5) for each method. The outer loop
uses the best obtained models to build a stack-ensemble model.
The best models are represented by its best parameters θ li, with i

is the method index of the corresponding method Mi (i = 1..r)
and l refers to the fold l from the outer loop. The symbol “P”
refers to the prediction process associated with each method.
Stacking ensemble helps to improve the stability of prediction
by combining the prediction from other models; i.e., predictions
from the five methods were combined by learning weights via a
general linear model (GLM). In details, the GLM was trained on
the resampled predicted age from the inner loop (yTrli). Then,
the GLMwas used to provide one weighted-average prediction in
10-fold cross-validation (KEns = 10). From there, the best stack-
ensemble model (θ lEns) was used to predict age for the testing

set (ŶTsl). That is, the prediction of age is calculated for the
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individual methods yTrli = Pi(Tr
l, θi), and then the weighted

average is estimated for fold l.

ŶTsl = PEns([yTr
l
1, yTr

l
2, . . . , yTrlr], θ lEns)

After iterating over all folds from the outer loop, a prediction for
the age for the entire dataset can be built. In addition, the variable
importance of predictors from the stacking ensemble models was
estimated across the outer loop of NCV. Finally, the predicted
age and age values were used to estimate the BrainAGE for the
dataset. Figure 3 shows the overall framework to estimate the
BrainAGE.

RESULTS

The NCV R-Squared performance for Stack-Ensemble and
underlay methods is shown in Figure 4. The individual
performance for each ML method was calculated before the
stack-ensemble phase. The results showed that SVR with
radial kernel achieved the best accuracy R2 = 0.34 (0.056),
MAE = 7.01(0.68) years and RMSE = 8.7(0.63) years. On
the other hand, the stack-ensemble improved the overall
performance with R2 = 0.37 (0.064), MAE = 6.87(0.69) years,
and RMSE = 8.46 (0.59) years.

The correlation between predicted age and age is shown in
Figure 5, while the BrainAGE variable is plotted in Figure 6.

The importance of features was estimated such that the total
summation of features importance is 100 from each fold of the
outer loop of NCV. Then, the importance scores were averaged
across folds. In our case, we report the results as the mean across
all folds. Figure 7 shows the top 15 important predictors of age.
The color of the bars represents the Pearson’s correlation values
between each predictor and the age. From the graph, we can

notice that “spectral flatness of beta band from channel TP9”
is the most important predictor of age with r = 0.34. Please
refer to Figure S4 in Supplementary for detailed graphing for the
relationship between top predictors and age.

The relationship between chronological age and the top
features was studied by the Partial Dependence Plot (PDP)
(Friedman et al., 2001). For each training model, the consistency
across folds was examined by overlaying the PDP curves. One
wants the same feature to behave similarly among the folds of
the outer loop of NCV. Figure 8 shows the PDP for the top
feature. As can be seen, the PDP for each fold (thin lines) have
consistent behavior among all folds. Figure S6 in Supplementary
shows PDPs for the top features.

FIGURE 4 | Models performance using NCV. Error bar represents the

standard deviation of performances across the outer loop of NCV.

FIGURE 3 | The complete framework for estimating the BrainAGE form EEG. The framework uses the nested-cross-validation method (Figure 2) to build estimation

for the age. Then, those estimations are used to calculate the BrainAGE from the entire dataset.
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FIGURE 5 | Predicted age vs. age constructed from the outer loop of NCV.

FIGURE 6 | The BrainAGE variable as a function of the chronological age.

To show the spatial distribution of feature importance, MNE
software (Gramfort et al., 2013) was used. More specifically, the
feature importance scores obtained from the NCV were averaged
based on the feature type and categorized based on the frequency
bands. The resultant mapping for the feature importance scores
is shown in Figure 9. Figure S5 in Supplementary presents the
PDPs for the top features.

Finally, we consider the effect of number of samples on the
performance of predicting age. We tested our framework on
different number of samples. Figure 10 graphs the R2 of NCV
as a function of the number of samples in our dataset.

DISCUSSION

In the discussion part, we address the results, our research goals
and elaborate on different implementation details. In addition,
we compare our results with related work and point out various
aspects of differences.

FIGURE 7 | The top 15 important features to predict age sorted from most

important (bottom) to top. Ventricle axis shows the scoring values from

stack-ensemble model predictor, while the color indicates the correlation

values between that feature and age.

FIGURE 8 | PDP for the top feature from NCV from Stack-Ensemble model.

Age-Related Changes Are Affecting Brain
EEG Signals
Results suggest that indeed the aging affects human brain
EEG signals. We have also determined that, a comprehensive
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FIGURE 9 | Mean feature importance scores sorted by bands and channels for predicting Age. The darker the color, the more important is the feature.

FIGURE 10 | The effect of the number of samples on the age prediction.

feature extraction is required from EEG signals to capture the
relationship between chronological ge and the age predictors.
This suggests that the aging is reflected broadly on the EEG
signals without selected predominate feature and also suggests

that utilized EEG predictors feature different mechanisms of
influence by age and/or disease. In addition for features
extraction, selecting the best features is important to improve
the performance and reduce the complexity of the model. We
eliminated the correlated features to select the best features,
which improve the overall R2. Our selection for correlated
features preserves the consistency among NCV folds and
importantly eases the interpretation of the results. The age-
related changes in EEG are strongly supported by the literature
(Benninger et al., 1984; Gasser et al., 1988; Marciani et al., 1994;
Widagdo et al., 1998; Kikuchi et al., 2000; Babiloni et al., 2006;
Hashemi et al., 2016) and by our results as well, where the
correlation between top four features and age was relative high
with r = 0.34, 0.3, 0.26, and 0.24, respectively.

Can Age Be Predicted From EEG Signals?
Using unbiased prediction of age, NCV, we were able to provide
a reasonable accuracy for predicting age. The best results were
obtained by SVR (R2 = 0.34) and were slightly improved by the
Stack-ensemble approach (R2 = 0.37). The correlation between
predicted age and age (r = 0.6), which shows the ability of our
model to predict the age. The overall feature importance scores
were extracted for each fold in the outer loop of NCV and then
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averaged across all folds. The feature importance showed that
the important predictors are spread out across different features
types and bands. In addition, we used PDP to examine the
consistency of features across the outer loops of NCV, where we
showed that top features have a similar behavior across the folds.

The effect of the number of samples on prediction accuracy
is shown in Figure 10. The graph indicates a potential
improvement may be achievable adding more samples. When
testing on 50 samples, the overall accuracy was R2∼ = 0.26,
which shows that the features are informative for predicting age
even from small number of samples. It should be noted that
our samples size is relatively smaller than other works, especially
those ones used MRI.

We found no differences in age prediction across female and
male groups. Both groups have a relatively matched average
chronological age: female group = 34.47 (10.65) and male
group= 35.29(10.47). The average predicted age resulted in 34.78
(6.87) for female and male 35.11 (6.04). The MAE was 6.99 (5.10)
and 6.66(4.77) years for female and male groups, respectively.

Mapping of the spatial distribution of feature importance
scores revealed that age predictors are not uniquely
corresponding to specific channels, frequency band nor to
a specific feature domain. That is, different features types capture
some characteristics of EEG, but not the whole relationship. For
example, Figure 7 showed that among the top 15 important
features, the spectral features are positively correlated with age,
while rEEG features are negatively correlated. That is, one type of
features captures a specific aspect of the relationship between that
feature type and the age. Thus, providing heterogeneous features
can improve the predictability of age. This is also supported by
Figure 9, where the spatial distribution of feature importance
scores does not exhibit a uniform representation. Our analysis
shows that relative contribution of features importance is
46, 31, 18, 3, and 2% for spectral, rEEG, amplitude, FD, and
connectivity, respectively. It should be noted that the number of
features among different domains are not the same especially that
is the case for FD and connectivity features. Similarly, features
contributions are also spread out across bands as follows: 31, 21,
27, and 18% for theta, delta, alpha, beta, and theta, respectively.

Comparison With Other Works
Predicting age from EEG features was also studied in Dimitriadis
and Salis (2017). Compared with the current study, they reported
relatively higher prediction accuracy, 0.6, compared with 0.4
here. There are a number of differences which may contribute to
this disparity. Perhaps the most significant one is that they seem
to have done feature selection using the response variable and
the entire dataset, which will generally lead to more optimistic
evaluations than doing feature selection within a nested cross
validation framework, as done here. Additionally, we report R2

as 1-SSresid/SStotal (SSresid is the squared residuals from the
regression and SStotal is the total sum of squares of differences
from the mean) taken from the model prediction, while they
seem to have reported the R2 of a line fit through Age vs.
Predicted Age. Other differences include the feature sets used
and the fact that our data were collected during fMRI, which
may leave some residual artifact. Furthermore, we use here an
interpretation-friendly features.

Predicting age from functional brain imaging is probably
more challenging than structural imaging. One can notice from
Table 1 that fMRI yields generally a lower performance thanMRI
data. The best results was reported by Cole et al. (2017) with
r = 0.96 from structural imaging of healthy subjects. EEG and
fMRI are both functional imaging for the brain and thus it’s
more subjective to compare EEG results with fMRI results. Our
method’s performance is relatively lower than those from fMRI
works reported in Dosenbach et al. (2010) with R2 = 0.55 and
Qin et al. (2015) with MAE = 4.6 years. Without a subjective
comparison between EEG and fMRI from the same dataset, it’s
hard to draw conclusions about amount of information that
each domain embeds. Although fMRI/MRI imaging may yield a
higher accuracy, but it comes at extra cost and less portability as
compared to EEG.

The contribution of some features in BrainAGE is in line
with previous works (Chiang et al., 2011; Zappasodi et al., 2015).
For instance, our findings show the negative correlation between
age and alpha power spectra in healthy groups reported in
Chiang et al. (2011). This correlation trend could be observed
in other frequency bands, especially Delta and Theta bands. FD
is positively correlated with age for Healthy subjects, which is
consistent with finding in Zappasodi et al. (2015). However,
Zappasodi et al. (2015) showed that FD increases for ages from
20 to 50 years and then decreases. Since our age limit is 58,
the pattern is increasing overall for ranges from 18 to 58 years.
Figures S6, S7 in Supplementary provide a spatial mapping of
the correlation values between the spectral and FD features
and age.

CONCLUSIONS

We have introduced the rigorous framework for BrainAGE
estimation based on EEG brain signals. Proof-of-concept analysis
showed that, it is possible to build a robust BrainAge estimation
by harnessing both extensive EEG feature representation and
suitable ML algorithms. ML and NCV play a significant role
in identifying informative features and studying the spatial
distribution of significant predictors, and providing unbiased
prediction. In addition, we showed how to evaluate and interpret
the results using the feature importance scores and partial
dependence plots. The introduced framework can be extended
to test association with and predict other physiological relevant
measures based on EEG brain signals.
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