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B7H3 (also known as CD276, an immune checkpoint molecule) is aberrantly overex-
pressed in many types of cancer, and such upregulation is generally associated with a 
poor clinical prognosis. Recent discoveries indicate a crucial role for B7H3 in promot-
ing carcinogenesis and metastasis. This review will focus on the latest developments 
relating specifically to the oncogenic activity of B7H3 and will describe the upstream 
regulators and downstream effectors of B7H3 in cancer. Finally, we discuss the emerging 
roles of microRNAs (miRNAs) in inhibiting B7H3-mediated tumor promotion. Excellent 
recent studies have shed new light on the functions of B7H3 in cancer and identified 
B7H3 as a critical promoter of tumor cell proliferation, migration, invasion, epithelial-to- 
mesenchymal transition, cancer stemness, drug resistance, and the Warburg effect. 
Numerous miRNAs are reported to regulate the expression of B7H3. Our meta-analysis 
of miRNA database revealed that 17 common miRNAs potentially interact with B7H3 
mRNA. The analysis of the TCGA ovarian cancer dataset indicated that low miR-187 
and miR-489 expression was associated with poor prognosis. Future studies aimed at 
delineating the precise cellular and molecular mechanisms underpinning B7H3-mediated 
tumor promotion will provide further insights into the cell biology of tumor development. 
In addition, inhibition of B7H3 signaling, to be used alone or in combination with other 
treatments, will contribute to improvements in clinical practice and benefit cancer patients.
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iNTRODUCTiON

Metastasis, or the consequences of their treatment, are the primary cause of cancer death (1). 
Metastasis is commonly viewed as a multistep event resulting in the dissemination of tumor cells 
from the primary tumor site to a distant location (2). These include loss of gap junction and tight 
junction contacts with neighboring cells, migration and invasion of basement membrane and extra-
cellular matrix, entry and survival in the blood vascular and lymphatic system, extravasation into the 
parenchyma of distant tissues, adaptation to tumor microenvironment and host tissue remodeling, 
and re-initiation of their proliferative programs at metastatic sites (3, 4).

Epithelial-to-mesenchymal transition (EMT) endows epithelial tumor cells with enhanced 
motility and invasiveness (5, 6). Furthermore, EMT-derived tumor cells acquire cancer stem cell 
(CSC) properties and exhibit therapeutic resistance (6–9). In addition, the mutual interactions 
between tumor cells and the surrounding tumor microenvironment will eventually promote 
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TABle 1 | The association between B7H3 expression and clinicopathologic factors of human cancers.

Cancer type No. Method expression Clinical factors Reference

Size Stage/ 
grade

invasion  
depth

lN meta/ 
recurrence

Survival

Bladder, breast, cervical, colorectal,  
esophageal, kidney, liver, lung,  
ovarian, pancreatic, prostate  
cancer, glioma, melanoma

1,342 IHC Upregulation NA NA NA NA NA (23)

Bladder cancer 302 IHC Upregulation − − − − NA (24)
Endometrial cancer 107 IHC Upregulation − + NA NA Poor (25)
Pancreatic cancer 26 ELISA Upregulation + NA NA NA NA (26)
Pancreatic cancer 59 IHC Upregulation NA + NA + NA (27)
Cervical cancer 108 IHC Upregulation + − − − Poor (28)
Breast cancer 90 IHC Upregulation − − − − Poor (29)
Breast cancer 82 IHC/qPCR Upregulation + + − + NA (30)
Intrahepatic cholangiocarcinoma 45 IHC Upregulation − − + + Poor (31)
Colorectal cancer 275 IHC Upregulation NA + + − Poor (32)
Ovarian cancer 103 IHC Upregulation NA + − − Poor (33)
Glioma 41 IHC/microarray Upregulation NA + − − NA (43)
Melanoma 97 IHC/qPCR Upregulation NA + − − Poor (44)
Lung cancer 270 IHC Upregulation NA + NA NA Poor (34)
Lung cancer 70 IHC Upregulation NA − NA + NA (35)
Liver cancer 24 IHC Upregulation NA + + − Poor (36)
Prostate cancer 823 IHC Upregulation NA NA + + Poor (37)
Prostate cancer 2,111 Microarray Upregulation NA + NA + Poor (38)
Oral squamous cell carcinoma NA IHC Upregulation + + − − Poor (39)
Kidney cancer 743 IHC Upregulation + + NA NA Poor (40)
Pancreatic cancer 96 IHC/qPCR Upregulation NA − − − Better (41)
Gastric cancer 32 IHC/qPCR Upregulation − − − − Better (42)

LN meta, lymph node metastasis; NA, data were not available.
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tumor development and metastasis (10). Tumor microenvi-
ronment comprises many cell types including immune cells, 
fibroblasts, and endothelial cells (11). Tumor cells frequently 
display altered expression of cytokines and chemokines that 
promote the infiltration and activity of suppressive immune cell 
populations and also express immune checkpoint molecules 
(such as programmed cell death 1 ligand 1 and B7H3, also 
known as CD276) to inhibit the antitumor immune response 
(12–17).

B7H3 is expressed on immune cells (such as antigen-
presenting cells or macrophages) and tumor cells and has 
inhibitory roles on T cells, contributing to tumor cell immune 
evasion (18–20). Recent studies have shown that B7H3 is a cru-
cial player in tumor growth and metastasis beyond the immune 
regulatory roles (21). The developments in our understanding 
of cancer biology have provided a better understanding of how 
B7H3 regulates EMT and cancer stemness and of molecular 
mechanisms responsible for controlling the expression of B7H3 
in cancer.

Although there have been substantial advances in our under-
standing of cancer at the molecular level, its prevention and 
treatment are still lacking. Considering the significant roles of 
B7H3 in cancer immunity and progression, the value of B7H3 in 
cancer diagnosis and treatment warrants further detailed study. 
Here, we review our current knowledge of how dysregulation of 
B7H3 and its signaling pathways can influence the hallmarks of 
cancer and discuss the potential use of microRNA (miRNA) as a 
potential therapeutic strategy for B7H3 overexpressing tumors, 

especially focusing on those miRNAs involved in the regulation 
of B7H3 expression in ovarian cancer.

B7H3 ACTivATiON iN CANCeR

B7H3 (CD276) belongs to the B7 superfamily of immune check-
point molecules (22). It is present at low levels in most normal 
tissues but is overexpressed in a wide variety of cancers, includ-
ing bladder, breast, cervical, colorectal, esophageal, glioma, 
kidney, liver, lung, ovarian, pancreatic, prostate, intrahepatic 
cholangiocarcinoma, liver, oral squamous cell carcinoma, 
endometrial cancer, and squamous cell carcinoma and gastric 
cancer (23–42), glioma (43), and melanoma (44) (Table  1). 
Numerous studies showed that the overexpression of B7H3 was 
correlated with advanced tumor stage and high tumor grade in 
endometrial, cervical, breast, kidney cancer, and oral squamous 
cell carcinoma (25, 28, 30, 39, 40). The overexpression of B7H3 
is associated with the proliferation and invasive potential of 
pancreatic, breast, colorectal, liver, prostate cancer, intrahepatic 
cholangiocarcinoma, and oral squamous cell carcinoma (26, 27, 
30–32, 36–40). Notably, overexpression of B7H3 was found to 
correlate with poorer prognosis in many cancers (25, 28, 29, 
31–34, 36–40, 44). However, high B7H3 expression predicts 
better survival for patients with gastric and pancreatic cancer 
(41, 45). A possible explanation for this discrepancy could be 
different cancer type (or subtypes), tumor heterogeneity, differ-
ences in sample size, and clinical stage, the time point of B7H3 
measurement and the different methodology used in research.
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FigURe 1 | High expression of B7H3 was correlated with poorer prognosis in cancers. (A) B7H3 expression profile across TCGA pan-cancer datasets. Images 
were taken from the GEPIA (Gene Expression Profiling Interactive Analysis) online database (http://gepia.cancer-pku.cn). N, normal; C, cancer. *P < 0.05.  
(B) Kaplan–Meier curves for overall survival in indicated cancer types using the Kaplan–Meier Plotter database (www.kmplot.com). Red and black lines indicate 
patients with higher and lower than median B7H3 mRNA expression, respectively. High expression of B7H3 was significantly correlated with shorter overall survival 
in each Kaplan–Meier plotter cohort. BRCA, breast invasive carcinoma; OV, ovarian serous cystadenocarcinoma; UCEC, uterine corpus endometrial carcinoma; 
LUSC, lung squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; STAD, stomach adenocarcinoma.
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We assessed B7H3 expression in TCGA pan-cancer datasets 
obtained from Gene Expression Profiling Interactive Analysis 
(GEPIA) online database.1 In agreement with previous reports, 
RNA sequencing analysis of mRNA expression from the 
GEPIA online database (46) revealed that B7H3 expression 
levels tend to be higher in breast, ovarian, endometrial, lung, 
liver, and gastric cancer tissues compared to corresponding 
normal tissues (Figure 1A). We also characterized the associa-
tion between B7H3 mRNA expression and prognosis in several 
cancers using the Kaplan–Meier plotter database2 (47). Higher 
expression of B7H3 was significantly associated with shorter 
overall survival in breast, ovarian, lung, liver, and gastric cancer 
(Figure 1B).

THe ROleS OF B7H3 iN DiFFeReNT 
CANCeR CellS AND POSSiBle 
MeCHANiSMS

The following sections and Table  2 summarize the current under-
standing of the functional role of B7H3 in metastasis and describe 
its underlying mechanisms in different tumor cells.

1 http://gepia.cancer-pku.cn (Accessed: June 5, 2018).
2 http://kmplot.com/analysis/ (Accessed: June 5, 2018).

ROleS OF B7H3 iN CANCeR Cell 
PROliFeRATiON AND iNvASiveNeSS

Evidence supporting a tumor-promoting role for B7H3 is now 
increasingly apparent from functional studies of diverse malig-
nancies. A lot of evidence demonstrated that B7H3 is involved 
in biological processes of cancer development, such as prolifera-
tion, migration, and invasion. For instance, knockdown of B7H3 
expression in prostate, breast, gastric, liver, pancreatic, colorectal 
cancer cells, and melanoma cells could significantly suppress cell 
migration and invasion (26, 42, 48–57).

Different molecular mechanisms may also underlie these 
effects: (1) B7H3 induced the migratory potential and invasive-
ness of tumor cells by increasing the expression of metastasis-
associated proteins such as MMP2, STAT3 and IL-8 (50); (2) by 
increasing the levels of CXCR4 and activating AKT, ERK, and 
JAK2/STAT3 pathways (52); (3) through activating the JAK2/
STAT3/MMP9 pathway (55); (4) by increasing the expression 
of MMP2 (56); (5) by activating the TLR4/NF-κB signaling and 
increased IL-8 and VEGF expression (57).

Several studies have provided convincing in  vivo functional 
data that are consistent with the data from cancer cell lines and 
thus support the tumor-promoting role of B7H3 during cancer 
progression. For example, in the subcutaneous transplantation 
pancreatic cancer mouse model, tumor growth rate was reduced 
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TABle 2 | Roles, functions, and mechanisms of B7H3 in cancer.

Cancer type Role Function Mechanism Reference

Prostate cancer Oncogene Migration, invasion NA (48)

Melanoma/breast cancer Oncogene Migration, invasion NA (49)

Melanoma/breast cancer Oncogene Migration, invasion Increased the expression of MMP2, STAT3, and IL-8 (50)

Melanoma Oncogene Proliferation, glycolytic capacity, resistance to 
chemotherapy and small-molecule inhibitors

NA (51)

Breast cancer Oncogene Paclitaxel resistance Activated JAK2/STAT3 pathway (64)

Breast cancer Oncogene Glucose uptake, lactate production,  
proliferation

Increased the expression of HIF1α and its downstream 
targets, LDHA and PDK1

(70)

Gastric cancer Oncogene Migration, invasion, proliferation NA (42)

Gastric cancer Oncogene Migration, invasion Increased CXCR4; and activated AKT, ERK, and JAK2/
STAT3 phosphorylation

(52)

Esophageal squamous cell 
carcinoma 

Oncogene Migration, invasion NA (53)

Liver cancer Oncogene Proliferation, adhesion, migration, and invasion NA (54)

Pancreatic cancer Oncogene Proliferation, invasion NA (26)

Colorectal cancer Oncogene Resistance to chemotherapy Activated JAK2/STAT3 pathway (65)

Colorectal cancer Oncogene Oxaliplatin resistance Increased the expression of XRCC1 via PI3K/AKT pathway (66)

Colorectal cancer Oncogene Migration, invasion Activated JAK2/STAT3/MMP9 pathway (55)

Colorectal cancer Oncogene Resistance to chemotherapy Increased BRCC3 expression (67)

Colorectal cancer Oncogene Resistance to chemotherapy Activated PI3K/AKT/TS pathway (68)

Colorectal cancer Oncogene Epithelial-to-mesenchymal transition,  
cancer stemness

Decreased E-cadherin expression and increased of 
N-cadherin, Vimentin, CD133, CD44, and OCT4 expression

(59)

Osteosarcoma Oncogene Invasion Increased the expression of MMP2 (56)

Pancreatic cancer Oncogene Invasion, metastasis Activated TLR4/NF-κB signaling and increased IL-8 and 
VEGF expression

(57)

Glioma Oncogene Migration, invasion, cancer stemness NA (61)

Ovarian cancer Oncogene Resistance to chemotherapy and small- 
molecule inhibitors, cancer stemness

Possibly increased the expression of ALDH (60)

NA, data were not available.
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by the knockdown of B7H3 (26). Similarly, the silencing of B7H3 
significantly decreased tumor proliferation in mantle cell lym-
phoma in vitro and in vivo (58).

B7H3 MeDiATeS eMT AND CSC iN 
CANCeR CellS

Some researchers claimed that B7H3 plays a key role in modulat-
ing EMT and CSC-like properties of various cancer cells. B7H3 
can promote EMT and cancer stemness by decreasing E-cadherin 
expression and increasing the expression of N-cadherin, 
Vimentin, CD133, CD44, and OCT4 (59). Blockade of B7H3 with 
a monoclonal antibody reduced the number of cancer-initiating 
cells (60). A previous study found that B7H3 is an inducer of cell 
invasion and sphere formation in glioma cells (61), further sug-
gesting a role of B7H3 in the cancer invasion process.

Cancer stem cells or tumor-initiating cells not only possess 
the ability of self-renewal but also develop strong resistance 
to chemotherapy (62). It was demonstrated that the induction 
of EMT generated cells with properties of CSCs (63). In breast 
cancer and colorectal cancer cells, B7H3 induced the resistance to 
paclitaxel or 5-fluorouracil (5-FU) through activating the JAK2/
STAT3 pathway (64, 65). In addition, a few other mechanisms 
may also underlie B7H3-mediated chemoresistance: (1) B7H3 
induces oxaliplatin resistance by increasing the expression of 
XRCC1 via PI3K/AKT pathway (66); (2) B7H3 also enhances 

cell resistance to chemotherapy by increasing the expression of 
BRCC3, which antagonizes DNA damage caused by 5-FU (67); 
(3) or via the activation of the PI3K/AKT pathway (68).

ROle OF B7H3 iN CANCeR MeTABOliSM

Warburg effect (or aerobic glycolysis) is a metabolic hallmark of 
cancer, characterized by an excessive conversion of glucose to 
lactate even with ample oxygen (69). A recent study found that 
B7H3 can promote the Warburg effect, evidenced by increased 
glucose uptake and lactate production in breast cancer cells. 
Furthermore, this stimulating effect of B7H3 on the Warburg 
effect was also observed in a mouse model of breast cancer (70). 
Mechanistically, B7H3-induced metabolic shift in cancer cells is 
mediated by HIF1α, a master regulator in the reprogramming 
of cancer metabolism in favor of glycolysis (70), revealing a new 
mechanism for the Warburg effect in cancer cells. Reasonably, we 
believe treating tumors by targeting their metabolism through 
modulation of B7H3 expression would probably generate a better 
effect of tumor eradication.

RegUlATORY MeCHANiSMS OF B7H3 iN 
CANCeR

Protein expression is usually controlled by the following 
mechanisms: the genetic aberrations of the gene loci (71), 
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FigURe 2 | MicroRNAs (miRNAs) that potentially regulate B7H3 expression 
in ovarian cancer. (A) Venn diagram showing the overlap of miRNAs that 
were predicted to bind to the B7H3 3′-UTR by alternative algorithms 
(TargetScan, miRSystem, and DIANA-MicroT-CDS). (B) The 17 predicted 
miRNAs were common to these three algorithms. (C) The Kaplan–Meier 
survival curves of 458 TCGA (Cancer Genome Atlas database) ovarian 
cancer samples were created using the SurvMicro database based on the 
low (n = 229) or high (n = 229) risk for a poor outcome. (D) Box plots 
demonstrating significantly lower levels of miR-187 and miR-489 expression 
in the high-risk ovarian cancer patients.
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transcriptional regulation (72), posttranscriptional regulation at 
the mRNA level (73), and protein modification (74). Epigenetic 
mechanisms such as DNA methylation (75), histone modification 
(76), and non-coding RNAs (77, 78) play a key role in regulating 
gene expression. DNA methylation and modification of histones 
mediate gene transcription, and miRNAs regulate gene expres-
sion posttranscriptionally (79). To date, it is less clear whether 
B7H3 overexpression observed in cancer is due to genomic DNA 
amplification, or which transcription factors are responsible for 
B7H3 transcription. However, chromatin immunoprecipitation 
analysis in prostate cancer cells revealed an androgen receptor-
binding site upstream of B7H3, and the presence of androgens 
decreased B7H3 expression (38).

Interestingly, immunoglobulin-like transcript-4 (ILT4) is an 
inhibitory receptor that inhibits the function of certain immune 
cells and was shown to upregulate B7H3 expression via the PI3K/
AKT/mTOR signaling in lung cancer cells (80). Co-expression 
of ILT4 and B7H3 was positively corelated with lymph node 
metastasis and advanced tumor stage (80). Consequently, further 
study is needed to elaborate the link between ILT4 and B7H3 in 
different cancer cells.

At the posttranscriptional level, numerous miRNAs, including 
miR-214, miR-363*, miR-326, miR-940, miR-29c, miR-665, miR-
34b*, miR-708, miR-601, miR-124a, miR-380-5p, miR-885-3p, 
and miR-593, directly interact with the 3′-UTR of B7H3 mRNA, 
resulting in attenuation of B7H3 expression in breast cancer 
(81). miR-124 also binds directly to the 3′-UTR of B7H3 mRNA, 
inhibiting its expression in osteosarcoma (82). TGF-β1 through 
SMAD3 and SMAD4 elevated miR-155 expression, which in turn 
attenuated CEBPB expression and consequently miR-143 expres-
sion in colorectal cancer cells. As a result, the reduction of miR-
143 led to the upregulation of B7H3, a direct target of miR-143 
(83). These results indicated that TGF-β1 may promote cancer 
immune escape by upregulating B7H3 expression. In addition, 
a recent study demonstrated that p53 binds to the promoter of 
miR-124 to elevate its expression in colorectal cancer cells (84). 
Meanwhile, iASPP, a novel oncoprotein overexpressed in many 
cancers, interacts with p53 to suppress p53-mediated transcrip-
tion of target genes (75, 85). Thus, these results indicate a possible 
mechanism underlying B7H3 overexpression in tumors: iASPP-
mediated p53 repression leads to the downregulation of miR-124, 
subsequently resulting in increased expression of B7H3.

We used three computational algorithms, including 
TargetScan,3 miRSystem,4 and DIANA-MicroT-CDS5 to identify 
miRNAs that might regulate B7H3 expression. This analysis 
revealed 17 common miRNAs predicted to bind the 3′-UTR of 
the B7H3 transcript (Figures  2A,B). In colorectal cancer cells, 
a recent study showed that miR-187 binds B7H3 mRNA and 
suppresses its expression to inhibit cell proliferation, migration, 
invasion, and induced cell apoptosis (86). In clear cell renal cell 
carcinoma, another study confirmed that B7H3 expression is 
downregulated by miR-187, a tumor suppressor that suppresses 

3 http://www.targetscan.org/vert_72/ (Accessed: June 5, 2018).
4 http://mirsystem.cgm.ntu.edu.tw/ (Accessed: June 5, 2018).
5 http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/
index (Accessed: June 5, 2018).

cancer cell proliferation and motility (87). Collectively, these data 
suggest that the loss of tumor suppressor miRNAs activate B7H3 
and contributes to cancer progression.

We further evaluated the correlation of patient survival with 
the expression of these miRNAs in ovarian cancer samples in the 
TCGA by using the online software SurvMicro.6 Ovarian patients 
were stratified into the high-risk (with a low probability of sur-
vival; n = 229) or low-risk (with a high probability of survival; 
n = 229) group (P = 8.4E−07, Figure 2C). High-risk patients had 
lower miR-187 and miR-489 expression levels than the low-risk 
patients (Figure 2D). Thus, these 17 miRNAs, especially miR-187 
and miR-489, are expected to have binding sites in the 3′-UTR of 
B7H3 in cancer cells, although functional validation remains to 
be performed.

CONClUSiON

Interruption of metastasis pathways holds preclinical and clinical 
promise as an anti-metastasis therapy. The emerging role of B7H3 
in human tumor cells and in inducing EMT/CSC-like features have 
been noted. Furthermore, tumor cells could rely on Warburg effect 
to generate energy (88). The recent findings led to the identification 
of B7HH3 as a contributor to the Warburg effect (70). Therefore, 
targeting the metastatic potential and metabolic changes with 
inhibitors against B7H3 may be a promising way for cancer therapy.

6 http://bioinformatica.mty.itesm.mx:8080/Biomatec/Survmicro.jsp (Accessed: 
June 5, 2018).
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The induced B7H3 expression has been detected in multiple 
cancers as compared with normal tissues. The B7H3 protein, 
especially when located in the cell membrane, may be a perfect 
choice for targeted drug development. Importantly, the treatment 
with an inhibitory B7H3 monoclonal antibody in melanoma 
cells leads to decreased proliferation and Warburg effect (51). 
Additionally, targeting B7H3 with a monoclonal antibody has 
demonstrated the safety and efficacy in the salvage treatment of 
stage IV childhood neuroblastoma (43). Activated T cell (ATC) 
armed with a novel anti-CD3 × anti-B7H3 bispecific antibody 
was found to significantly inhibit lung cancer growth in  vivo 
compared with unarmed ATC (89), indicating that targeting 
B7H3 represent a novel alternative to improve current cancer 
therapy.

Future studies aimed at delineating the precise cellular and 
molecular mechanisms underpinning B7H3-mediated tumor 
promotion will provide further insights into the cell biology of 

tumor development. In addition, inhibition of B7H3 signaling, 
to be used alone or in combination with other treatments, will 
contribute to improvements in clinical practice and benefit 
cancer patients.
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