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Abstract 
Uncertainty in electricity demand is caused by many 
factors. Large changes are usually attributed to ex-
treme weather conditions and the general random 
usage of electricity by consumers. More understand-
ing requires a detailed analysis using a stochastic 
process approach. This paper presents a Markov 
chain analysis to determine stationary distributions 
(steady state probabilities) of large daily changes in 
peak electricity demand. Such large changes pose 
challenges to system operators in the scheduling and 
dispatching of electrical energy to consumers. The 
analysis used on South African daily peak electricity 
demand data from 2000 to 2011 and on a simple 
two-state discrete-time Markov chain modelling 
framework was adopted to estimate steady-state 
probabilities of two states: positive inter-day changes 
(increases) and negative inter-day changes (de-
creases). This was extended to a three-state Markov 
chain by distinguishing small positive changes and 
extreme large positive changes. For the negative 

changes, a decrease state was defined. Empirical re-
sults showed that the steady state probability for an 
increase was 0.4022 for the two-state problem, giv-
ing a return period of 2.5 days. For the three state 
problem, the steady state probability of an extreme 
increase was 0.0234 with a return period of 43 days, 
giving approximately nine days in a year that expe-
rience extreme inter-day increases in electricity de-
mand. Such an analysis was found to be important 
for planning, load shifting, load flow analysis and 
scheduling of electricity, particularly during peak pe-
riods. 
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1. Introduction 
Forecasting of future extreme inter-day changes in 
electricity demand is important for proper planning 
in the dispatching and scheduling of electrical en-
ergy by system operators in the electricity sector. 
This calls for probabilistic modelling of the magni-
tude and time of occurrence of extreme positive in-
ter-day changes in peak electricity demand. The use 
of Markov chains in probabilistic modelling and 
analysis of inter-day changes in peak electricity de-
mand is not covered extensively in the literature. 
Some researchers, however, have used Markov 
chains and Markov decision processes in modelling 
electricity demand (McLoughlin et al., 2010; Wid�́�𝑒n 
and W�̈�𝑎ckelg�̇�𝑎rd, 2010; Ardakanian et al., 2011; 
Haider et al., 2012; Sun and Li, 2014; Agyeman et 
al., 2015; among others). McLoughlin et al. (2010) 
modelled domestic load profiles using a Markov 
chain process and found that the magnitude of the 
load profile could be reproduced. A major short-
coming of this stochastic method for generating do-
mestic load profiles was its inability to successfully 
model the time of peak loads during both day and 
night (McLoughlin et al., 2010). In a related study, a 
modelling framework for the stochastic generation of 
high-resolution data for occupant behaviour, pres-
ence, and energy use was published (Widén and 
Wäckelgård, 2010) where nonhomogeneous Mar-
kov chains were used to create a spread of activities 
over time, up to the one-minute resolution. Empiri-
cal results from this study showed that the Markov 
chain model produced activity patterns that repro-
duced a spread of different end-use loads over time. 
Using a Markov chain analysis, Ardakanian et al. 
(2011) derived models for non-peak, off-peak and 
mid-peak periods in modelling home electricity con-
sumption. Results from this study showed that the 
developed Markov chain models did not need more 
than six states, yet were accurate in transformer siz-
ing in a distribution network. Markov models for pre-
dicting electricity demand are presented in Haider et 
al. (2012), where k-state models based on both dis-
crete time and continuous time Markov chains were 
derived for different periods of the day. A compara-
tive analysis was done with artificial neural networks 
and empirical results showed that the developed 
models produced accurate forecasts. Sun and Li 
(2014) estimated real-time electricity demand re-
sponse of sustainable manufacturing systems using 
a Markov decision process and modelled the com-
plex interaction and estimation of the potential ca-
pacity of demand reduction based on an automotive 
assembly line. Agyeman et al. (2015) used a variant 
of the hidden Markov model called a unsupervised 
disaggregation method, to detect the state of an ap-
pliance and its operation using household electricity 
meters. It was found that the developed model ac-
curately provides power usage information which 

was important for demand-side response manage-
ment. 

 Modelling daily peak electricity demand using 
the South African data is discussed in the literature 
(Sigauke et al., 2012; Sigauke et al., 2013; Verster 
et al., 2013; among others). Sigauke et al. (2012) 
developed a hybrid model called an autoregressive 
moving average – exponential generalised auto-
regressive conditional heteroscedasticity – general-
ised single Pareto (ARMA-EGARCH-GSP) model 
for estimating extreme quantiles of inter-day in-
creases in peak electricity demand. It was argued 
that this modelling approach captures the condi-
tional heteroscedasticity in the data and can be used 
to estimate extreme tail quantiles of the distribution 
of the inter-day increases in peak electricity demand. 
A comparative analysis was done with an ARMA-
EGARCH model, which showed that the ARMA-
EGARCH-GSP outperformed the ARMA-EGARCH 
model in estimating extreme tail quantiles. Sigauke 
et al. (2013) also modelled extreme daily increases 
in peak electricity demand using generalised Pareto 
distribution (GPD) and performed a comparative 
analysis with the GSP distribution. Results showed 
that both distributions were a good fit to the daily 
increases in peak electricity demand data, but the 
use of the GSP distribution was found to be advan-
tageous over the GPD because of having only one 
parameter to estimate, compared with two for the 
GPD. A detailed discussion on the policy implica-
tions of the study was then given. In a related study, 
Verster et al. (2013) used the GSP distribution in 
modelling the same day of the week upsurges in 
peak electricity demand. The parameters of the dis-
tribution were estimated using Bayesian inference 
(Beirlant et al., 2004) and maximal data information 
prior was used in this study. The GSP distribution 
was then used for estimating future exceedance 
probabilities and extreme tail quantiles. Subse-
quently, a comparative analysis was done with the 
GPD. 

This investigation presents a Markov chain anal-
ysis of inter-day changes to peak electricity demand 
using South African electricity data, where inter-day 
changes were defined as daily increase/decrease in 
daily peak electricity demand. The niche of this is 
modelling of extreme positive inter-day changes in 
peak electricity demand using discrete time Markov 
chains (DTMCs), as a departure from existing litera-
ture. Such large changes pose challenges to system 
operators in the scheduling and dispatching of elec-
trical energy to consumers. They are usually at-
tributed to extreme weather conditions and the gen-
eral random usage of electricity by consumers. 
Steady-state probabilities, including mean return 
times and first passage probabilities, were calculated 
for the inter-day changes in peak electricity demand. 
The investigation focused on extreme increases in 
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electricity demand. Examples of similar interests are 
in the meteorology field and include: Why model av-
erage rainfall for a country when it is extremely 
heavy rainfall that causes a flood and destroys 
crops? Extremely low rainfall would cause drought, 
hence is more attractive to study than average rain-
fall. Sometimes there is a need to move away from 
the average thinking and concentrate more on the 
tails of distributions of electricity demand. 

Section 2 presents the models, and empirical re-
sults are presented and discussed in Section 3. Sec-
tion 4 presents a discussion of the results while Sec-
tion 5 concludes. 

2. Methodology 
An inter-day change in peak electricity demand us-
ing a Markov chain is modelled in this investigation, 
with an approach of a DTMC problem with a finite 
state space given the stationary series in Figure 2(b). 
Initially, two states were defined: positive inter-day 
changes (increase) and negative inter-day changes 
(decrease). A transition matrix was developed and 
steady-state probabilities of the two states were then 
calculated with inclusion of mean return times and 
first-passage probabilities. A steady-state probability 
when reached is that, after a very long time, the dis-
tribution becomes constant and equal to the station-
ary distribution. The probability of an inter-day in-
crease in electricity demand becomes a constant re-
gardless of the last state occupied. The probability of 
an inter-day decrease in electricity demand becomes 
a constant regardless of the last state occupied. The 
two-state problem was then extended to a three-
state problem by splitting the positive inter-day 
changes to small and extreme inter-day changes. 
This was done by fitting a nonparametric extremal 
mixture model to the positive inter-day changes to 
determine a sufficiently high threshold, with obser-
vations above this threshold being regarded as ex-
treme positive inter-day changes and those below as 
small inter-day changes. The negative inter-day 
changes were treated as a third state, which was a 
decrease. A transition matrix was developed and a 
stationary distribution established. The focus was on 
the steady-state probability of extreme positive inter-
day changes to find the first passage probabilities. 

2.1 Description of the data 
South African daily peak electricity demand (DPED) 
data for the period 1 January 2000 to 31 August 
2011 was used, where 𝑍𝑍1, … ,𝑍𝑍𝑁𝑁 was considered to 
be a sequence of inter-day changes in peak electric-
ity demand. The increase/decrease in peak demand 
is relative to the previous day (Sigauke et al., 2012). 
Let 𝑦𝑦𝑡𝑡 be equal to DPED on day 𝑡𝑡 and 𝑦𝑦𝑡𝑡−1 DPED 
on day 𝑡𝑡 − 1, then the inter-day change, 𝑧𝑧𝑡𝑡, in peak 
electricity demand on day 𝑡𝑡, can be defined as in 
Equation 1. 

      𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1, 𝑡𝑡 = 1, … ,𝑁𝑁   (1)  

 Extreme large inter-day increases in peak elec-
tricity demand pose challenges to system operators 
of power utility companies that have to ensure grid 
stability by balancing supply and demand of electric-
ity.  

The time-homogeneous Markov chain analysis 
using the data for the sampling period, years 2000 
to 2011, became the focus. It was with full recogni-
tion that electricity demand is also subject to other 
factors and drivers such as economic conditions, 
availability and capacity of the power system to 
meet the demand because of planned and un-
planned outages, load shedding, coal shortages, 
among others, including price changes (Hyndman 
and Fan, 2010; Munoz et al., 2010; among others). 
This was, however, not considered in this investiga-
tion. 

Figure 1 shows a typical daily load profile for the 
South African data. Large increases in electricity de-
mand occur in the morning and in the evening.  

Figure 1: Typical daily load profile for South  
Africa. 

Plots of DPED, inter-day changes in DPED, in-
cluding density and box plots of inter-day changes 
in peak electricity demand are given in Figure 2. Fig-
ure 2(b) shows that DPED is made stationary by tak-
ing the first difference, defined as the inter-day 
change in peak electricity demand. Figures 2(c) and 
2(d) suggest the presence of extreme increases in 
electricity demand. 

2.2 Time-homogeneous discrete-time Markov 
chains 
The transition probabilities of an inter-day increase 
or inter-day decrease of DPED is assumed to de-
pend only on the current state (which is either a de-
crease (d) or an increase (i)) and not on past history 
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Figure 2: Daily peak electricity demand (DPED) changes.

of inter-day changes in DPED. If the probabilities for 
the future values of a discrete time, discrete state 
space process {𝑌𝑌𝑛𝑛 𝑛𝑛 ≥ 0} are dependent only on the 
latest available value, such a stochastic process has 
the Markov property and is called discrete time Mar-
kov chain (DTMC) (Kulkarni, 2011). Mathemati-
cally, a process {𝑌𝑌𝑛𝑛 ,𝑛𝑛 ≥ 0} with discrete time set 
{ 𝑛𝑛 =0, 1,2, 3,…} and a discrete state space 
{ 𝑑𝑑 and 𝑖𝑖}, is given by Equation 2. 

𝑃𝑃(𝑌𝑌_𝑛𝑛 = 𝑦𝑦_𝑛𝑛│𝑌𝑌_(𝑛𝑛 − 1) = 𝑦𝑦_(𝑛𝑛 − 1),𝑌𝑌_(𝑛𝑛 − 2)
= 𝑦𝑦_(𝑛𝑛 − 2),𝑌𝑌_(𝑛𝑛 − 3)
= 𝑦𝑦_(𝑛𝑛 − 3), … . ,𝑌𝑌_1 = 𝑦𝑦_1) 

                                    = 𝑃𝑃(𝑌𝑌𝑛𝑛 = 𝑦𝑦𝑛𝑛|𝑌𝑌𝑛𝑛−1 = 𝑦𝑦𝑛𝑛−1)  (2)  

where 𝑦𝑦𝑛𝑛 will either be an increase or a decrease in 
DPED for 𝑛𝑛 = 0,1,2,3 … 

A DTMC is said to be time-homogeneous if, for 
all 𝑛𝑛 = 0,1,2,3 …, Equation 3 stands. 

     𝑃𝑃(𝑌𝑌𝑛𝑛 = 𝑗𝑗|𝑌𝑌𝑛𝑛−1 = 𝑚𝑚 ) = 𝑃𝑃(𝑌𝑌1 = 𝑗𝑗|𝑌𝑌0 = 𝑚𝑚 )  (3) 

Equation 3 implies that, for time-homogeneous 
DTMCs, the one-step transition probability depends 
on 𝑚𝑚 and 𝑗𝑗 but is the same at all times 𝑛𝑛; hence the 
terminology time-homogeneous. The values 𝑚𝑚 and 
𝑗𝑗 would each take a 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒(𝑑𝑑) or 𝑖𝑖𝑛𝑛𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒(𝑖𝑖). 

The time-homogeneous DTMC 𝑃𝑃 is a time-invar-
iant probability distribution; in fact, the chain con- 

sidered here is stationary (or reaches steady state) 
(Kulkarni, 2011). This means that the statistical 
properties of the process remain unchanged as time 
elapses; see Figure 2(b) on inter-day changes in 
DPED. The statistical properties refer to probabili-
ties, expected values, and variances. A stationary 
process will be such that over a given length of the 
time period for years, say, 2000 to 2002, will be sta-
tistically the same as the same length time period, 
e.g. 2006 to 2008. 
 

2.3 Estimation of transition probabilities (in-
ter-day changes) 
The transition matrix 𝑃𝑃 is a square 𝑀𝑀 𝑏𝑏𝑦𝑦 𝑀𝑀 matrix, 
where 𝑀𝑀 is the number of states 𝑆𝑆. The methods 
which are usually used for estimating the transition 
probabilities are maximum likelihood (ML), ML with 
Laplace smoothing, and the bootstrap approach 
(Spedicato 𝑒𝑒𝑡𝑡 𝑎𝑎𝑎𝑎., 2015). The transition probabilities 
are defined by Equation 4. Let: 

     𝑝𝑝𝑑𝑑𝑑𝑑 = the probability of moving from state    
     𝑑𝑑(𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒) to state 𝑖𝑖 (𝑖𝑖𝑛𝑛𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒). (4) 

The other state probabilities are similarly de-
fined; thus the transition probability matrix is de-
fined by Equation 5, which can be broken down ac-
cording to the series of Equations 6-11. 
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     𝑃𝑃 = �
𝑝𝑝𝑑𝑑𝑑𝑑 𝑝𝑝𝑑𝑑𝑑𝑑
𝑝𝑝𝑑𝑑𝑑𝑑 𝑝𝑝𝑑𝑑𝑑𝑑 �  (5) 

Differently, let 

     𝑝𝑝𝑑𝑑𝑑𝑑 = 𝛼𝛼  (6) 

Then 

     𝑝𝑝𝑑𝑑𝑑𝑑 = 1 − 𝛼𝛼  (7) 

Similarly, if 

     𝑝𝑝𝑑𝑑𝑑𝑑 = 𝛽𝛽, and  (8) 

      𝑝𝑝𝑑𝑑𝑑𝑑 = 1 − 𝛽𝛽,  (9) 

the transition probability matrix can be expressed 
according to Equation 10.  

     𝑃𝑃 = �1 − 𝛼𝛼 𝛼𝛼
𝛽𝛽 1 − 𝛽𝛽�  (10) 

The state probabilities 𝑝𝑝𝑑𝑑𝑑𝑑 are estimated by the 
method of maximum likelihood given by Equation 
11. 

     �̂�𝑝𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑
𝑛𝑛𝑑𝑑

  (11)  

where, 𝑛𝑛𝑑𝑑𝑑𝑑 is the observed number of transitions 
from state 𝑑𝑑 to state 𝑖𝑖 and 𝑛𝑛𝑑𝑑 = ∑ 𝑛𝑛𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑=1 is the ob-
served number of transitions from state 𝑑𝑑. The other 
state probability estimates are similarly calculated. 

In the time-homogeneous case, the 𝑛𝑛 –step tran-
sition probability of moving from one state to an-
other state in exactly 𝑛𝑛 steps can be calculated. The 
𝑛𝑛-step transition probabilities for these states are 
given by Equation 12. 

     𝑃𝑃𝑛𝑛 = �
𝑝𝑝𝑑𝑑𝑑𝑑

(𝑛𝑛) 𝑝𝑝𝑑𝑑𝑑𝑑
(𝑛𝑛)

𝑝𝑝𝑑𝑑𝑑𝑑
(𝑛𝑛) 𝑝𝑝𝑑𝑑𝑑𝑑

(𝑛𝑛)�  (12) 

A derivation of the recursive equations is given in 
the supplementary material.1 

An irreducible, aperiodic Markov chain with a fi-
nite state space will settle down to its unique station-
ary distribution in the long run. A Markov chain is 
said to be irreducible if every state can be reached 
from every other state (Kulkarni, 2011). Two-state 
and three-state models are considered, which are 
therefore finite, where all states communicate and 
hence an irreducible chain and where the chain is 
not periodic. A state is said to be periodic with pe-
riod 𝐷𝐷 if a return to the same state is possible only in 
a number of steps that it is a multiple of 𝐷𝐷 (Kulkarni, 
2011).  

 

2.4 Mean return time 
The mean return time (𝑇𝑇𝑙𝑙), which is also known as 
the mean recurrence time of an ergodic (aperiodic 
and positive recurrent) Markov chain, is the ex-
pected first return time 𝑅𝑅𝑙𝑙  for state 𝑎𝑎 given by Equa-
tion 13. 

     𝑅𝑅𝑙𝑙 = 𝐸𝐸(𝑇𝑇𝑙𝑙) = 1
𝜋𝜋𝑙𝑙

  (13) 

where 𝝅𝝅 = (𝜋𝜋1, … ,𝜋𝜋𝑀𝑀) is the stationary probability 
vector of 𝑃𝑃, and 𝑀𝑀 is the number of states. The proof 
of the 𝐸𝐸(𝑇𝑇𝑙𝑙) is given in the supplementary infor-
mation file. Mean return time gives the time in days), 
that if the current state is say an increase, the 
amount of time before another increase occurs. 

2.5 First-passage probability in states 
One of the questions of interest is: How long will the 
current wave of the day upon day increase last? The 
problem can be formulated as: When will the sto-
chastic process representing the inter-day change in 
the DPED move from the increase state to a de-
crease state? Such questions lead us to the study of 
the first-passage time (FPT), i.e., the random time at 
which a stochastic process first passes into a given 
subset of the state space.  

The FPT is the number of steps, 𝑇𝑇𝑙𝑙𝑙𝑙, taken by the 
Markov chain to arrive at state 𝑦𝑦 for the first time 
given the initial state 𝑎𝑎 (Feres, 2007). The probability 
distribution of the FPT is described by Equations 
14–19 (Feres, 2007). 

     ℎ𝑙𝑙𝑙𝑙
(𝑛𝑛) = 𝑃𝑃(𝑇𝑇𝑙𝑙𝑙𝑙 = 𝑛𝑛)  (14) 

and 

      𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑦𝑦,𝑋𝑋𝑛𝑛−1 ≠ 𝑦𝑦, … ,𝑋𝑋1 ≠ 𝑦𝑦|𝑋𝑋0 = 𝑎𝑎).  (15) 

Now for 𝑛𝑛 = 1, 

      ℎ𝑙𝑙𝑙𝑙
(𝑛𝑛) = 𝑝𝑝𝑙𝑙𝑙𝑙   (16) 

and for 𝑛𝑛 ≥ 2  

     ℎ𝑙𝑙𝑙𝑙
(𝑛𝑛) = ∑ 𝑝𝑝𝑙𝑙𝑘𝑘ℎ𝑘𝑘𝑙𝑙

(𝑛𝑛−1)
𝑘𝑘𝑘𝑘𝑘𝑘−{𝑙𝑙}   (17) 

where 𝑆𝑆 is the state space. If 𝐻𝐻(𝑛𝑛)denotes the FPT 
matrix with entries ℎ𝑙𝑙𝑙𝑙

(𝑛𝑛), and 𝐻𝐻0
(𝑛𝑛)denotes the same 

FPT matrix with zeros on the diagonal entries, Feres 
(2007), then for 𝑛𝑛 = 1 the result is given by Equa-
tion 18. 

      𝐻𝐻(1) = 𝑝𝑝  (18) 

and for 𝑛𝑛 > 1 the result is given by Equation 19. 
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     𝐻𝐻(𝑛𝑛) = 𝑃𝑃𝐻𝐻0
(𝑛𝑛−1)  (19) 

where the (𝑎𝑎𝑦𝑦)-entry denotes the probability of get-
ting at state 𝑦𝑦 for the first time at time 𝑛𝑛 given the 
initial state 𝑎𝑎. 

2.6 Modelling extreme peaks for the two-
state problem 
A nonparametric extremal mixture model, discussed 
in Scarrott and Hu (2015), is fitted on the positive 
inter-day changes so as to determine a sufficiently 
high threshold, 𝜏𝜏. Observations above the threshold 
are then defined as extreme inter-day positive 
changes (state 1) and state 2 for observations less 
than or equal to 𝜏𝜏, i.e 𝑧𝑧𝑡𝑡 ≤ 𝜏𝜏. The cumulative distri-
bution function of the nonparametric extremal mix-
ture model (Scarrott and Hu, 2015) is given by 
Equation 20. 

     𝐹𝐹(𝑥𝑥|𝛽𝛽, 𝜏𝜏,𝜎𝜎𝜏𝜏, 𝜉𝜉,∅𝜏𝜏) =

      � 𝐻𝐻
(𝑥𝑥|𝛽𝛽)                                 if 𝑥𝑥 ≤ 𝜏𝜏

𝐻𝐻(𝜏𝜏|𝛽𝛽) + ∅𝜏𝜏𝐺𝐺(𝑥𝑥|𝜏𝜏,𝜎𝜎𝜏𝜏, 𝜉𝜉) if 𝑥𝑥 > 𝜏𝜏   (20) 

The bulk model is represented by 𝐻𝐻(. |. ) with 𝛽𝛽 
denoting the bulk parameter, 𝜏𝜏 the fixed threshold, 
𝜎𝜎𝜏𝜏 and 𝜉𝜉 denoting the scale and shape parameters 
respectively of the GPD fitted to the upper tail of the 
distribution, i.e. to observations above the threshold 
𝜏𝜏. The probability of an exceedance is represented 
by ∅𝜏𝜏. A kernel density is fitted to the bulk model 
and a GPD to observations above 𝜏𝜏. The parameters 
are then estimated using the maximum likelihood 
method. 

2.7 The three-state problem 
The two-state problem (decrease (𝑑𝑑) and increase 
(𝑖𝑖)) is then extended to a three-state problem. The 
positive inter-day changes are split into two states, 
which are small and extreme positive inter-day 
changes. The three states are formally defined by 
Equation 21. 

𝑧𝑧𝑡𝑡 = max (0, 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1)  (21) 

for positive inter-day changes. The three states are: 
State 1: Observations between 0 and 𝜏𝜏 (small in-
crease), i.e. (0 < 𝑧𝑧𝑡𝑡 ≤ 2838 MW), where MW = 
megawatts. 
State 2: Observations above 𝜏𝜏 (extreme increase), 
i.e. 𝑧𝑧𝑡𝑡 > 2838 MW, given by Equation 22. 

     𝑧𝑧𝑡𝑡 = min (0, 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡−1)  (22) 

for negative inter-day changes and will be zero for 
all of them. 
State 3: Observations below zero (decreases in peak 
electricity demand, i.e. 𝑧𝑧𝑡𝑡 ≤ 0).  

3. Results  
Using the R statistical package ‘Markovian’ devel-
oped by Spedicato et al. (2015), the steady-state 
probabilities (for decrease and increase states) are 
𝜋𝜋 = (𝜋𝜋𝑑𝑑 ,𝜋𝜋𝑑𝑑) =  (0.5978, 0.4022).  

The mean return times for the two states are for 
the increase state: 𝑅𝑅𝑑𝑑 = 1

𝜋𝜋𝑑𝑑
= 1

0.4022
= 2.5 days and 

for the decrease state 𝑅𝑅𝑑𝑑 = 1
𝜋𝜋𝑑𝑑

= 1
0.5978

= 1.7 days. 

This shows that if the current state is an increase then 
another increase is expected in about two and half 
days. There should be 146 inter-day increases in 
DPED in a given year. 

3.1 First-passage time probabilities 
The first-passage times are represented by Figure 3, 
which shows that the graphs of the decrease and in-
crease states intersect at about 2.5 days. Similarly, 
Figure 4 shows that the two curves intersect at about 
1.7 days. Figure 5 shows a plot of threshold selection 
using a non-parametric extremal mixture model 
where a kernel density is fitted to the bulk model and 
a GPD fitted to the tail of the distribution with �̂�𝜏 =
2838. The transition matrix for the two states: state 
1: extreme increases (observations above 𝜏𝜏), and 
state 2: no extreme increase (observations below 𝜏𝜏), 
was found to be 

      𝑃𝑃 = �0.0100000 0.9900000
0.0237467 0.9762533�  

and the steady-state probabilities were 

     𝜋𝜋 = (𝜋𝜋1,𝜋𝜋2) = (0.02342469, 0.9765753). 

The mean return times for the two states were 

      𝑅𝑅1 = 1
𝜋𝜋1

= 1
0.02342469

= 42.7days.  

The extreme increase state, i.e. 𝑧𝑧𝑡𝑡 > 2838 MW 
gives approximately nine days in a year of extreme 
increases and 𝑅𝑅2 = 1

𝜋𝜋2
= 1

0.9765753
= 1day  for the 

state 𝑧𝑧𝑡𝑡 < 2838 MW.  
Table 1 shows that if the current state was 1 (𝑧𝑧𝑡𝑡 > 

2838 MW), then the probability that the next day 
will have an extreme increase in peak electricity de-
mand would be 0.01 while that of state 2 (no ex-
treme increase) would be 0.99. The probability of 
state 2 decreases exponentially, while that of state 1 
slowly increases. The first passage time probability 
given current state is 2 (𝑧𝑧𝑡𝑡 < 2838 MW) and is given 
in the supplementary material.  

The probabilities of the three-state were found to be 

𝑃𝑃 = �
0.4354540 0.009882644 0.5546634
0.4900000 0.020000000 0.4900000
0.3392157 0.032156863 0.6286275

� 

after computing.  
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Figure 3: First-passage time given current state is 
an increase. 

Figure 4: First-passage time given current state is 
a decrease. 

Figure 5: Threshold selection using nonparametric 
mixture model (𝝉𝝉� = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐). 

Table 1: First passage time probability given 
current state 1(𝒛𝒛𝒕𝒕 > 2838 MW). 

Day Extreme increase (1) No extreme increase (2) 

1 0.010 0.9900000000 

2 0.024 0.0099000000 

3 0.023 0.0000990000 

4 0.022 0.0000009900 

5 0.022 0.0000000099 

 
Since the Markov chain is aperiodic and irreduc-

ible, the steady-state probabilities are: 𝜋𝜋 =
(𝜋𝜋1,𝜋𝜋2,𝜋𝜋3) = (0.3792457; 0.02342469; 0.5973296).  

The mean return times are 2.6, 42.7 and 1.8 
days for the three states. For the small increase state 
(0 < 𝑧𝑧𝑡𝑡 ≤ 2838) and for the extreme increase state 
(𝑧𝑧𝑡𝑡 >2838MW) as well as for the decrease state 
(𝑧𝑧𝑡𝑡 ≤ 0). 

From the stationary distribution in Equation 12, 
the steady-state probability of an extreme increase 
was very small, 0.02342469, i.e. about 2.3% of the 
time an extreme positive inter-day change in peak 
electricity demand in South Africa is expected, while 
for about 60% of the time a decrease is expected. 
Table 2 shows that if the current state is a small in-
crease there is a greater chance of a decrease the 
following day. If the current state were an extreme 
increase, then the chances of a small increase or a 
decrease are equally likely the following day as 
shown in Table 2. 

Table 2: First passage time given current 
state is an extreme increase. 

Day Small  
increase (1) 

Extreme  
increase (2) 

Decrease 
(3) 

1 0.490 0.020 0.490 

2 0.180 0.021 0.280 

3 0.120 0.022 0.130 

4 0.076 0.022 0.056 

5 0.049 0.022 0.025 

 
Figure 6 shows the first-passage time and the cor-

responding probabilities for the state extreme in-
crease. Similar graphs for the other states are given 
in the supplementary material.  

3.2 Monthly frequency of occurrence of ex-
treme inter-day increases in peak electricity 
demand 
There are 101 observations above the threshold of 
2838 MW (exceedances) over a period of 12 years 
(years 2000 to 2011) giving an average of nine (after 
rounding up) exceedances per year. The bar chart  
of the monthly frequency of occurrence of 101 ex-



75       Journal of Energy in Southern Africa • Vol 28 No 4 • November 2017 

Figure 6: First-passage time given current state is an extreme increase. 

treme inter-day increases in peak electricity demand 
above the threshold of 2838 MW for the period 1 
January 2000 to 31 August 2011 is given in Figure 
7. This gives an average of nine extreme inter-day 
increases per year. This is consistent with the Mar-
kov chain analysis discussed in Section 3. Extreme 
large increases in inter-day changes in peak electric-
ity demand are likely to occur in May, as shown in 
Figure 7. This could be due to the movement from 
summer to winter in the southern hemisphere. 

Figure 7: The monthly frequency of occurrence of 
extreme inter-day increases in peak electricity de-

mand above the threshold, 𝝉𝝉 =2838 MW. 

4. Discussion 
Markov chain analysis of inter-day changes in peak 
electricity demand using South African data has 
been discussed and applied in modelling frequency 
of occurrences of daily peak electricity demand. This 

analysis was extended by using nonparametric ex-
tremal mixture models. The threshold was deter-
mined using a nonparametric extremal mixture 
model in which a kernel density to the bulk model 
was fitted and a generalised Pareto distribution was 
fitted to the upper tail of the distribution. Parameters 
of this nonparametric extremal mixture model were 
estimated using the maximum likelihood estimation 
method.  

From the Markov chain analysis, the steady state 
probability of an extreme increase (𝑧𝑧𝑡𝑡 > 2838 MW) 
in daily peak electricity demand was calculated to be 
0.0234. This resulted in a mean return time of about 
43 days. That is if the current state is an extreme 
increase another extreme increase is expected in 
about 43 days. This implies nine days in a year of 
extreme increases. The extreme increases are more 
likely to occur in May of every year. Results from the 
frequency analysis using extremal mixture models 
showed that there are 101 extreme inter-day in-
creases in peak electricity demand above the thresh-
old of 2838 MW for the period 1 January 2000 to 
31 August 2011. The results were found to be con-
sistent with those from the Markov chain analysis in 
that an average of nine extreme inter-day increases 
per year is experienced. 

The analysis done in this paper potentially helps 
system operators and decision makers in power util-
ity companies such as Eskom in South Africa to un-
derstand the stochasticity of peak electricity de-
mand, and extreme inter-day changes. In a con-
strained power system such as that of South Africa, 
which is currently operating with a very tight reserve 
margin, the modelling approach also guides system 
operators in managing the risk of unplanned out-
ages and the resultant inconvenience to consumers. 
Electricity demand is also subject to other factors 
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and drivers such as economic conditions, availability 
and capacity of the power system to meet the de-
mand, due to planned and unplanned outages, load 
shedding, coal shortages, among others including 
price changes.  

5. Conclusions 
The paper discussed an application of discrete time 
Markov chain analysis in modelling the frequency of 
occurrences of extreme daily peak electricity de-
mand using South African data. A comparative 
analysis was then done with using the extreme value 
theory techniques in which a sufficiently high thresh-
old was determined using non-parametric extremal 
mixture models. A kernel density was fitted to the 
bulk model and a generalised Pareto distribution to 
the tail distribution, i.e. to observations above the 
threshold. 
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Note 
1. Supplementary data material with derivations and 

some of the tables and plots can be found at http:// 
journals.assaf.org.za/jesa/rt/suppFiles/2329/0. 

References 
Agyeman, K.A., Han, S. and Han, S. Real-time recogni-

tion non-intrusive electrical appliance monitoring al-
gorithm for a residential building energy manage-
ment system. Energies, 2015, 8: 9029–9048. 

Ardakanian, O., Keshav, S. and Rosenberg, C. Markov-
ian models for home electricity consumption, Pro-
ceedings of the 2nd ACM SIGCOMM workshop on 
Green networking, 2011: 31–36. 

Beirlant, J., Goedgebeur, Y., Segers, J. and Teugels, J. 
Statistics of extremes: Theory and applications, 2004, 
London, UK: Wiley. 

Feres, R. Notes for Math 450 Matlab listings for Markov 
chains, 2007. [online] http://www.math.wustl.edu/ 
~feres/Math450Lect04.pdf (accessed 13 August 
2016).  

Ferro, C.A.T. and Segers, J. Inference for clusters of ex-
treme values. Journal of the Royal Statistical Society. 
Series B, Statistical Methodology, 2003, 65(2): 545–
556. 

Haider, M.K., Ismail, A.K. and Qazi, I.A. Markovian 
models for electrical load prediction in smart build-
ings. In: Huang T., Zeng Z., Li C., Leung C.S. 
(eds) Neural information processing. ICONIP 
2012. Lecture notes in computer science, 2012, 
Vol. 7664. Springer, Berlin, Heidelberg. 

Hyndman RJ, Fan S. Density forecasting for long-term 
peak electricity demand. Institute of Electrical and 
Electronics Engineers Transactions on Power Sys-
tems, 2010, 25(2):1142–1153. 

Kulkarni, V.G. Introduction to modelling and analysis of 
stochastic systems, 2011, Second edition, Springer, 
New York. 

McLoughlin, F., Duffy, A. and Conlon, M. The genera-
tion of domestic electricity load profiles through Mar-
kov chain modelling: 3rd International Scientific 
Conference on Energy and Climate Change; Confer-
ence proceedings: Athens, Greece, 2010, 18–27. 

Munoz, A., Sanchez-Ubeda, E.F., Cruz, A. and Marin, J. 
Short-term forecasting in power systems: a guided 
tour. Energy Systems, 2010, 2:129–160. 

Scarrott, C. J., Hu, Y. Evmix: Extreme value mixture 
modelling, threshold estimation and boundary cor-
rected kernel density estimation, 2017. [online] http:// 
www.math.canterbury.ac.nz/~c.scarrott/evmix (ac-
cessed 7 February 2016). 

Sigauke, C., Verster, A., Chikobvu, D. Tail quantile esti-
mation of heteroskedastic intraday increases in peak 
electricity demand. Open Journal of Statistics, 2012: 
435–442. 

Sigauke, C., Verster, A. and Chikobvu, D. Extreme daily 
increases in peak electricity demand: Tail-quantile es-
timation. Energy Policy, 2013, 53:90–96. 

Smith, L.R. Statistics of extremes, with applications in en-
vironment, insurance and finance, 2003. [online] 
http://www.stat.unc.edu/postscript/rs/semstatrls.pdf 
(accessed 16 March 2016). 

Spedicato, G.A., Kang, T.S and Yalamanchi, S.B. R 
package markovchain, version 0.4.3: 2015. [online] 
https://cran.r-project.org/web/packages/markovchain/ 
markovchain.pdf (accessed 2 February 2016). 

Sun, Z. and Li, L. Potential capability estimation for real-
time electricity demand response of sustainable man-
ufacturing systems using Markov decision process. 
Journal of Cleaner Production, 2014, 65: 184–193. 

Verster, A., Chikobvu, D.and Sigauke, C. Analysis of the 
same day of the week increases in peak electricity de-
mand in South Africa. ORiON, 2013, 29 (2): 125–
136. 
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