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For the past several decades, research in understanding the molecular basis of human

muscle aging has progressed significantly. However, the development of accessible

tissue-specific biomarkers of human muscle aging that may be measured to evaluate

the effectiveness of therapeutic interventions is still a major challenge. Here we present

a method for tracking age-related changes of human skeletal muscle. We analyzed

publicly available gene expression profiles of young and old tissue from healthy donors.

Differential gene expression and pathway analysis were performed to compare signatures

of young and old muscle tissue and to preprocess the resulting data for a set of machine

learning algorithms. Our study confirms the established mechanisms of human skeletal

muscle aging, including dysregulation of cytosolic Ca2+ homeostasis, PPAR signaling

and neurotransmitter recycling along with IGFR and PI3K-Akt-mTOR signaling. Applying

several supervised machine learning techniques, including neural networks, we built a

panel of tissue-specific biomarkers of aging. Our predictive model achieved 0.91 Pearson

correlation with respect to the actual age values of the muscle tissue samples, and a

mean absolute error of 6.19 years on the test set. The performance of models was

also evaluated on gene expression samples of the skeletal muscles from the Gene

expression Genotype-Tissue Expression (GTEx) project. The best model achieved the

accuracy of 0.80 with respect to the actual age bin prediction on the external validation

set. Furthermore, we demonstrated that aging biomarkers can be used to identify new

molecular targets for tissue-specific anti-aging therapies.

Keywords: aging, biomarkers of aging, deep learning, machine learning, pathway analysis, target identification

INTRODUCTION

As the world population is experiencing an unprecedented increase in the percentage of people over
65 years of age, the impact of age-related pathologies such as sarcopenia become greater. Sarcopenia
significantly impacts quality of life and is one of the hallmarks of aging. The growing body of
evidence and experimental data on life extension of model organisms suggests the feasibility of
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finding interventions promoting human longevity (Moskalev
et al., 2015), and understanding the molecular mechanisms
of sarcopenia could help in designing desirable interventions.
However, the restricted experimental possibilities of studying
human aging coupled with the overall low translation rate
from model organisms to the human clinic in other therapeutic
areas (Mak et al., 2014) complicates the search for desirable
anti-aging therapies, with only a few geroprotectors (i.e., anti-
aging molecules) having shown potential efficacy in humans
to date (Aliper et al., 2016, 2017; Thomas and Gregg, 2017).
Biomarkers of aging, or aging clocks, are promising tools
empowering human aging research with the ability to track aging
changes and evaluate possible rejuvenating treatments (Horvath,
2013; Peters et al., 2015; Putin et al., 2016; Mamoshina et al.,
2018), without resorting to long and costly longitudinal clinical
studies evaluating the effects of geroprotective interventions
upon long-term incidence of age-related morbidity, or lifespan
itself. As such, biomarkers of aging have the potential to
substantially increase the feasibility of clinically evaluating
possible geroprotective interventions.

To date, data-driven approaches have been utilized in a variety
biomedical applications (Mamoshina et al., 2016), including drug
discovery (Kadurin et al., 2017a,b), and biomarker development
(Putin et al., 2016; Mamoshina et al., 2018), both of which
provide an attractive alternative to more conventional types of
data analysis as they do not require prior knowledge of biological
dependencies. With this in mind, we have combined machine
learning with a parametric signaling pathway analysis tool in
order to identify and categorize the signaling pathway changes
in aged skeletal muscles and to propose a muscle-tissue specific
panel of aging biomarkers, along with a novel target identification
tool for muscle anti-aging therapies.

We first applied a state of the art signaling pathway analysis
algorithm, iPANDA, to compare transcriptomic signatures of
“old” and “young” muscles. Then, we applied several machine
learning methods widely used in bioinformatics including elastic
net regression, support vector machines, random forest and
neural networks to predict the age of samples based on their
transcriptomic signatures. By incorporating feature importance
analysis, we used trained age predictors to identify key genes
associated with muscle aging. We propose elevation of cytosolic
Ca2+, PPAR signaling and neurotransmitter recycling as the key
signaling axes that contribute to the muscle aging process along
with IGFR pathway activation accompanied by PI3K-Akt-mTOR
signaling axis activation.

MATERIALS AND METHODS

Data
Gene expression profiles were collected from the publicly
available repositories Gene Expression Omnibus (https://www.
ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://www.ebi.ac.
uk/arrayexpress/). In total, we analyzed 545 transcriptomic
samples, labeled according to the chronological age of the tissue
samples’ donors, from 12 datasets GSE1428 (Giresi et al., 2005),
GSE25941 (Raue et al., 2012), GSE28392 (Raue et al., 2012),
GSE28422 (Raue et al., 2012), GSE38718 (Liu et al., 2013),

GSE40645 (Gheorghe et al., 2014), GSE47881 (Phillips et al.,
2013), GSE47969 (Sood, 2015), GSE59880 (Timmons et al., 2010;
Keller et al., 2011; Sood, 2015), GSE80 (Welle et al., 2002)
(Table S1).

As external validation data, we downloaded gene expression
profiles of skeletal muscles from the Genotype-Tissue Expression
(GTEx) project portal (www.gtexportal.org). Samples (n = 564)
were mapped to the age bins and sex of donors.

Cross-Platform Normalization
We used the distran function with the number of assay clusters
to use set to 6 and “kmeans” clustering algorithm from the R
CONOR package (https://github.com/jcrudy/CONOR) for the
cross-platform normalization of gene expression data of the
GTEx data. Because most of samples belong to the 50–59 and
60–69 age bins, we performed it by age groups to avoid bias.

Supervised Machine Learning Models
Train and Test Set Design
Models were trained on expression values of 7,682 common
genes (Table S2). The dataset was split into training and
testing sets at an 80/20 ratio, and were normalized with
“normalize.quantiles” from the “preprocessCore” package
(Bolstad et al., 2003).

Regression Model Implementation
We adapted fivemachine learningmethods for the age prediction
task: ElasticNet, Support Vector Machines, k-Nearest Neighbors,
Random Forests and feed-forward neural networks (Deep
Feature Selection model, Li et al., 2016). For all shallow models
we used their implementation in scikit-learn. To build and
train deep models (i.e., networks with more than 3 layers) we
used the Keras python library with tensorflow backend. All age
predicting models were optimized using a grid search of the
hyperparameter space.We trained themodels with five-fold cross
validation to compensate for overfitting and to receive more
robust performance metrics. All optimized model parameters are
supplied in Table 1.

Model Evaluation
The following metrics were used to evaluate the accuracy of age
prediction models:

1) Pearson correlation coefficient:

r =
∑N

i= 1 (xi−x)(yi−y)√∑N
i= 1 (xi−x)2

√∑N
i= 1 (yi−y)2

.

where xi is chronological age value x and is the mean of x, yi
is predicted age value and y is the mean of y, N is number of

samples. r shows the strength of a linear association between
predicted and actual age.

2) Coefficient of determination: R2 = 1−
∑N

i= 1(ŷi−yi)
2

∑N
i= 1(yi−y)

2 , where yi

is the real value, ŷi is the predicted value, and y is the mean

of y. R2 shows the percentage of variance explained by the
regression between predicted and actual age.

3) Mean absolute error: MAE = 1
N

∑N
i= 1

∣∣ŷi − yi
∣∣ ; where ŷi

is a predicted age, yi is an age value, and N is a number of
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samples. MAE demonstrates average disagreement between
the chronological age and the predicted age.

4) ε − accuracy =

∑N
i= 1 1A(ŷi)

N , where A =
[
yi − ε; yi + ε

]
, ŷi

is an age prediction of the model, and yi is a true age value.
For instance, if epsilon (ε) is 5 and the DNN model predicts
an age of 55 but the real age is 50 or 60, then according to
epsilon accuracy, such a sample would be considered correctly
classified.

We used multiclass.roc function from the pROC R package
to calculate multiclass area under the receiver operating
characteristic curve for the accuracy (mAUC) of age bin
prediction.

Feature Importance Analysis
In the present study, we explore several methods to evaluate the
importance of features (genes) on age prediction. We first ranked
genes by absolute values of their regression coefficients for an
ElasticNet model. We then applied the Random Forest feature
importance algorithm to extract the Gini importance value of
each gene. Next, we explored the relative importance values
assigned to genes by the deep feature selection model, averaging
the importance values of genes for the five-fold cross validation
process.

In addition to feature importance ranking, we also explored
the wrapper method, which we have successfully applied
previously in the context of identifying the most important blood
markers for age prediction (Putin et al., 2016; Mamoshina et al.,
2018). We applied the same technique in the present study, with
some modification. Here we explored random permutations of
vectors of gene expression values along with increased (by log2
fold changes of 3) and decreased (log2 fold changes of −3) gene
expression values.
In case of random permutations, x′i = rand (x), where x is a
vector of expression of i gene.

In case of a direct increase or decrease, x′i = x × 2f , where x
is a vector of expression of i gene and f is a fold change of 3 and
−3 respectively.
Therefore feature importance value for the gene i is calculated as

FIi =

∑k
m= 1

R2(Y ,Ŷ)

R2(Y , Ŷ′)

k
, where Ŷ is a vector of predicted value of age

and Ŷ ′ is a vector predicted values of age after permutations, k is
a number of cross-validation folds and, in this case, equals to 5.

We used Support Vector Machine algorithm as an age
predicting model. Each model predicts age after a modification
of gene expression values and assigns an importance coefficient
to the gene based on the accuracy of age prediction. Afterwards,
scores obtained on the validation sets are summed, and each
gene-associated importance factor is averaged to yield a final
value.

FIGURE 1 | In order to study the effects of aging in human skeletal muscle, we

collected gene expression profiles of 19–89 year old individuals from

publicly-available datasets. We split samples into “old” and “young” groups

and analyzed them using differential gene expression and pathway analysis.

We then trained a set of supervised models to predict the age of samples.

Finally, we ranked genes according to their importance for age prediction using

Borda count over rank values obtained by ElasticNet, Random Forest, Deep

Feature Selection and wrapper algorithms. GEO, gene expression omnibus;

DE, differential expression analysis; DFS, deep feature selection model; SVM,

support vector machines; ELNET, ElasticNet; RF, random forest.

TABLE 1 | The performance of age predicting models trained on expression profiles on the test set.

Model Best parameters r [f; m] R2 MAE (years) ε-accuracy

k-nearest neighbors Auto algorithm; N of neighbors of 5;

distance as weights

0.78 [0.79; 0.76] 0.64 [0.67; 0.62] 9.73 [9.5; 9.8] 0.58 [0.60; 0.56]

Random forest N trees of 700 with max depth of 50 0.84 [0.88; 0.82] 0.69 [0.71; 0.66] 9.54 [9.2; 9.7] 0.66 [0.67; 0.63]

ElasticNet Alpha of 0.001 and L1 ratio of 0.2 0.88 [0.92; 0.87] 0.78 [0.84; 0.76] 7.37 [7.0; 7.66] 0.83 [0.84; 0.79]

Support vector machines Linear kernel with cost of 0.01 0.91 [0.95; 0.80] 0.83 [0.89; 0.80] 7.20 [6.1; 6.5] 0.87 [0.89; 0.85]

Deep feature selection model Adam optimizer with lr of 10−5; 3 hidden

layers (512, 256, 128 units); l1, l2 and

frobenius norm regularizers; ELU

activation function; Dropout of 0.5

0.91 [0.96; 0.89] 0.83 [0.92; 0.78] 6.24 [5.6; 8.1] 0.80 [0.83, 0. 78]

r for Pearson correlation coefficient; R2 for coefficient of determination; MAE for mean absolute error, that shows the average disagreement between actual chronological and predicted

ages; ε-accuracy the accuracy of prediction within a period, which was calculated for ε of 10 years; f for metrics calculated only for female samples and m for male.
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Borda count algorithm was applied to summarize all six ranks
derived from age predicting models, and the rank of genes sorted
by absolute log2 fold change values derived from differential
expression analysis, in order to obtain the final importance rank
of genes.

Signaling Pathway Analysis
Raw gene expression data were normalized with RMA method
(Bolstad et al., 2003). Nine independent datasets from the
NCBI GEO database, including GSE80, GSE1428, GSE28392,
GSE47881, GSE47969, GSE59880, GSE28422, GSE38718, and
GSE25941 were carefully selected for the analysis. For each
dataset the groups corresponding to the samples from the “old”
and the “young” individuals, respectively, were constructed.
The samples from individuals 16–30 years old were considered
“young,” while individuals over 60 years old were considered
“old.” In all the following parts of the analysis the “old”
group was used as a reference and the young group was

compared to it. In order to obtain the list of differentially
expressed genes, data were processed using the R “limma”
package (Ritchie et al., 2015). Benjamini-Hochberg FDR
adjustment was applied to the p-values (Benjamini and
Hochberg, 1995). The pathway level analysis was performed
using the iPANDA software suite (Ozerov et al., 2016).
Positive and negative iPANDA scores indicated up- and down-
regulation of the pathway, respectively. The pathway database
used for the analysis included 1,856 annotated and manually
curated signaling pathway maps from KEGG, Reactome and
NCI-PID and SA Biosciences (http://saweb2.sabiosciences.com/
pathwaycentral.php) collections (Kanehisa and Goto, 2000;
Schaefer et al., 2009; Croft et al., 2014).

RESULTS

In order to study the effects of aging in human skeletal muscle,
we obtained 545 gene expression profiles of 19–89 age individuals

FIGURE 2 | Molecular mechanisms of muscular aging. (A) Top 20 differentially expressed genes in “young” group against “old” group. (B) Signaling pathways

perturbed in “young” group compared to “old” group. Up and down-regulated genes (pathways) are shown in red and blue respectively. The saturation of the color

denotes to the perturbation amplitude.
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from publicly-available datasets. We first split samples into “old”
and “young” groups and analyzed them using differential gene
expression analysis and pathway analysis (see Figure 1). We then
trained a set of supervised models to predict the age of samples.
Finally, we ranked genes according to their importance for age
prediction using Borda count over rank values obtained by
ElasticNet, Random Forest, Deep Feature Selection and wrapper
algorithms.

Gene Expression and Signaling Pathway
Analysis
To profile the signalome differences between young and old
skeletal muscle, we applied the iPANDA algorithm (Ozerov et al.,
2016) to normalized gene expression data. An analysis of 9
muscle datasets obtained from the publicly available NCBI GEO
database has revealed various age-related effects.

FIGURE 3 | Performance of age predicting models (A) Actual chronological

age vs. predicted age for Support Vector Machines model (SVM) and Deep

Feature Selection Model (DFS) on validation and testing sets (B) Performance

of models on validation and testing sets. r for Pearson correlation coefficient;

R2 for coefficient of determination; MAE for mean absolute error, that shows

the average disagreement between actual chronological and predicted ages;

ε-accuracy the accuracy of prediction within a period, which was calculated

for ε of 10 years, kNN, K Nearest Neighbors; RF, Random Forest; ELNET,

ElasticNet; SVM, Support Vector Machines; DFS, Deep Feature Selection

Models.

It has been shown previously that muscle aging is strongly
associated with compromised Ca2+ spark signaling and
segregated intracellular Ca2+ release (Weisleder et al., 2006).
Our data supports this observation. In particular, we observed a
decreased expression of calcium ion binding protein EFEMP1
and sarcomeric protein MYOZ2 that binds to calcineurin, a
phosphatase involved in calcium-dependent signal transduction,
in the elderly group and corresponding activation of Elevation
of cytosolic Ca2+ levels Main Pathway. Several other proteins
directly or indirectly involved in sarcomere function and
regulation are found in top20 perturbed gene list (Figure 2)
including MYH8, EPB41L3 and SKAP2 (Pöllänen et al., 2010;
Dreder et al., 2016). Interestingly, that decreased expression of
tumor suppressor gene EPB41L3 that inhibits cell proliferation
and promotes apoptosis was previously associated with cellular
senescence in skin and lung (Yoon et al., 2004; Sembrat et al.,
2016).

Another notable mechanism underlying aging-associated
changes in muscle function is the irreversible change in
fiber innervation (Holloszy and Carlson, 1995; Luff, 1998;
Edström et al., 2007). Both FEZ2 necessary for normal
axonal bundling and elongation within axon bundles and
glutamine transporter SLC38A1 necessary for glutamate
neurotransmitter cycling are down-regulated in aged muscle
along with up-regulation of Astrocytic Glutamate uptake
and down-regulation of axon development on the pathway
level. While the decrease in oxygen saturation and glucose
uptake also a play significant role in muscle aging, elevated
expression of BPGM gene may mediate this effect. Moreover,
dysregulation in BPGM expression is thought to play the similar
role in age-related dementia (Kaminsky et al., 2013). Besides,
the reduction in oxygen uptake is closely-related to overall
mitochondrial function decline and increase in expression of
TMEM11 gene responsible for mitochondrial morphogenesis
(Short et al., 2005). The significant perturbation of PPAR
signaling in the majority of data sets is also connected to
impairment in glucose uptake and lipid metabolism during
aging.

Surprisingly, pro-survival branches of the metabolic master-
regulator signaling networks including IGFR signaling and
PI3K-Akt-mTOR axis were down-regulated in young muscle
comparing to the old ones. At the same time, the pathways
associated with G1/S checkpoint arrest (BRCA1 G1/S checkpoint
arrest) and ensuring long-lasting G0 state of the muscle cells
were elevated in the samples from young donors. Several
developmental genes (CRIM1, PLAG1, GREM1, and HOXB2)
are found on top of the differentially expressed gene list. This
observationmay point to the age-associated tissue transition, e.g.,
muscular fibrosis.

An important cluster of aging-associated changes in muscular
tissue refers to inflammation (Zoico et al., 2013). Specifically,
CLEC2B gene, member of CTL/CTLD superfamily and one
of the key inflammation and immune response regulators,
is significantly perturbed in the majority of the datasets
along with several inflammation-related pathways. Besides,
the expression of SLPI gene responsible for resistance to
viral, bacterial and fungal infections is down-regulated in

Frontiers in Genetics | www.frontiersin.org 5 July 2018 | Volume 9 | Article 242

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mamoshina et al. Machine Learning for Muscle Aging

the muscle samples of elderly individuals. Inflammation
itself is closely tied up with detrimental changes in the
extracellular matrix that contribute to muscle function
decline (Kragstrup et al., 2011). Specific genes involved
in extracellular matrix maintenance and experiencing the
highest changes in expression profile include ADIPOQ and
COL21A1.

Interestingly, that several genes that were not yet extensively
studied in the context of muscle aging such as retinoid receptor
RXRG, non-protein coding DLEU1 and very poorly described
FAM171A1 are encountered in top20.We believe that these genes
and their products may potentially represent novel biomarkers or
therapeutic targets for age-related conditions in muscle.

Age Prediction
To develop an age predictor of samples we first explored
a set of regression models. We used linear regression as
a baseline model, which was compared to other machine
learning methods such as Elastic Net, Support Vector Machines,
k-Nearest Neighbors, Random Forest, and Deep Feature
Selection Model. All models achieved a strong correlation of
predicted and chronological age; however, both Support Vector
Machines with a linear kernel and Deep Feature Selection
model outperformed the other methods in age prediction,
achieving R2 values of 0.83 and 0.83 and MAE values of
7.20 and 6.24 years, respectively (Figure 3 and Table 1). In
comparison, the ElasticNet and Random Forest models achieved
R2 values of 0.78 and 0.69, and MAE values of 7.37 and
9.54 years respectively. Lastly, the K-Nearest Neighbors model
demonstrated an R2 of 0.64 and MAE of 9.73 years. Interestingly,
the age of female samples tends to be predicted more accurately
compared to male samples by all age predicting models
(Table 1).

External Validation
The Genotype-Tissue Expression (GTEx) project dataset was
used to validate our models. We predicted the age of skeletal

muscle samples based on their gene expression profiles. Because
GTEx project portal openly provide only age bin of donors, we
have calculated mAUC (see Materials and Methods for details) to
evaluate the accuracy of age group prediction. The previously best
performing models, Support Vector Machines achieved mAUC
of 0.80, compared to the mAUC of 0.90 on the original test
set and Deep Feature Selection achieved mAUC of 0.80 and of
respectively (Figure 4). The accuracy of age group prediction for
male and female samples coincides with the performance on the
test set and male samples tend to be predicted more accurately
compare to female samples.

Target Identification
Following results on age prediction, we applied several feature
importance analysis procedures to identify the genes most
important for age prediction (see Materials and Methods for
details). As different ranking methods return different values
of relative importance, we used Borda count algorithm to
summarize ranks and obtain final importance values (Table 2,
Figure 5). Despite the fact that ranks of the selected top 20
genes vary, they all belong to the top 25% ranks of all genes.
Interestingly, Random Forest and Elastic Net assigned similar
ranks to the same genes. The wrapper method (applied over
random permutations) and the Deep Feature Selection model
demonstrate the closest results to the final ranking (Figure 5).
At the same time, the wrapper method used over increased and
decreased values showed different importance values and rank
for the same genes, suggesting that the direction of changes
in expression is important in age prediction for most of the
genes analyzed. However, a number of genes including Src kinase
associated phosphoprotein 2 (SKAP2), Visin like 1 (VSNL1)
and Growth regulation by estrogen in breast cancer 1 (GREB1)
demonstrated similar ranks in the context of both up-regulation
and down-regulation.

While 5 out of the top 20 genes are known drug targets, some
of the selected genes are known therapeutic targets, including the
Carbonic anhydrase 4 (CA4) a target of anticovosculant drug,

FIGURE 4 | Performance of age predicting models on the external validation set. Mean of the actual chronological age bin vs. predicted age for Support Vector

Machines models (SVM) and Deep Feature Selection Model (DFS).
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TABLE 2 | List of the most important genes selected by the Borda count algorithm applied over ranks assigned by Random Forest, ElasticNet, wrapper method applied

over randomly permuted vectors of gene expression values (SVMPFI), increased values (SVMlog2FC=3) and decreased values (SVMlog2FC=−3 ), Deep Feature Selection

model (DFS) and the differential gene expression analysis (DE).

Gene symbol RF ELNET SVM PFI SVM log2FC = 3 SVM log2FC = –3 DFS DE Final rank Pathway

SKAP2 1 1 22 6 7 44 10 1

FAM171A1 5 5 25 14 52 180 5 2

PLAG1 2 2 159 55 106 1 6 3

PCDH9 242 204 110 19 27 38 23 4

KBTBD11 19 20 112 70 455 34 31 5

GREM1 3 3 109 441 229 6 11 6

GREB1 41 52 16 72 86 28 653 7 Validated nuclear estrogen receptor alpha network

Main Pathway (nci)

VSNL1 324 332 5 1 1 7 297 8

TES 140 238 49 54 8 507 140 9

SLC38A1 8 9 63 28 1048 14 9 10 Astrocytic glutamate glutamine uptake and

metabolism main pathway (reactome)

OSBPL3 133 144 31 48 233 19 774 11

PPEF1 384 369 67 67 39 9 619 12

EPB41L3 15 14 194 179 1324 15 4 13

CLEC2B 11 11 681 844 165 463 19 14

CDKN1A 192 191 638 548 447 75 123 15 Regulation of retinoblastoma protein Pathway

(proteasomal ubiquitin dependent protein catabolic

process) (nci); Regulation of nuclear SMAD2 3

signaling Main Pathway; Regulation of

retinoblastoman protein Main Pathway(nci)

CA4 222 261 98 428 598 317 308 16

HPGDS 321 399 418 795 188 41 97 17

ACSL6 506 380 84 288 118 263 705 18 Synthesis of very long chain fatty acyl CoAs Main

Pathway (reactome)

LGI1 73 90 219 1864 305 82 22 19

KCNN3 249 212 158 906 452 485 291 20 Ca activated K channels Main Pathway (reactome)

See Materials and Method for details.

Topiramate, and a group of diuretics such as Chlorothiazide
and Methazolamide. Recently, it has been shown that inhibition
of CA4 effects relaxation of skeletal muscles both in model
organisms (Wetzel et al., 2002; Tricarico et al., 2004) and human
cells (Eguchi et al., 2006), suggesting their importance as potential
drug targets in neuromuscular diseases.

DISCUSSION

This report described, to our knowledge, the first exhaustive
signaling pathway analysis of skeletal human muscle that
provides molecular insight into the differences among aged and
young samples. Previously, transcriptomic analyses of muscle
aging were conducted using the standard approach of gene
expression analysis (Zahn et al., 2006; Sifakis et al., 2013). This
study provides the first detailed pathway analysis involving the
massive comparison of publicly available datasets consisting
of both young and old muscle tissue. It also highlights the
utility of pathway-based algorithms for dimension-reduction of
high-dimensional transcriptomic data and for producing robust
signatures of signaling pathway activation when comparing
multiple cell states and types simultaneously.

Notably, the lists of important genes obtained using
traditional differential expression analysis and machine learning
methods while holding significant intersection, contain distinct
genes that are both relevant for the condition under study. This
emphasizes the potential benefits researchers could gain while
using the proposed combined approach.

Hormonal imbalance and mitochondrial dysfunction are
among the leading hallmarks of muscle aging identified by this
study. On the signaling pathway level, elevation of cytosolic
Ca2+, PPAR signaling and neurotransmitter recycling along
with IGFR pathway activation accompanied by PI3K-Akt-mTOR
signaling axis activation seen in the present analysis is believed
to be key players in muscle growth, and as such dysregulation
of these pathways very likely leads to a resulting decrease in
muscle mass and regeneration ability (Yoon, 2017). Additionally,
the impaired protein degradation demonstrated in the present
analysis is also considered to be one of the key molecular
mechanisms underlying sarcopenia (Lenk et al., 2010).

The best performing model used in the present analysis,
a feed-forward neural network, achieved an MAE of 6.24
years, demonstrating reasonably good accuracy in terms of age
prediction. Notably, female samples tend to be predicted more
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FIGURE 5 | List of the most important genes selected by the Borda count algorithm applied over ranks assigned by Random Forest, ElasticNet, wrapper method

applied over randomly permuted vectors of gene expression values (SVMPFI), increased values (SVMlog2FC=3) and decreased values (SVMlog2FC=−3 ), Deep Feature

Selection model (DFS) and the differential gene expression analysis (DE). See Materials and Method for details. Full signaling pathway names are supplied in the

Table 2. Drug target information was obtained from DrugBank (www.drugbank.com). R, Reactome pathway database. N, NCI pathway database.

accurately, which is in line with our previous findings in age
predction by blood biochemistry (Mamoshina et al., 2018).
Indeed previous analysis highlighted sex-specificity of muscle
aging transcriptional profiles (Liu et al., 2013) and at the same
time model organisms and human studies also demonstrated the
sex-dependent differences in aging rates (Waisman et al., 2013;
Horvath et al., 2016).

Previously, Sood et al. applied supervised machine learning
algorithm (K-Nearest Neighbors) in order to perform binary
classification muscle gene expression profiles by “young”
and “old” achieving an average AUC of 93% (70–100%)

for independent muscle data (Sood, 2015). Here we present
more complex approach, allowing to quantify aging changes.
Our current results show that the best performing model
could achieve 0.80 mAUC (for 6 age bin groups) on the
massive external validation set provided by the GTEx project
(n= 564).

Furthermore, our results show that age prediction models can
be used as a tool for identifying perspective targets for anti-
aging therapies, and can serve as a potential panel of companion
biomarkers for evaluating the effect of such therapies. Using
transcriptional signatures, the general approach encapsulated by

Frontiers in Genetics | www.frontiersin.org 8 July 2018 | Volume 9 | Article 242

www.drugbank.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mamoshina et al. Machine Learning for Muscle Aging

the present study could be further applied to other tissues and
other disease areas.
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