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Abstract 
 

Advantages of hybrid vehicles over pure electric vehicles are obvious and well-known. The paper presents a simulation 
study of the optimization of hybrid propulsion drivetrain. A vehicle model was optimized in order to scale drivetrain 
components to achieve better fuel economy and lower greenhouse emissions. A set of ADVISOR data for vehicle was 
optimized by genetic algorithm in Matlab. Simulation results show significant fuel economy improvement. 
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1. Introduction 
 
Increasing amount of people living in cities and sub-urban 
areas increase demand on personal transportation. Many 
people decide to use passenger car for commuting to their 
work. This causes several issues, such as a bad air quality in 
the cities and increasing fossil fuel consumption. The most 
preferable solution for these issues by car manufacturers is 
downsizing of combustion engine in vehicle. Due to limits 
of internal combustion engine (ICE), downsized motor with 
the same power characteristics requires advanced modifica-
tions, such as supercharging, what, unfortunately, increases 
the mechanical complexity of the drivetrain. Another ap-
proach for the city vehicle is using of alternative onboard 
power source, for example electric power. Electric vehicles 
have their limitations of which the most significant is driv-
ing range. Therefore, hybrid vehicles, which are the combi-
nation of ICE and pure electric vehicles, become more popu-
lar. Advantages of hybrids against ICE vehicles are follow-
ing [1], [2]: 
 
• lower fuel consumption and lower greenhouse gases 

emissions in urban driving, 
• possibility of drivetrain overloading, 
• possibility of energy recuperation at braking. 

 
 Power requirements of different vehicles to accomplish 
New European Driving Cycle (NEDC) are shown in Table 1. 
If NEDC is the reference for urban driving, it may be seen 
that modern passenger vehicles dispose much more power 
than they need. Additional power is needed in some situa-
tions, such as heavy acceleration during fast overtaking, 
trailer pulling, fast uphill driving, which occurs occasionally, 
but adds the weight and inefficiency permanently. Therefore, 

adding electric motor to cooperate with ICE come across as 
the most advantageous solution for two reasons. At first, it is 
possible to overload the electric motor, so vehicle may short-
ly dispose with more power it actually carries. Moreover, 
thanks to the ICE, its driving range is not limited by batteries 
and it must not be circuitously recharged, as in case of pure 
electric vehicle. 
 This paper presents the hybrid propulsion drivetrain 
downsizing method by using genetic algorithms (GA). The 
main objective is to scale drivetrain components to achieve 
better fuel economy and lower greenhouse gas emissions 
while maintaining vehicle ability to complete NEDC. Pro-
posed algorithm was applied on Toyota Prius model in 
NREL’s ADvanced VehIcle SimulatOR (ADVISOR) soft-
ware [3]. 
 ADVISOR is a set of model, data, and script text files for 
the use with Matlab and Simulink. It is designed for rapid 
analysis of the performance and fuel economy of conven-
tional, electric, and hybrid vehicles. ADVISOR also pro-
vides a backbone for the detailed simulation and analysis of 
user defined drivetrain components. Therefore it is a starting 
point for verification of vehicle data and algorithms.  

 
Table 1. Power requirements for NEDC 

Vehicle Mean 
power 

Maximum 
power 

Commercial  
vehicle power 

Compact 3 kW 13 kW 60 kW 
Midsize 4 kW 14 kW 80 kW 

Sport 4 kW 16 kW 200 kW 
SUV 7 kW 28 kW 150 kW 

 
 It allows taking the full advantage of modeling flexibility 
of Simulink and analytic power of MATLAB. ADVISOR 
does not allow the solution of the fuel efficiency [3]. This 
means that it may scales components to minimum size to 
complete the driving cycle, when it is set to corresponding 
constants. Minimum size components may not have minimal 
fuel consumption. Proposed algorithm scales vehicle com-
ponents not to minimum size, but to size with the lowest fuel 
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consumption. Furthermore, ADVISOR does not allow opti-
mization of the series-parallel hybrid drivetrain. For that 
reasons, genetic algorithms have been chosen for the optimi-
zation.  
 GA are widely used for solving of multi-objective opti-
mization or combinatorial problems which are difficult or 
impossible to solve by using conventional optimization 
methods. They are very popular for solving vehicle routing 
or scheduling problems [4]-[6] and vehicle shapes optimiza-
tion problems [7]-[9] in the automotive engineering re-
search. 
 In [10]-[12] authors concern to vehicle components 
optimization by using GA, but they were focused on the 
series hybrid vehicles only. Vehicle size optimization for 
series hybrid electric mini-bus for Beijing Olympic gymna-
sium in [10], where fuel consumption was improved of 
about 12%. Papers [13]-[15] concern with the fuel cell hy-
brid bus and battery tram. In addition to fuel economy opti-
mization, the components cost and the operating cost has 
been optimized. Parallel hybrid vehicle optimization by 
using GA was described in [16]-[17] with the consideration 
of the vehicle dynamics. Proposed algorithm optimize se-
ries-parallel hybrid vehicle with an emphasis placed on fuel 
economy. 
 
 
2. Model and Configuration of the Vehicle 
 
By default, ADVISOR software provides AUTOSIZE func-
tion. The purpose of this function is to help the user to gen-
erate a vehicle that will meet certain performance criteria. It 
accomplishes this by adjusting the component sizes and 
reevaluating the performance criteria until all of the specifi-
cations have been met. It uses bisection method and some 
build-in logic to determine the acceptable component sizes. 
It scales drivetrain components to minimum in order to meet 
acceleration and grade criteria. 
 Vehicle model in this paper is based on the first genera-
tion of Toyota Prius, which features the Toyota Hybrid 
System (THS). The configuration of the Prius vehicle 
drivetrain is shown in Fig. 1.  
THS connects an engine (FC), generator (GC), and electric 
motor (MC) through planetary gear set (PGS). Component 
denominations correspond to ADVISOR. 
 Thanks to PGS, the amount of gear ratios between the 
engine and the vehicle speed is infinite by control of GC 
speed, so PGS is both a power summing device and a gear 
ratio device. Motor and generator allow bidirectional power 
flow so they are often referred to as Motor/Generator 1 
(MG1) and Motor/Generator 2 (MG2). Only MC is connect-
ed directly to the wheels so it has rotate while the vehicle is 
moving. When the vehicle is driving only in electric mode 
(engine off), planet carrier in PGS is not moving and sun and 
ring are rotating in opposite directions. When FC is on, 
direction and speed of MC depends on the vehicle speed. GC 
speed and direction are given by gear ratios of FC and MC 
speed. 
 
Table 2. Toyota Prius parameters 

Parameter Value 
Total vehicle mass [kg] 1332 

Aerodynamic drag coefficient [-] 0.3 
Frontal area [m2] 1.746 

Rolling resistance coefficient [-] 0.009 

Wheel radius [m] 0.287 
Front weight fraction 0.6 

Wheel base [m] 2.55 
COG height [m] 0.569 

NEDC consumption [l/100 km] 5.1 
 
 

Fig. 1. Toyota Prius drivetrain configuration 
 

 
 Equivalent consumption minimization strategy (ECMS) 
is used to control Toyota Prius hybrid drivetrain, similarly as 
in [18]. ECMS is the control method, in which electric ener-
gy consumption is substituted by equivalent fossil fuel con-
sumption. This strategy splits overall vehicle power re-
quirement between FC and MC. Power ratio is considered as 
optimal when sum of fuel consumption of FC and equivalent 
fuel consumption of MC is minimal [19]-[20]. Vehicle pa-
rameters are shown in Table 2. These parameters have been 
used in ADVISOR. 
 
 
3. Application of GA 
 
Genetic algorithms (GA) are based on Darwin’s evolution-
ary principles, where attributes of each individual predesti-
nate individual capability to survive in its environment or to 
die. The most beneficial attributes (genes) of individuals 
may be combined in the next generation and may create 
another individual, which should be more able to live. In 
each next generation, population individuals are more con-
venient for their environment. Random first generation with 
enough amount of descends in enough generations may 
finally generate the perfect individual.  
 There are two main differences between standard opti-
mization methods and genetic algorithm. The first difference 
is that GA generates the set of solutions at each iteration, 
which approaches an optimal solution. The second differ-
ence is that a new generation computations involve random 
choices. Therefore, GA may be applied to solve optimization 
problems that are not well suited for standard optimization 
algorithms. For example, problems in which the objective 
function is discontinuous, nondifferentiable, stochastic, or 
highly nonlinear [21]. 
 

Vehicle Mean 
power 

Maximum 
power 

Commercial 
vehicle power 

Midsize 4 kW 14 kW 80 kW 
Compact 3 kW 13 kW 60 kW 
Sport 4 kW 16 kW 200 kW 
SUV 7 kW 28 kW 150 kW 
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4. Problem Formulation 
 
Drivetrain components of series-parallel hybrid vehicle have 
been scaled by using of genetic algorithm. Drivetrain com-
ponents scale values presents genes of each individuals. 
Propriety of each individual is described by fitness function 
ϕ: 
 ,eqfc fc eφ = + +   (1) 

 
,
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where: 
fc amount of the fuel consumed by engine  

[l/100 km], 
fceq equivalent fuel consumption of electromotor, 

[l/100km], 
e error which denotes an ability to complete  

driving cycle [-], 
Pbatt requested power of battery [W], 
n number of samples [-], 
ηbatt battery efficiency [-], 
ηfc ICE efficiency [-], 
ηgc generator efficiency [-], 
t driving cycle time [s], 
d distance travelled during driving cycle [m]. 

 
Main aim of the optimization process is to minimalize fuel 
consumption. Therefore fitness is described as the sum of 
fuel consumed by engine and electric motor equivalent fuel 
consumption. Except minimum consumption, vehicle has to 
complete NEDC cycle. In case that vehicle is not able to 
complete it, error must be detected. Therefore, e = 1 if dif-
ference between speed required by driving cycle and vehicle 
speed differs more than 3.2 km/h.  
Equation (2) represents energy conversion from kWh to 
litres of gasoline. Is convenient to use relative values of its 
power during components optimization. They are presented 
as a scaling factor in ADVISOR.  
 Scaling factor sn is represented as reciprocal value of n-
th component power Pn, as described in equation (3).  
 

1
n

n

s
P

=         (3) 

 
 Original Prius drivetrain power values are listed in Table 
4. Therefore, scaling factors for engine, motor and generator 
are as follows: 0,023412; 0,032781 and 0,066315; respec-
tively.  
 Proposed GA flowchart is shown in Fig. 2. It optimizes 
three simulation parameters: engine torque, motor torque 
and generator torque. Initial set of parents consists of 20 
individuals. Genes of individuals presents the scaling factor 
of each drivetrain component. Genes of initial parents are 
distributed uniformly within boundaries shown in Table 3. 
Sizing using scaling factors determines components parame-
ters approximately. For more accurate results, different 
approaches may be used [22] – [26]. 
 

start

Init parental set 
p

for generation=1:1:50

for i=1:1:20

scaling = pi
Recompute_mass

Sim(‚model‘)

pick best 
parents

best parents 
cross breeding

random parents 
mutation 

random parents 
cross breeding

end

tournament

Fig. 2. A flowchart of proposed genetic algorithm 
 
 
  
 
 Creation of individual genes of parent set p is described 
as follows: 
 

, 0,05 ( ),m n n n n n np s L ms U L= + −         
(4) 
	
 where: 
m number of individual,  
n number of genome, 
U upper limit of individual genome, 
L lower limit of individual genome, 
 
 Equation (4) regularly distributes values within chosen 
boundaries. 
 
Table 3. Scaling boundaries 

 Upper bound Lower bound 
Engine 60 kW 10 kW 
Motor 60 kW 5 kW 

Generator 30 kW 5 kW 
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Fig. 3. Fuel consumption during optimization  

 
Fig. 4. Optimal engine torque curves  
 

 
Fig. 5. Engine (FC) torque during NEDC 
 
 
 Each individual of parental set is evaluated by 
Matlab/Simulink simulation after initialization. Mass of all 
components has to be recomputed before evaluation. Two 
best parents are picked and survive to the next generation, so 
their presence in the next generation is guaranteed. Other-
wise, it may happen that they wouldn’t be picked into tour-
nament and get lost. After that, they are crossbred and also 
survive to next generation. Next mutations and crossbreeds 
are applied on random genes of random remaining members 
of parental set. Set of descendants is supplemented by tour-
naments between random pairs of parents. 
 

 
Fig. 6. Generator (GC) torque during NEDC 
 
 
 Number of generations was strictly defined to 50, what 
was sufficient. Ending condition (5), where Φgen-1 and Φgen is 
the best fitness in previous and actual generation and ε is 
small positive integer, was not applied, because of the prob-
ability that algorithm will end before obtaining optimal 
value or it will end in infinite cycle. 
 

10 gen gen ε−< Φ −Φ ≤          

(5) 
	
5. Results 

 
Fig. 3 shows fuel consumption over generations. It can be 
observed, that an average fuel consumption of the population 
decreased rapidly. It decreased of about 1.3 liters in 5 gener-
ations and the best value has appeared in the 21st generation. 
Difference between the best value in 12th and 21st generation 
was only about 0.07 liter. Based on these results, we may 
consider proposed algorithm as very effective. Fuel con-
sumption after optimization was lower due to the two facts. 
The first reason is that the overall vehicle mass was lower, 
what caused in lower rolling resistance and resistance during 
acceleration as well as lower energy recuperation during 
regenerative breaking. The second reason is that the optimal 
operating point of downsized engine lies in the area with 
lower fuel consumption, what can be observed in Fig 4. By 
comparison of Fig. 4 and Fig. 5 it may be seen, that opti-
mized vehicle operates near maximum torque and speed 
whereas the original vehicle operates near maximum torque 
and lower speed (during peak torque demand). In general, 
FC reaches the highest efficiency operating near maximum 
speed and torque, it may be assumed that downsized FC is 
more efficient as original FC.  
 Fig. 5 – Fig. 7 show torque demand distribution among 
engine, motor and generator, respectively. It can be observed 
that optimized vehicle engine provides less torque than 
original. Note, that optimization was realized by the compo-
nent scaling, what caused reduced mass of the vehicle due to 
the reduced weight of optimized engine. The mass of the 
optimized vehicle is lower by 10% to a non-optimized vehi-
cle (see Table 4). However, other vehicle parameters, such 
as drag coefficient, roll coefficient, etc.; remained un-
changed. For these reasons, the engine torque drop has to be 
compensated by electric motor, what is shown in Fig. 7.  
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 Non-optimized drivetrain works the way that in non-
optimal operating point the engine it is loaded by the genera-
tor in order to reach optimal operating point. It follows that 
battery is charged by the generator not only during braking 
but even if the vehicle works non-optimally.  
 Optimized engine is downsized and so it disposes less 
power reserve. It is loaded by the generator less often, what 
causes less battery discharging, what can be observed in Fig. 
8.  

 
Fig. 7. Electric motor (MC) torque during NEDC 

 
Fig. 8. State of charge of the battery during NEDC 
 
Table 4. Comparison of original and optimized vehicle 

 Original 
Vehicle 

Optimal. 
Vehicle 

Engine power [kW] 43 17.6 
Motor power [kW] 31 22.5 
Generator power [kW] 15 8.1 
Vehicle mass [kg] 1331 1192 
Fuel cons. [l/100km] 5.02 3.35 

Fuel eq. cons. [l/100km] 0.37 0.48 
Total  cons. [l/100km] 5.39 3.83 
Delta SOC 0.12914 0.17339 
Accel. 0-50 kmh [s] 5.7 8.1 
Accel. 50-100 kmh [s] 10.1 17.2 
Grade. at 50 kmh [%] 15.2 10.3 
HC [g/km] 0.784 0.203 
CO [g/km] 0.768 0.299 
NOx [g/km] 0.105 0.117 
Max. speed [kmh] 163.3 144.3 
Time in 0.4 km [s] 20.4 23.9 
Max. accel. [m/s-2] 3.5 2.6 

 
 
6. Conclusion 

 
Significant fuel economy improvement during NEDC was 
achieved with the proposed algorithm. Optimized vehicle 
fuel consumption was about 30% lower at the expense of 
vehicle driving dynamic. It means, that optimized vehicle 
would be more economical, but not so agile and driver 
friendly as the original non-optimized one. It is caused by its 
operation near its maximum power during NEDC and 
NEDC itself is not very dynamic driving cycle. 
 On the other hand, optimized Prius is still able to accom-
plish NEDC with some reserve of power. Better dynamic 
parameters can be achieved by different driving cycle evalu-
ation, but objective of this paper was to scale vehicle 
drivetrain components to achieve best fuel economy during 
NEDC.  
 NEDC is used to evaluate vehicle fuel consumption of 
cars selling in Europe. It should reflect the customers driving 
routine. In that case and based on this simulation, it is obvi-
ous, that drivetrains of the cars on the market todays are 
oversized at the expense of worse fuel economy and overall 
running costs. 
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