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Abstract. We implemented two observational operators for
dual polarimetric radars in two variational data assimila-
tion systems: WRF Var, the Weather Research and Forecast-
ing Model variational data assimilation system, and NHM-
4DVAR, the nonhydrostatic variational data assimilation sys-
tem for the Japan Meteorological Agency nonhydrostatic
model. The operators consist of a space interpolator, two
types of variable converters, and their linearized and trans-
posed (adjoint) operators. The space interpolator takes ac-
count of the effects of radar-beam broadening in both the
vertical and horizontal directions and climatological beam
bending. The first variable converter emulates polarimetric
parameters with model prognostic variables and includes at-
tenuation effects, and the second one derives rainwater con-
tent from the observed polarimetric parameter (specific dif-
ferential phase). We developed linearized and adjoint oper-
ators for the space interpolator and variable converters and
then assessed whether the linearity of the linearized operators
and the accuracy of the adjoint operators were good enough
for implementation in variational systems. The results of a
simple assimilation experiment showed good agreement be-
tween assimilation results and observations with respect to
reflectivity and specific differential phase but not with respect
to differential reflectivity.

1 Introduction

The Weather Research and Forecasting Model (WRF; Ska-
marock et al., 2008) is a widely used numerical weather
model that was developed as a community model, and WRF
Var, its data assimilation system (Barker et al., 2012), pro-
vides initial conditions for the model. NHM-4DVAR is a
nonhydrostatic 4D-Var system for the Japan Meteorologi-
cal Agency nonhydrostatic model (JMANHM; Saito, 2012)
that functions at storm scale (Kawabata et al., 2007, 2014a).
Many remote sensing data are available for NHM-4DVAR,
such as the following: slant total delay, zenith total delay,
and precipitable water vapor observed by global navigation
satellite systems (GNSS; Kawabata et al., 2013); conven-
tional radar data, including directly assimilated reflectivity
data (Kawabata et al., 2011); and Doppler lidar data (Kawa-
bata et al., 2014b). Because data assimilation associates ob-
servations with model fields, to make use of advanced obser-
vations, data assimilation methods need to be continuously
developed and implemented into variational data assimila-
tion systems.

Observations obtained by dual polarimetric radars are uti-
lized by operational systems at many meteorological and
hydrological operation centers (e.g., in the United States,
France, Germany, and Japan) to improve the accuracy of
quantitative precipitation estimation (QPE). These radars
provide polarimetric parameters, including the horizontally
polarized reflectivity factor (ZH), the vertically polarized re-
flectivity factor (ZV), differential reflectivity (ZDR), and the
specific differential phase (KDP). Many QPE methods that
use these parameters have been proposed (e.g., Jameson,
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1991; Jameson and Caylor, 1994; Ryzhkov and Zrnić, 1995;
Anagnostou et al., 2008; Kim et al., 2010; Ryzhkov et al.,
2014; Adachi et al., 2015). Because QPE methods using dual
polarimetric radar parameters are expected to be better than
methods using single polarization radar data, we developed
assimilation methods for dual polarimetric radar observa-
tions for both WRF Var and NHM-4DVAR. The objective of
our study was thus to improve QPE, which was discussed in
Bauer et al. (2015) in the context of data assimilation with
high resolution and a rapid update cycle, and quantitative
rainfall forecasts (QPF) through the use of better analysis
fields obtained by the assimilation of dual polarimetric radar
observations.

We chose an emulator (Zhang et al., 2001) and an estima-
tor (Bringi and Chandrasekar, 2001) to use as forward oper-
ators after evaluating their accuracy (Kawabata et al., 2018).
In addition, because both WRF Var and NHM-4DVAR con-
sider only perturbations to rainwater in their tangent and ad-
joint models, our operators also deal only with rainwater and
exclude ice particles. Although both the emulator of Jung et
al. (2008a, b) and the estimator of Yokota et al. (2016) have
been used previously as observational operators in ensemble
Kalman filter data assimilation systems, to our knowledge,
our study is their first implementation in variational assimila-
tion systems. We refer to the current version of the operators
as PolRad VAR v1.0.

The first author has mainly contributed to the WRF Var
version of these operators developed over the rapid-update
WRF 3D-Var system at the University of Hohenheim, Ger-
many (see, e.g., Schwitalla et al., 2011; Schwitalla and
Wulfmeyer, 2014; Bauer et al., 2015) and then to the version
for NHM-4DVAR at the Meteorological Research Institute,
Japan Meteorological Agency.

The scope of this paper is to provide the technical infor-
mation on the observational operators and some evaluation
results to help users understand the theoretical and practical
aspects of the operators. The forward operators (space in-
terpolator and variable converters) and their linearized (tan-
gent linear) and transposed (adjoint) operators are described
in Sect. 2. Section 3 describes the setup options of the obser-
vational operators, Sect. 4 presents verification and assimila-
tion test results, and Sect. 5 is a summary.

2 Observational operators

In variational data assimilation systems, a cost function is
defined and then iteratively minimized until its gradient be-
comes zero. The cost function and its gradient are defined
as

J (x)=
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2
(H (x)− y)TR−1 (H (x)− y) , (1)

∇J (x)= B−1
(

x− xb
)
+HTR−1 (H(x)− y) , (2)

where T denotes the transpose of a matrix; x, xb, and y
are model fields, first-guess fields, and observations, respec-
tively, and H(x), H, and HT represent the observational op-
erators, their linearized operators (tangent linear), and their
transposed (adjoint) operators, respectively. The observa-
tional operators work as variable converters (Hv) from model
fields x to observational values related to observations y
and as space interpolators (Hs) from model to observational
space as follows:

H(x)=HsHv(x). (3)

We developed two types of variable converters, a single space
interpolator, and their tangent linear and adjoint operators.
Both WRF Var and NHM-4DVAR consider only perturbation
to the mixing ratio of the rainwater and not to its number
density in the tangent linear and adjoint models. However, in
the tangent and adjoint operators described here (Sect. 2.2),
the non-perturbed number density of rainwater is included.
This variable is initialized to zero at the beginning or end
of the operators, and this effect is directly considered in the
cost functions of WRF Var and NHM-4DVAR, whereas its
gradient is indirectly considered through perturbations of the
mixing ratios of rainwater, water vapor, and other variables
like temperature and pressure.

It is recommended that users of WRF Var run the sys-
tem with CLOUD_CV (required) and the CV7 (optional)
switches. The former adds the mixing ratios of rainwater to
the default control variable set (Wang et al., 2013), and the
latter replaces the control variables of stream function and
velocity potential with momentum control variables to im-
prove the performance of WRF simulations at high horizon-
tal resolution (Sun et al., 2016). With these selections, the
control variables in WRF Var are almost the same as those in
NHM-4DVAR (Kawabata et al., 2011).

2.1 Variable converters

2.1.1 Model variables to polarimetric parameters (FIT)

Among the many numerical precipitation scheme op-
tions (e.g., single-moment scheme, large-scale condensa-
tion scheme) for WRF and JMANHM, we chose double-
moment schemes (WRF, Morrison et al., 2009; JMANHM,
Hashimoto, 2008) for our observational operators because
such schemes predict both the number density (Nr; m−3) and
the mixing ratio (Qr; kg kg−1) of rainwater, whereas single-
moment schemes predict onlyQr. Therefore, two of three un-
known parameters in the drop size distribution (DSD) func-
tion are detected by the schemes. Following Morrison et
al. (2009), the DSD function is given by

N (D)=N0D
µ exp(−3D), (4)
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where D (mm) is the raindrop diameter, N0 (mm−1 m−3)
is the intercept parameter, µ is the shape parameter, and 3
(mm−1) is the slope parameter. 3 is given by

3=

(
πρwNr

103ρaQr

) 1
3
, (5)

where ρw is the density of water (997 kg m−3 in this study)
and ρa is air density (kg m−3), a model diagnostic variable.
ρa and N0 are given by

ρa =
p

RT (1+ 0.61qv)
, (6)

N0 =Nr3, (7)

where p is atmospheric pressure (Pa), R is the gas constant,
T is temperature (K), and qv is the mixing ratio of water
vapor (kg kg−1).

In our study, the remaining unknown parameter µ is fixed
at zero, and N(D) is based on bulk sampling; the minimum
and maximum values of D are set to 0.05 and 5 mm, respec-
tively.

Because in the rainwater prognostic variables raindrops
are assumed to be spherical in both WRF and JMANHM, we
introduce the axis ratio of a raindrop, which is polynomial to
D (Brandes et al., 2002, 2005), as follows:

r = 0.9951+ 2.51× 10−2D− 3.644× 10−2D2

+ 5.303× 10−3D3
− 2.492× 10−4D4. (8)

Radar observations are derived from measurements of the
scattering of electromagnetic waves by raindrops. The first
converter is based on fitting functions that relate equivolume
diameters D to scattering amplitude (Zhang et al., 2001).
The backscattering amplitudes are represented by a power-
law function as follows:∣∣Sh,v (D)

∣∣= αh,vD
βh,v , (9)

where the coefficients αh,v and βh,v are determined by fit-
ting D to the backscattering amplitudes

∣∣Sh,v
∣∣ calculated by

the T -matrix method (Mishchenko et al., 1996). The differ-
ence between the horizontal and vertical forward-scattering
amplitudes is defined as

Re(fh (D)− fv (D))= αkD
βk , (10)

where fh (D) and fv (D) represent the horizontal and ver-
tical forward-scattering amplitudes, and αk and βk are de-
termined by the fitting. Zhang et al. (2001) proposed fitting
functions for S-band radars, and Kawabata et al. (2018) de-
rived new fitting parameters for C-band radars. Following
Zhang et al. (2001), horizontal (H) and vertical (V) reflec-
tivity factors are

ZH,V =
4λ4

π4|Kw|
2

(
α2

h,vN03
−(2βh,v+1)0

(
2βh,v+ 1

))
, (11)

where λ (m) is the radar wavelength, Kw is a constant, de-
fined as Kw = (ε− 1)/(ε+ 2), where ε is the complex di-
electric constant of water estimated as a function of wave-
length and temperature (Sadiku, 1985), and 0 represents the
Gamma function. The horizontal reflectivity ZH is converted
to conventional reflectivity Zh (dBZ) by

Zh = 10log10 (ZH) , (12)

and ZDR (dB) is defined as

ZDR = 10log10 (ZH/Zv)= Zh−Zv. (13)

KDP (◦ km−1) is defined as

KDP =
180λ
π

N0αk3
−(βk+1)0(βk+ 1) . (14)

The attenuation effects are calculated as follows:

Zatt
h (x)= Zh (x)− 2

x∫
0

AH (s)ds, (15)

Zatt
DR (x)= ZDR (x)− 2

x∫
0

ADP (s)ds, (16)

where Zatt
h and Zatt

DR represent attenuated Zh and ZDR,
respectively. AH and ADP are the specific attenua-
tion (dB km−1) and the specific differential attenuation
(dB km−1), respectively, defined as

AH = αHK
βH
DP, (17)

ADP = αdK
βd
DP. (18)

The values of the coefficients αh, αv, αk, αH, and αd and βh,
βv, βk, βH, and βd for C-band in these equations are listed in
Table 1. Hereafter, this converter is called FIT.

FIT is also applicable for X- and S-bands by replacing the
coefficients. Although we already prepared the coefficients
for all bands in the source codes, the users should carefully
investigate their validity.

2.1.2 Observations of polarimetric parameters to
model variables (KD)

The second converter (hereafter KD) converts observed KDP
to rainwater content (Qrain) according to the following rela-
tion:

Qrain = 3.565
(
KDP

f

)0.77

, (19)

where f (GHz) is the radar frequency and the power-law
coefficients are from Bringi and Chandrasekar (2001). Qrain
in the model is defined as Qrain =Qrρa (kg m−3). Note that
Eq. (19) is applicable not only for C-band but also X- and S-
bands by putting their frequencies in f . Equations (4)–(19)
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Table 1. Values of the coefficients α and β. αh,v,k and βh,v,k in
Eqs. (9) and (10) and αH,d in Eqs. (17) and (18) are from Kawabata
et al. (2018), and βH,d in Eqs. (17) and (18) is from Bringi and
Chandrasekar (2001).

Subscript h v k H d

α 0.0016 0.0017 2.36× 10−5 0.073 0.013
β 2.98 2.77 5.36 0.99 1.23

follow Kawabata et al. (2018), and we put the equations with
different order in this paper for reader convenience to un-
derstand the flow of implementations of the forward, tangent
linear, and adjoint codes.

2.2 Tangent linear and adjoint operators

2.2.1 Tangent linear and adjoint operators of FIT

Because only p, T , and qv are perturbed in WRF Var and
NHM-4DVAR, the linearized form of Eq. (6) is

1ρa =
1p

RT (1+ 0.61qv)
−

p1T

RT 2 (1+ 0.61qv)

−
0.61p1qv

RT (1+ 0.61qv)
2 , (20)

and the perturbations of 3 and N0 are given as

13=
1
3
3
(
−1QrQ

−1
r −1ρaρ

−1
a

)
, (21)

1N0 =Nr13, (22)

where 1Qr and 1N0 are perturbations of the mixing ratio
and number density of rainwater, respectively. Note that the
perturbation ofNr is not considered in the adjoint model (see
Sect. 2). Thus, the perturbations of ZH,V, ZDR, and KDP are
represented as follows.

1ZH,V =
4λ4

π4|Kw|
2

(
α2

h,v0
(
2βh,v+ 1

)(
1N03

−(2βh,v+1)

−
(
2βh,v+ 1

)
13N03

−(2βh,v+2)
))

(23)

1ZDR =1Zh−1Zv (24)

1KDP =
180λ
π

αk0(βk+ 1)
(
1N03

−(βk+1)

−(βk+ 1)13N03
−(βk+2)

)
(25)

Finally, the perturbations of AH and ADP are

1AH = αHβH1KDPKDP
βH−1, (26)

1ADP = αdβd1KDPKDP
βd−1. (27)

The adjoint operators are represented by the transposed form
of Eqs. (20)–(27), which is (tangent linear)T. As an example,
the adjoint of Eq. (27) is

1KDP =1KDP+αdβdKDP
βd−11ADP. (28)

2.2.2 Tangent linear and adjoint operators of KD

Because KDP in Eq. (19) is an observed value, it is not nec-
essary to linearize the equation. However, the equation that
relates Qrain to Qr (Sect. 2.1.2) needs to be linearized as fol-
lows:

1Qrain =1Qrρa+Qr1ρa. (29)

The transposed form of this equation is used for the adjoint
model (see Sect. 2.2.1).

2.3 Space interpolator

Space interpolators in data assimilation systems map the
model space to the observational space according to the rep-
resentativeness of the observations. In the case of radar data,
the effect of beam broadening stands for the representative-
ness, typically for a beam width of approximately 1.0◦. The
broadening is characterized by a Gaussian distribution or-
thogonal to the direction of the radar beam. Most previous
studies (e.g., Seko et al., 2004; Wattrelot et al., 2014), except
Zeng et al. (2016), consider only vertical beam broadening
because numerical models have horizontal grid spacings of
several kilometers, whereas they have vertical grid spacings
in the lower troposphere of less than 1 km. However, data as-
similation systems must have sub-kilometer horizontal grid
spacings as well (e.g., Kawabata et al., 2014a; Miyoshi et
al., 2016) so that the space interpolators can take account
of horizontal beam broadening. In addition, several phased-
array radars recently deployed in Japan have different beam
widths in the vertical and horizontal directions. Our opera-
tor thus considers beam broadening in both the vertical and
horizontal directions.

In addition, it is important for the space interpolator to in-
clude beam-bending effects, which depend on atmospheric
conditions. In this study, the bending is determined by con-
sidering the climatological vertical gradient of the refrac-
tive index of the atmosphere in accordance with the effec-
tive Earth radius model (Doviak and Zrnić, 1993) following
Haase and Crewell (2000), who showed statistically that the
climatological refractive index is close to the actual refractive
index at elevation angles higher than 1◦ instead of by con-
sidering the actual atmospheric conditions, although Zeng et
al. (2014) developed an excellent radar simulator that con-
siders the actual refractivity of the atmosphere.

Remote sensing observations usually have higher spatial
resolutions than model grid spacings. To avoid correlations
of the observational errors in such high-resolution data, it is
necessary either to thin the data or to use “super observa-
tions”. In this study, we chose the super observation method,
in which observations are averaged over each model grid
cell. Super observation methods also have the advantage that
they remove undesirable fluctuations associated with sub-
grid-scale phenomena, the assimilation of which makes the
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Figure 1. Schematic diagrams of (a) a super observation and (b) the
space interpolator. Boxes represent model grid cells, and the red
box indicates the grid cell in which the super observation is defined.
The cross marks represent the interpolation point (IP). In panel (b),
the grey curve indicates the Gaussian weights at various grid points
(black circles), the solid black line shows the beam propagation, and
the dashed lines illustrate beam broadening.

numerical model unnecessarily noisy (e.g., Seko et al., 2004;
Zhang et al., 2009).

First, we calculated the path of the center of the radar beam
in the model domain, including its elevation, azimuth, and
bending angles (Fig. 1a). Once sufficient data are included
within a model grid cell, they are averaged and mapped onto
an interpolation point along the radar beam (IP in Fig. 1).
This value at this point is a “super observation”, and it is
compared with the modeled value, which was interpolated by
using Gaussian weights (Fig. 1b). Moreover, we also devel-
oped the tangent and adjoint codes of the space interpolator.

3 Setup options

The operators are controlled by the namelist
(“namelist.polradar”) as follows.

&name_obs o_dir=’/home/usr/datadir’, o_stn(1)=’OFT’,
o_stn(2)=’TUR’, icnv=0/

Here, “o_dir” is the directory for the input observa-
tional data, “o_stn” indicates the station names of radar
sites, where “max_stn”, the number of names, is set in
“da_setup_obs_structures_polradar.inc” in WRF Var and
in “obs_dual_pol.f90:” in NHM-4DVAR, and “icnv” is a
switch for the selection of the observational operator, where
“0” and “5” mean FIT and KD, respectively.

In addition, a file that defines for each radar area
where the beam is blocked by topography, named
“beam_block_rate_${radar_site}.dat”, must be supplied by
the user. This file is made by another program and should
be prepared before the assimilation.

4 Results

4.1 Verification of the tangent linear and adjoint
operators of FIT

In this section, we examine the linearity of only the FIT
variable converter; it is not necessary to examine the linear-
ity of the KD converter because of the intrinsic linearity of
Eq. (19). We evaluated the linearity of FIT by performing a
Taylor expansion. If the original equation is given as

y=H(x), (30)

then the linearized equation is defined as

δy=Hδx. (31)

If the linear equation is derived with no errors, the following
Taylor expansion of Eq. (31),

|H (x+αδx)−H(x)|
|α| |Hδx|

= 1+O (α), (32)

should be accurate within the rounding error of the computer.
The results for ZH, ZV, and KDP in Eqs. (11) and (14) are
1.00 when α is 10−7 to 10−15.

Regarding the adjoint operator, we evaluated the following
equation:

(Hδx)T (Hδx)= δxT [HT(Hδx)
]
, (33)

where the left-hand side of Eq. (33) is calculated using the
tangent linear operator, and on the right-hand side, the out-
put variables of the tangent linear operator are input into the
adjoint operator. This equation must be accurate within the
rounding error. In FIT, the difference between the left- and
right-hand sides was−8.215650382× 10−15, which we con-
sider accurate enough.

4.2 Actual data assimilation test

We conducted two simple data assimilation tests. Observa-
tional errors of Zh, ZDR, KDP, and Qrain, which were de-
termined after the statistical examination (Kawabata et al.,
2018), were 15.0 dBZ, which is the same as in Kawabata et
al. (2011) at 2.0 dB, 4.0◦ km−1, and 4 g m−3, respectively.
These errors are homogeneous in space, which means obser-
vational error covariances are diagonal.

The first one was done using NHM-4DVAR with actual
radar data from the C-band dual polarimetric radar at the
Meteorological Research Institute in Tsukuba, Japan (Ya-
mauchi et al., 2012; Adachi et al., 2013). In this experiment,
both radial velocity data and the polarimetric parameters of
ZH, ZDR, and KDP were assimilated in FIT, and radial ve-
locity and Qrain derived from KDP were assimilated in KD.
The assimilation window was from 21:00 to 21:05 UTC on
23 June 2014, a day on which intense hail fell in Tokyo,
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Figure 2. From left to right, horizontal distributions of polarimetric parameters of observations (OBS), assimilation results by KD and FIT
with NHM-4DVAR, and the first-guess field (FG) at 21:04 UTC on 23 June 2014. (a–d) Zh; (e–h) KDP; (i–l) ZDR.

Japan. The horizontal resolution of NHM-4DVAR was 2 km
and the length of the assimilation window was 5 min, 11 PPI
data from 0.5 to 4.8◦ elevations with the azimuth resolution
of 0.7◦ and the range resolution of 150 m were assimilated.
PPI data were assimilated at the exact observation time as far
as the time interval of NHM-4DVAR (10 s in this case) per-
mits. The background errors were described in Kawabata et
al. (2007, 2011). Analysis (KD and FIT) and observational
(OBS) fields of Zh, ZDR, andKDP are shown in Fig. 2, which
displays the whole assimilation domain. Although there was
no rain region in the first-guess field (FG; Fig. 2d), Zh in
KD was comparable to that in OBS from the standpoint of
rainfall distribution and intensity, but Zh in FIT covered a
much smaller area than it did in OBS. This smaller cover-
age may be due to nonlinearity in FIT. In KD, we can see
quite small values ofKDP (Fig. 2f), but good agreement with
OBS in its horizontal distribution, while Zh looks better than
KDP. KDP values were smaller in both KD and FIT than in

OBS. This result is similar to that of a statistical analysis per-
formed by Kawabata et al. (2018). In contrast, ZDR values in
KD and FIT were larger than OBS over large areas. This re-
sult implies that the calculation of the axis ratio of raindrops
(Eq. 8) may need modification because in the FG field, ZDR
values and coverage were already too large in comparison
with those of OBS.

The second one was done using WRF 3D-Var with ac-
tual radar data from the DWD radar network (Helmert et al.,
2014) for the same case with “Case 1” described in Kawa-
bata et al. (2018). The horizontal resolution of WRF 3D-Var
was 2 km, and polarimetric parameters and rainwater content
in single PPI data by Offenthal radar were assimilated (see
Kawabata et al., 2018, for detailed information on the ob-
servation). The background errors were calculated with en-
semble simulations by WRF initialized by ECMWF analysis
using the “gen_be” tool compiled in WRFDA. Observational
errors were the same as the first case. From the increments
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Figure 3. Horizontal distributions of differences in polarimetric parameters between assimilation results by KD and FIT with WRF 3D-Var
and observations at 11:00 UTC on 14 August 2014.

of polarimetric parameters (Fig. 3), although quite small im-
pacts are seen, similar patterns are recognized in both meth-
ods and larger impacts of Zh and ZDR were produced in FIT
and KD, respectively.

In both cases, the radial velocity data were assimilated
with the same method as in Sun and Crook (1997).

5 Summary

We implemented two variable converters for polarimetric
radars in the WRF variational data assimilation system
(WRF Var) and the JMANHM data assimilation system
(NHM-4DVAR). FIT simulates polarimetric parameters us-
ing a double-moment cloud microphysics scheme, and KD
estimates rainwater contents with the observed specific dif-
ferential phase. Both FIT and KD are applicable not only for
C-band but also X- and S-bands. The advantage of FIT over
KD is that it includes theoretically precise formulations for
both the mixing ratio and number density of rainwater, as
well as attenuation effects, whereas KD has advantages due
to its linear formulation and small computational cost.

These operators work in conjunction with an advanced
space interpolator, which considers (1) beam broadening in
three dimensions, (2) different beam widths in the vertical
and horizontal directions, and (3) the climatological beam-
bending effect. The interpolator also simulated attenuation
effects.

Tangent and adjoint operators of the two variable convert-
ers and the space interpolator were developed and imple-
mented along with the forward operators. In a simple data
assimilation experiment, we succeeded in assimilating ac-
tual polarimetric observations and obtained reasonable re-
sults with both the FIT and KD operators, except for ZDR.
However, our results show a need for further improvements
of the KDP and ZDR estimates. It would be possible to over-
come the weaknesses of the Zh distributions in FIT and FG
through assimilation–forecast cycles and/or by adding other
types of observation data, such as conventional observations,
Doppler (water vapor) lidar data, and water vapor data ob-
served by GNSS. Furthermore, it is necessary to improve
quality controls (QCs) for polarimetric parameters, although
the same QCs were applied as described in Kawabata et
al. (2018) and the impact of axis ratio (Eq. 8) and observa-
tional errors on assimilations will be investigated, and it is
necessary to estimate more appropriate observational errors
(e.g., Wulfmeyer et al., 2016). These challenges would im-
prove QPE and QPF with the current forms of the operators.

Code and data availability. Since PolRad VAR v1.0 for NHM-
4DVAR belongs to the Meteorological Research Institute of the
Japan Meteorological Agency and is not publicly available, any re-
searchers interested in the code are encouraged to contact the corre-
sponding author and sign a contract for license to get the code. Pol-
Rad VAR v1.0 for WRF Var is currently being implemented into the
community version of WRF Var and will be accessible at the WRF

www.geosci-model-dev.net/11/2493/2018/ Geosci. Model Dev., 11, 2493–2501, 2018
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repository (http://www2.mmm.ucar.edu/wrf/users/downloads.html,
last access: 19 June 2018) in the near future. Any researchers inter-
ested in the current form of the code can get it from the correspond-
ing author via e-mail.
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