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1 Introduction and Preliminaries

Model theory and algebra study the connections between formal languages
and their interpretations in models and algebras. The simplest and most
widespread formal language is the first order language (A. Church [46],
A. I. Mal’tsev [139, 141, 142], G. Grätzer [91], C. Chang with H. Keisler[43],
S. Burris with H. P. Sankappanavar [42], B. I. Plotkin [231]). The founders
of the first order language (logic) are Löwenheim, Skolem, Gödel, Tarski,
Mal’tsev and Birkhoff.

However, there exist very commonly encountered, classical algebraic
structures that are not axiomatizable by the first order formulae (logic).
For example, rings, associative rings, commutative rings, associative-
commutative rings, fields, or fields of fixed characteristics are axiomatized by
the first order formulae, but their multiplicative groupoids, semigroups and
groups are not, because these classes of groupoids, semigroups and groups
are not closed under elementary equivalency (A. I. Mal’tsev, S. Kogalovskii
[115], G. Sabbagh [248]). The situation is analogous for near-fields (M. Hall

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201793474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.flib.sci.am/eng/journal/Math/


2 Yu. M. MOVSISYAN

[95]), Grätzer algebras (G-fields)[89, 72, 19, 186], topological rings and topo-
logical fields (L. S. Pontryagin [234]). Characterizations of such semigroups
and groups are the most important problems in modern algebra, logic and
topology. L. Fuchs [71] called the characterization of multiplicative groups
of fields a big problem.

This is why it is necessary to widen the formal language to allow to
express phenomena that the first order logic can not capture.

An important extension of the first order logic (language) is the second
order logic (language), described in detail in [43], [46], [141], [142] (also
see [110]). The second order formulae consist of the same logical symbols
of &,∨,¬,→,∃,∀ of individual and functional (predicate) variables, which
are used in the first order formulae. The difference is that in the second
order formulae, the quantifiers ∀, ∃ can be applied not only to individual
variables, but also to functional (or to predicate) variables. Investigations
of the second order formulae (logic) go back to L. Henkin, A. I. Mal’tsev,
A. Church, S. Kleene, A. Tarski. Many important mathematical concepts
can be written in the second order language. Consequently, investigation
of the theories of the second order languages (logic) is one of the central
problems of algebra and mathematical logic.

Starting with the 1960’s the following second order formulae were studied
in various domains of algebra and its applications (see [140], [141], [254],
[255], [249],[250], [18], [64], [165], [168], [199], [21], [45], [110], [285], [24],[25],
[218], [266], [170], [173], [178], [180],[272], [219], [267], [175], [195], [196],
[197], [203], [211], [212], [120], [256], [144], [145], [222], [50], [51], [52], [53],
[54], [63], [85], [86], [214], [215], [288], [293], [294], [295], [296], [303], [307]).

∀X1, . . . , Xm∀x1, . . . , xn(w1 = w2), (1)

∀X1, . . . , Xk∃Xk+1, . . . , Xm∀x1, . . . , xn(w1 = w2), (2)

∃x1, . . . , xn∀X1, . . . , Xm(w1 = w2), (3)

∃X1, . . . , Xk∀Xk+1, . . . , Xm∀x1, . . . , xn(w1 = w2), (4)

∀X1, . . . , Xk∃Xk+1, . . . , Xt∀Xt+1, . . . , Xm∀x1, . . . , xn(w1 = w2), (5)

where w1, w2 are words (terms) in the functional variables X1, . . . , Xm and
the individual (object) variables x1, . . . , xn. The first formula is called hy-
peridentity or ∀(∀)-identity (see [170, 173, 256, 63, 116], and also [11]); the
second (third, fourth, fifth) formula is called an ∀∃(∀)-identity ((∃)∀-identity,
∃∀(∀)-identity, ∀∃∀(∀)- identity). Sometimes the ∀∃(∀)-identity is called a
generalized identity [18], the (∃)∀-identity is called a coidentity [168, 170]
(also see [11]) and ∃∀(∀)-identity is called a hybrid identity [21, 256, 200].
The satisfiability of these second order formulae in an algebra A = (Q; Σ) is
understood by functional quantifiers (∀Xi) and (∃Xj), meaning: ”for every
value Xi = A ∈ Σ of the corresponding arity” and ”there exists a value
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Xj = A ∈ Σ of the corresponding arity”. It is assumed that such a replace-
ment is possible, that is

{|X1|, . . . , |Xm|} ⊆ {|A| | A ∈ Σ} = TA,

where |S| is the arity of S, and TA is called the arithmetic type of A .
For the categorical definition of hyperidentities and ∀∃(∀)-identities see

[165].
Second order formulae with analogous predicative quantifiers in models

and algebraic systems are also often used in mathematical logic. For ex-
ample, finiteness, the axiom of well-ordering, the continuum hypothesis, the
property of being countable and others can be formulated within the second
order logic.

A variety (or equational class) is a class of algebras (all of the same simi-
larity type or signature) closed under the formation of products, subalgebras
and homomorphic images. Equivalently, a variety is a class of algebras de-
fined by a set of equations (identities). A hypervariety is a class of algebras
(all of the same arithmetic type) defined by a set of hyperidentities. Since
1954 the following-type second order formulae were studied in algebras of
term functions of various classes of varieties

∃X1, . . . , Xm∀x1, . . . , xn(w1 = w2), (6)

which are called Mal’tsev (Mal’cev) conditions ( see [139], [90], [283], [269],
[216],[284], [268], [106]), reducing to the hyperidentities of the class of term
functions’ algebras (termal or term algebras). (Note that the formula (6) is
called functional equation in the Set theory [2, 3, 5].)

The formulae (1)–(6) are usually written without quantifiers 1, if the
structures of the quantifiers are understanding from the content. The for-
mulae (2)–(6) are more general than hyperidentities. The numbers m and n
in hyperidentity (1) are called the functional and object rank, respectively.
A hyperidentity is said to be non-trivial if its functional rank is > 1, and
it is called trivial otherwise (m=1). A hyperidentity is called n-ary, if its
functional variables are n-ary. For n = 1, 2, 3 the n-ary hyperidentity is
called unary, binary, ternary. A formula (hyperidentity, coidentity,...) is
called a formula (hyperidentity, coidentity,...) of algebra A, if it is satisfied
in algebra A. Hyperidentities (coidentities,...) are usually written without
quantifiers: w1 = w2. Let V be a variety or a class of algebras. A hyperi-
dentity (coidentity,...) w1 = w2 is called a hyperidentity (coidentity,...) of
V if it is a hyperidentity (coidentity,...) for any algebra A ∈ V .

Examples 1. In any lattice the following hyperidentities are satisfied

X(x, x) = x,

1Sometimes the domains of functional variables are different (see section 4).
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X(x, y) = X(y, x),

X(x, X(y, z)) = X(X(x, y), z),

X(Y (X(x, y), z), Y (y, z)) = Y (X(x, y), z).

Hence, these hyperidentities are hyperidentities of the variety of lattices.
The last non-trivial hyperidentity is called hyperidentity of interlacity (see
[184]).

2. In any commutative and associative ring the following hyperidentities
are satisfied

X(x, y) = X(y, x),

X(x, X(y, z)) = X(X(x, y), z),

X (X (Y (x, x), Y (x, x)) , Y (X(x, x), X(x, x))) =

= X (Y (X(x, x), X(x, x)) , X (Y (x, x), Y (x, x))) .

3. In the termal algebra (i.e., the algebra of term functions) of any
group (semigroup, Moufang loop) the following non-trivial hyperidentity is
satisfied (see [24])

X(Y (x, x), Y (x, x)) = Y (X(x, x), X(x, x)).

4. Let B = {0, 1} and P be the set of all binary Boolean functions. In
algebra (B;P ) the following hyperidentities are satisfied

X(X(X(x, y), y), y) = X(x, y),

X(x,X(x,X(x, y))) = X(x, y).

In particular, these hyperidentities are satisfied in two-element Boolean al-
gebra ({0, 1}; &,∨, ′, 0, 1). Hence, these hyperidentities are satisfied in any
Boolean algebra too, by Birkhoff’s subdirect representation theorem. See
[174] for corresponding hyperidentities of n-ary Boolean functions. On the
application of the results of [174] in modal logic see [99].

5. In any De Morgan algebra Q(+, ·, ,̄ 0, 1) the following non-trivial
hyperidentity is satisfied

F (X(F (Y (x, y)), z)) = Y (F (X(F (x), z)), F (X(F (y), z))).

The concept of hyperidentity is present in many well known notions. For
example, an algebra A = (Q; Σ) is said to be Abelian (A.G.Kurosh [125]) or
entropic (medial) if the following non-trivial hyperidentity

X

(
Y (x11, . . . , x1n), . . . , Y (xm1, . . . , xmn)

)
=

= Y

(
X(x11, . . . , xm1), . . . , X(x1n, . . . , xmn)

)
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is valid for all m,n ∈ TA. An algebra A = (Q; Σ) is said to be idempotent if
the following hyperidentity of idempotency

X(x, . . . , x︸ ︷︷ ︸
n

) = x

is valid for all n ∈ TA.
A mode is an idempotent and entropic algebra (studied in monographs

[244, 245]). A distributive bisemilattice (multisemilattice) [114] is a binary
algebra with semilattice operations satisfying the following non-trivial hy-
peridentity of distributivity

X(x, Y (y, z)) = Y (X(x, y), X(x, z)).

A doppelsemigroup (see [6, 129, 225, 243, 308, 310]) is an algebra with
two binary operations satisfying the following hyperidentity of associativity

X(x, Y (y, z)) = Y (X(x, y), z).

The investigation of hyperidentities is a relatively new, actively develop-
ing field of pure and applied algebra. The concept of hyperidentity offers a
high-level approach to algebraic questions, leading to new results, applica-
tions and problems. In particular, the investigation of hyperidentities is use-
ful from the point of view of new technologies too, via optimization problems
of block diagrams [180]. For applications of hyperidentities in discrete math-
ematics and topology see [61, 62, 74, 159, 190, 191, 192, 193, 194, 214, 307].
For characterization of Sheffer functions and primal algebras via hyperiden-
tities see (K. Denecke, R. Pöschel [61, 62]).

Any algebra A = (Q; Σ) may be interpreted as a many-sorted algebra
(Q; Σi, . . . , Σn, . . .) (where Σn is a set of all n-ary operations of the given al-
gebra) with the following operations (f, x1, . . . , xn) → f(x1, . . . , xn) where
f ∈ Σn, x1, . . . , xn ∈ Q, n ∈ TA ([31], [97]). Moreover, the hyperidentities
of the given algebra become the identities of the corresponding many-sorted
algebra and vice versa. In this way the theory of hyperidentities as a second
order theory of algebras is converted into a first order theory of many-sorted
algebras. Simultaneously there is a bijection between hyperidentities of ter-
mal (term) algebra F(A) and identities of the clone Cl(A) of an algebra A (a
clone is also a many-sorted algebra, see [47], [126], [143], [157], [173], [231],
[247], [279], [274]). One of the specifics of a hyperidentity (coidentity) is
that if a hyperidentity (coidentity) is valid in algebra A then it is also valid
in every reduct B of A with the condition TB = TA.

Hyperidentities are also ”identities” of algebras in the category of biho-
momorphisms (ϕ, ψ̃), where

ϕA(x1, . . . , xn) = (ψ̃A)(ϕx1, . . . , ϕxn),
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which were studied in the monograph [170]. More about the application of
such morphisms in the cryptography can be found in [9].

Hyperidentities in binary algebras with quasigroup operations were first
considered by V. D. Belousov [18] (as a special case of ∀∃(∀)-identities which
earlier is considered by R. Schauffler ([254], [255]) in coding theory) and then
J. Aczel [4], about the classification of associative and distributive hyper-
identities in binary algebras with quasigroup operations. Currently, more
general results about these and other classifications of hyperidentities may
be found in [170], [173], [178] and [180]. Observe that in algebras with quasi-
group operations many ∀∃∀(∀)- identities are equivalent to hyperidentities
(see[173]).

The multiplicative groups of fields have been characterized in [172] and
[178] by hyperidentities. On the base of these results the concept of binary
G-spaces is developed in topology [74]. The hyperidentities of varieties of
lattices, modular lattices, distributive lattices, Boolean algebras, De Morgan
algebras and weakly idempotent lattices have been characterized in the works
[174], [177], [178],[176],[195], [187],[188],[189], [202], [203], [207].

A hyperidentity ω1 = ω2 is called termal or polynomial hyperidentity
of the algebra A if it is valid in the term algebra F(A). Let V be a va-
riety. A hyperidentity ω1 = ω2 is called a termal hyperidentity of V if it
is a termal hyperidentity for any algebra A ∈ V . Termal hyperidentities
for varieties were first considered by W. Taylor ([285]) (as a special case
of Mal’tsev conditions for varieties) for characterization of classes of vari-
eties which are closed under formation of equivalent varieties, products of
varieties, reducts of varieties and subvarieties. Since the operations of an
algebra are included in the set of term operations (clone) of the algebra, the
concept of termal hyperidentity of a variety is stronger than the concept of
hyperidentity. In particular, the variety of rings (even commutative rings)
does not have termal hyperidentities except w = w, but has hyperidentities
(see section 8).

Termal hyperidentities of varieties of groups and semigroups have been
characterized by G. Bergman [24] (also see [25]). Termal hyperidentities
of the variety of lattices and of the variety of semilattices were studied by
R. Padmanabhan and P. Penner ([218], [224], [219]).

Hyperidentities in algebras as an individual direction of investigations,
were first presented in the monographs [170], [173]. The problem of char-
acterization of termal hyperidentities of important classes of groups, semi-
groups, loops, quasigroups has been posed in the book [170] (p.129, problem
26). The hyperidentities of algebras and varieties, termal and essential hy-
peridentities, pre-hyperidentities of various varieties of groups, semigroups,
quasigroups, loops and related algebras were also studied by many authors
(see references of the current paper).

We briefly describe the structure of the paper. This paper is a survey of
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the results and problems on hyperidentities and related formulae (equations)
and on related concepts. It may be divided into two parts. One part dis-
cusses primarily categorical questions, and the other part contains structure
results, questions of classification of hyperidentities and characterization of
algebras with hyperidentities. In section 2 we formulate the Mal’tsev-Gödel
compactness theorem for hyperidentities. Sections 3,4,5,6,7,8 are devoted
to the questions of classifications and characterizations of hyperidentities,
termal hyperidentities, pre-hyperidentities and essential hyperidentities in
individual algebras and varieties of algebras. In section 8 the concept of
super-Boolean algebras and super-De Morgan algebras are introduced, and
in the next two sections 9, 10 the concepts of super-Boolean function and
super-De Morgan function are introduced with characterizations of finitely
generated free super-Boolean algebras and finitely generated free super-De
Morgan algebras. In the section 11 we characterize termal hyperidentities of
the varieties of Boolean algebras, distributive lattices, lattices, semilattices,
semigroups and groups. In the section 12 the concepts of bilattices, inter-
laced bilattices, distributive bilattices, Boolean bilattices are introduced (see
[70, 73, 75, 76, 77, 78, 161, 184, 185, 201, 203, 211, 212, 237, 239, 246]) and
finitely generated free distributive bilattices are characterized in the section
13. Section 14 is devoted to the extension and strengthening of Schauffler’s
theorem,which is applicable in coding theory. In section 15 distributive sys-
tems and their connection with functional equations and hyperidentities are
discussed. Section 16 discusses the binary representations of semigroups and
groups, and their applications; the topological version of which was started
in [74]. And finally, section 17 discusses other open problems along with
number of open problems presented in the current paper.

To limit the size of the paper the proofs of results are mostly omitted.

2 The Mal’tsev-Gödel compactness theorem

for hyperidentities

If A = (Q; Σ) is an algebra, then the set

TA = {|A| | A ∈ Σ} ⊆ N

is called an arithmetic type of the algebra A. A T -algebra is an algebra with
the arithmetic type T ⊆ N . A class of algebras is called a class of T -algebras
if every algebra in it is a T -algebra. A T -reduct is a reduct with arithmetic
type T ⊆ N . The concept of arithmetic type of a relational structure and
an algebraic system is defined analogously.

Let T ⊆ N and T 6= ∅. The hyperidentity (1) (coidentity (3)) is called
a T -hyperidentity (T -coidentity), if {|X1|, . . . , |Xm|} ⊆ T . We say that the
T -hyperidentity (1) holds (is satisfied, valid, true) in the T -algebra A =
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(Q; Σ) if the equality ω1 = ω2 is valid when every object variable and every
functional variable in it is replaced by an arbitrary element of Q and any
operation of the corresponding arity from Σ respectively. Similarly, the T -
coidentity (3) holds in the T -algebra A = (Q; Σ) if there exist values for
object variables x1, . . . , xn from Q, such that the equality ω1 = ω2 holds
when every functional variable in it is replaced by any operation of the
corresponding arity from Σ. In addition the object variables in the notation
of the coidentity ω1 = ω2 are replaced by corresponding fixed values from
Q.

A T -hyperidentity ω1 = ω2 is called a consequence of the system L of
T -hyperidentities and is denoted by L ⇒ (ω1 = ω2) if the system L is valid
in the T -algebra, then the hyperidentity ω1 = ω2 is also valid in it, that is,
for any T -algebra A:

A |= L ⇒ A |= (ω1 = ω2)

(the notation A |= L means that any hyperidentity from L is valid in the
algebra A).

The hyperidentity ω1 = ω2 is called a termal consequence (briefly t-
consequence) of a system of the hyperidentities L and is denoted by L ⇒t

(ω1 = ω2) if for any algebra A:

F(A) |= L ⇒ F(A) |= (ω1 = ω2);

In the category of T -algebras and bihomomorphisms (ϕ, ψ̃), we consider
the concepts of subalgebra, quotient algebra, direct and filtered products.

An algebra A′ = (Q′; Σ′) is called a subalgebra of the algebra A = (Q; Σ)
if Q′ ⊆ Q and every operation from Σ′ is the restriction of some operation
from Σ (to the subset Q′). For example, every abelian group is a subalgebra
of some ring, and, a fortiori, every groupoid is a subalgebra of some ring.
Every semi-lattice is a subalgebra of some distributive lattice and every
distributive lattice is a subalgebra of some Boolean algebra, etc. When
we want to specify the arithmetic type of subalgebras, we call them T -
subalgebras. A class of T -algebras is said to be hereditary if it contains all
the T -subalgebras of any T -algebra of the given class.

Let A = (Q; Σ) be an arbitrary T -algebra, and let Q′ ⊆ Q, Σ′ ⊆ Σ,
where Q′ 6= ∅ and Σ′ 6= ∅. A pair A′ = (Q′; Σ′) is called a subsystem of
the T -algebra A if Q′ is closed with respect to all the operations of Σ′.
Subsystems of the form (Q′; Σ) are termed principal.

For every subsystem (Q1; Σ1) of an algebra (Q; Σ) there exists a corre-
sponding subalgebra (Q1; Σ∗1), if instead of the operations from Σ1 (which
are defined on the set Q) we consider their restrictions to the subset Q1 ⊆ Q.
It is clear that if (Q1; Σ1) is a T -subsystem, then (Q1; Σ∗1) is a T -algebra.

If (ϕ, ψ̃) : A⇒ A′ is a bihomomorphism of a T -algebra A into a T -algebra
A′, then the pair (ϕQ; ψ̃Σ) is a T -subsystem of A′ and is called the biho-
momorphic image of A under the bihomomorphism (ϕ, ψ̃). The subalgebra
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corresponding to the subsystem (ϕQ; ψ̃Σ) is also called a bihomomorphic
image of the algebra A under the bihomomorphism (ϕ, ψ̃).

A class of T -algebras is said to be homomorphically closed (abstract) if
along with each T -algebra it contains every bihomomorphic (respectively
biisomorphic) image of it under any bihomomorphism (respectively biiso-
morphism) (ϕ, ψ̃).

Let r and t̃ be equivalence relations defined respectively on the sets Q
and Σ of a T -algebra A = (Q; Σ). A pair q = (r, t̃) is called a congruence
of the T -algebra A if, firstly, t̃ preserves the arity of the operations and,
secondly, the relations r and t̃ are compatible in the following sense:

x1rx
′
1, . . . , xnrx

′
n, At̃B → A(x1, . . . , xn)rB(x′1, . . . , x

′
n),

where xi, x
′
i ∈ Q, A, B ∈ Σ, |A| = |B| = n.

If q = (r, t̃) is a congruence of a T -algebra A = (Q; Σ) and 0̃ is the
identity relation of Σ, then (r, 0̃) is ordinary congruence of A.

If q = (r, t̃) is a congruence of a T -algebra A = (Q; Σ) then every element
[A]t̃ of the quotient set Σ/t̃ defines an operation on the quotient set Q/r in
the following way:

[A]t̃([x1]r, . . . , [xn]r) = [A(x1, . . . , xn)]r,

where A ∈ Σ, |A| = n, x1, . . . , xn ∈ Q and [x]s denotes the equivalence class
of an element x modulo the equivalence relation s.

The definition of congruence implies that the operation [A]t̃ is well de-
fined. As a result we obtain a quotient algebra of the T -algebra A modulo
the congruence q = (r, t̃), denoted by A/q.

A congruence q = (r, t̃) of a T -algebra (Q; Σ) is said to be fully invariant
if it preserves any biendomorphism (ϕ, ψ̃) of this algebra, that is,

xry → ϕ(x)rϕ(y)

and

At̃B → ψ̃(A)t̃ψ̃(B),

where x, y ∈ Q and A, B ∈ Σ.
We proceed to direct and filtered products in our category. Let Ai =

(Qi; Σi), i ∈ I be T -algebras of the same arithmetic type. We form the

Cartesian product Q̂ =
∏

i∈I Qi as the set of all functions of the form f :
I →

⋃
i∈I Qi for which f(i) ∈ Qi for all i ∈ I. In addition we form the

Cartesian product
∏

i∈I Σi and define the subset Σ̂ ⊆
∏

i∈I Σi as the set of
all possible functions F : I →

⋃
i∈I Σi satisfying the following two conditions:

a) F (i) ∈ Σi for all i ∈ I;
b) |F (i)| = |F (j)| for all i, j ∈ I,
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that is, for fixed F the arity of an operation F (i) ∈ Σi does not depend on
i ∈ I.

The set Σ̂ can be identified with the set of all possible systems Â = (Ai)i∈I
of operations of the same arity, taking one operation from each set Σi. We

write Σ̂ =
∏̃

i∈IΣi. If F ∈ Σ̃ and |F (i)| = n, then F defines an n-ary

operation, defined component-wise on the set Q̂ =
∏

i∈I Qi:

F (f1, . . . , fn)(i) = F (i)(f1(i), . . . , fn(i)), i ∈ I,

where f1, . . . , fn ∈ Q̂.
As a result we obtain a T -algebra Â = (Q̂; Σ̂), which is called the su-

perproduct of the T -algebras Ai, i ∈ I, or their (direct) T -product and is

written as: Â =
∏

i∈I Ai. Subdirect products of the T -algebras Ai, i ∈ I are
defined in the natural way, as a subdirectly irreducibility in the category of
T -algebras.

Example. The superproduct of two lattices Q1(+, ·) and Q2(+, ·) is an
algebra Q1×Q2((+,+), (·, ·), (+, ·), (·,+)) with four binary operations, which
is a bilattice [184], because Q1×Q2((+,+), (·, ·)) and Q1×Q2((+, ·), (·,+))
are lattices.

A class of T -algebras is said to be multiplicatively closed if it contains
the superproduct of any family of T -algebras from this class.

Let Ai = (Qi; Σi), i ∈ I be T -algebras of the same arithmetic type and
let D be a filter2 on I. We introduce the relation ≡D defined on

∏
i∈I Qi and

the relation ∼D defined on
∏̃

i∈IΣi by setting

f ≡D g ⇔ {α ∈ I | f(α) = g(α)} ∈ D,

where f, g ∈
∏

i∈I Qi, and

F ∼D G⇔ {α ∈ I | F (α) = G(α)} ∈ D,

where F, G ∈
∏̃

i∈IΣi, |F | = |G|.
According to the definition of a filter, the relations ≡D and ∼D are equiv-

alence relations. In addition, it is easy to prove that the pair of equivalence
relations (≡D, ∼D) also are a congruence of the product of the T -algebras
Ai = (Qi; Σi), i ∈ I. The corresponding quotient algebra is denoted by∏

i∈I Ai/D and is called filtered product (with respect to the filter D) of

2 A filter on a non-empty set I is a non-empty set D of subsets of I satisfying the
requirements:

a) the intersection of any two subsets from D belongs to D;
b) all the supersets of any subset belonging to D also belong to D;
c) the empty set ∅ does not belong to D.
A maximal filter on I, that is, a filter on I that does not lie in any other filter on I, is

usually called an ultrafilter on I.
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the T -algebras Ai = (Qi; Σi), i ∈ I. A filtered product of T -algebras with
respect to an ultrafilter is called an ultraproduct of T -algebras.

For the congruence (≡D, ∼D) we have:
F ∼D G⇔ {α ∈ I | F (α) = G(α)} ∈ D
⇔ {α ∈ I | F (α)(f1(α), . . . , fn(α)) = G(α)(f1(α), . . . , fn(α))} ∈

D
⇔ {α ∈ I | F (f1, . . . , fn)(α) = G(f1, . . . , fn)(α)} ∈ D
⇔ F (f1, . . . , fn) ≡D G(f1, . . . , fn).

A set of T -hyperidentities is said to be satisfiable if there exists a non-
trivial T -algebra in which every T -hyperidentity from this set is true. The
Mal’tsev-Gödel compactness theorem for first-order languages extends to the
hyperidentities, using ultraproduct of T -algebras.

Theorem 1 ([178]) If every finite part of an infinite set of T -
hyperidentities is satisfiable, then all the set of T -hyperidentities also is sat-
isfiable.

3 On the Birkhoff type theorems

Let L be some non-empty set of T -hyperidentities, and let MT
L be the class

of all T -algebras in which every hyperidentity from L is valid. A class of
T -algebras N is called a hypervariety of T -algebras if there exists a system
L of T -hyperidentities with the property

N = MT
L.

In this case L is called a defining system of hyperidentities for N.
Let Ω be a signature with an arithmetical type TΩ, i.e.

TΩ = {|ω| | ω ∈ Ω} ,

and let L be some non-empty set of TΩ-hyperidentities, and let NΩ
L be the

class of all Ω-algebras, in which every hyperidentity from L is valid. It’s
easy to prove that NΩ

L is the variety for every Ω and L 6= ∅. The variety V
of Ω-algebras is called hypervariety of Ω-algebras, if there exists a system L
of TΩ-hyperidentities, such that

V = NΩ
L.

Let L be some non-empty set of T -hyperidentities, where T = N , and SΩ
L

is the class of all Ω-algebras, in which every hyperidentity from L is termally
valid. It’s easy to note that SΩ

L is a variety for any Ω and L 6= ∅. The variety
V of Ω-algebras is said to be solid ([87]), if

V = SΩ
L
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for some L 6= ∅. For characterization of all solid varieties of semigroups see
[233].

The concept of solid hypervariety is defined analogously. Let Z be some
non-empty set of hyperidentities (N -hyperidentities), and P T

Z be the class
of all T -algebras, in which every hyperidentity from Z is termally valid. It’s
easy to note that the class P T

Z is the hypervariety of T -algebras for every
Z 6= ∅ and T ⊆ N . The hypervarieties W of T -algebras are called solid, if

W = P T
Z

for some Z 6= ∅ [180].
Hypervarieties, solid varieties and solid hypervarieties are characterized

in a natural way by the categorical notions introduced above.

Theorem 2 A class of T -algebras is a hypervariety of T -algebras if and
only if it is hereditary, homomorphicaly and multiplicatively closed.

Theorem 3 For any variety V of Ω-algebras the following conditions are
equivalent:

1) The variety V is a hypervariety of Ω-algebras;
2) Every identity of V is a hyperidentity for V ;
3) The variety V along with any algebra A ∈ V contains any TΩ-reduct

of A.

Theorem 4 For any variety V of Ω-algebras the following conditions are
equivalent:

4) The variety V is solid;
5) Every identity of V is a termal hyperidentity for V ;
6) The variety V along with any algebra A ∈ V contains any Ω-reduct of

termal algebra F(A) (see [87], [60]).

Theorem 5 For every hypervariety W of T -algebras the following condi-
tions are equivalent:

7) The hypervariety W of T -algebras is solid;
8) Every hyperidentity of W is termal hyperidentity for W;
9) The hypervariety W of T -algebras along with any algebra A ∈ W

contains any T -reduct of termal algebra F(A);

Naturally here also arises the following notion of a quasi-solid variety of
Ω-algebras.

The variety of Ω-algebras is called quasi-solid, if its any hyperidentity is
its termal hyperidentity.

The Birkhoff type theorems of completeness for ∀∃(∀)-identities, hyper-
identities, termal hyperidentities and hybrid identities were considered in
[165], [170], [173], [256], [63].
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4 Varieties of clone-algebras. Second order

algebras

The set Q is called an algebra over the clone Γ, if for every γ ∈ Γ, |γ| = n and
a1, . . . , an ∈ Q the element γ(a1, . . . , an) ∈ Q is defined, and the following
two identities

µmn (γ, γ1, . . . , γn)(a1, . . . , am) =

= γ (γ1(a1, . . . , am), . . . , γn(a1, . . . , am)) ,

δin(a1, . . . , an) = ai

are valid.
Every clone homomorphism

ϕ : Γ→ OpQ

converts the set Q into an algebra over clone Γ and vice versa: if Q is an
algebra over clone Γ, then it determines the representation of clone Γ in the
clone of all operations of the set Q.

If Q is an algebra over clone Γ, then Q will be called a clone Γ-algebra.
For every fixed Γ we have a category of all clone Γ-algebras, in which ho-
momorphisms are the mappings of sets, permutational with the actions of
clone Γ:

ϕγ(x1, . . . , xn) = γ(ϕx1, . . . , ϕxn).

All possible clone Γ-algebras (at a fixed clone Γ) form a variety of all
clone Γ-algebra. The subvariety in the variety of all clone Γ-algebras is
called the variety of clone Γ-algebras.

Theorem 6 There exists a one-to-one correspondence between the varieties
of clone Γ-algebras and the congruencies of clone Γ. The clone Γ is isomor-
phic to the clone of the variety of all clone Γ-algebras.

The set Q is called a clone-algebra, if it is an algebra over some clone Γ.
Now let’s consider the category of clone-algebras over various clones.

Let Q be a clone Γ-algebra; we will denote this clone-algebra by (Q; Γ).
If (Q1; Γ1) and (Q2; Γ2) are two clone-algebras, then the homomorphism
between them is defined as a pair (ϕ, ψ̃), where ϕ : Q1 → Q2 and ψ̃ : Γ1 →
Γ2 is a homomorphism of clones and the following condition

ϕω(x1, . . . , xn) =
[
ψ̃(ω)

]
(ϕx1, . . . , ϕxn)

is true for every ω ∈ Γ1, |ω| = n and x1, . . . , xn ∈ Q1.
So we obtain the category of clone-algebras over various clones. Ac-

cording to this definition of homomorphism of clone-algebras, the notions of
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homomorphic images, congruences, fully-invariant congruences, subalgebras,
direct products of clone-algebras etc. are understood.

The characterization of varieties of clone-algebras (in this category) is
given in ([173]).

The class V of clone-algebras is called a variety of clone-algebras, if it
is closed to homomorphic images, subalgebras and direct products of clone-
algebras of V . The variety of clone-algebras is called a hypervariety of clone
algebras, if it is defined by some system of hyperidentities.

The class of varieties is called hypervariety of varieties if it is defined by
some system of termal hyperidentities ([285]).

We consider a free clone, freely-generated by set U which contains count-
able n-ary elements for every natural n. Such a free clone is called a standard
free clone.

Theorem 7 ([173]). There exists a one-to-one correspondence between the
varieties of clone-algebras and the pare (p, q) of fully-invariant congruencies
q ⊆ p of a standard free clone.

The homomorphism (ϕ, ψ̃) of clone-algebras is called a right-homomor-
phism if ϕ is the identical mapping. The variety V of clone-algebras is
called saturated, if for every (Q; Γ) ∈ V and for every right-epimorphism of
clone-algebras (ϕ, ψ̃) : (Q; Γ′)⇒ (Q; Γ) we have (Q; Γ′) ∈ V .

Theorem 8 ([173]). The saturated varieties of clone-algebras are hyperva-
rieties of clone-algebras. There exists a one-to-one correspondence between
the saturated varieties of clone-algebras and the fully-invariant congruencies
of a standard free clone. There exists a one-to-one correspondence between
the saturated varieties of clone-algebras and the varieties of clones. There
exists a one-to-one correspondence between the saturated varieties of clone-
algebras and the hypervarieties of varieties.

In particular, the clone Γ = Cl(A) and its every isomorphic clone acts
naturally on the set Q for every algebra A = (Q; Σ), and Q converts to
a clone-algebra which is called a natural clone-algebra. In that case the
algebra A is called the spoor for the corresponding natural clone-algebra.
In this sense we also understand the spoor for varieties of natural clone-
algebras.

The class of all algebras of hypervariety of varieties is a spoor for the
variety of natural clone-algebras, which is defined by hyperidentities ([63],
[242]).

For the proof of the corresponding Birkhoff type theorem of ∀∃(∀)-
identities the concept of second order algebras is introduced in [165]. If
(Q; Σ) and (Σ; Ω) are algebras then (Q; Σ; Ω) is called second order alge-
bra. Since Σ is naturally graduated by arities of operations, algebra (Σ; Ω)
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may also be considered as a many-sorted algebra. This concept of second or-
der algebras also includes the concepts of natural clone-algebras, symmetric
groups, symmetric semigroups, Boolean algebras of Boolean functions of n
variables, De Morgan algebras of De Morgan functions of n variables [186],
etc.

5 Classical hyperidentities in invertible and

related algebras

A binary algebra (Q; Σ) is called isotopic to the groupoid Q(·), if its every
operation is isotopic to the groupoid Q(·), i.e. for any operation A ∈ Σ there
exist bijections αA, βA, γA : Q→ Q, such that

A(x, y) = α−1
A (βAx · γAy)

for every x, y ∈ Q [7, 8]. A binary algebra (Q; Σ) is called isotopic to a
groupoid (group, loop, semigroup) if (Q; Σ) is isotopic to some groupoid
(group, loop, semigroup) Q(·).

A binary algebra (Q; Σ) is called left(right)-linear on the groupoid Q(·)
if its every operation is left(right)-linear on the groupoid Q(·), i.e. for any
operation A ∈ Σ there exist automorphisms ϕA of the groupoid Q(·) and
permutation αA of Q with the equality

A(x, y) = ϕAx · αAy

(A(x, y) = αAx · ϕAy)

for every x, y ∈ Q. A binary algebra (Q; Σ) is called left(right)-linear on
a groupoid (group, loop, semigroup) if (Q; Σ) is left(right)-linear on some
groupoid (group, loop, semigroup) Q(·).

A binary algebra (Q; Σ) is called linear on the groupoid Q(·) if its every
operation is linear on the groupoid Q(·), i.e. for any operation A ∈ Σ there
exist automorphisms ϕA and ψA of the groupoid Q(·) and element tA ∈ Q
with the equality

A(x, y) = (ϕAx · tA) · ψAy

for every x, y ∈ Q.
A binary algebra (Q; Σ) is called linear on a groupoid (group, loop, semi-

group) if (Q; Σ) is linear on some groupoid (group, loop, semigroup) Q(·).
(A linear algebra on the commutative group is often called T -linear algebra
[289].)

Proposition 1 A binary algebra is linear on the group iff it is left-linear
on a group and right-linear on a group.
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Lemma 1 1) In the binary algebra Q(A,B) with two binary quasigroup
operations holds the identity

A(B(x, y), z) = B(x,A(y, z))

iff there exist a group Q(◦) and permutations α, β of Q such that:

A(x, y) = x ◦ αy,

B(x, y) = βx ◦ y;

2) In the binary algebra Q(A,B) with two binary quasigroup operations
holds the identity

A(B(x, y), z) = A(x,B(y, z))

iff there exist a group Q(◦) and a permutation α of Q such that:

A(x, y) = t ◦ αx ◦ s ◦ αy,

B(x, y) = α−1(αx ◦ s ◦ αy),

where t, s ∈ Q;
3) In the binary algebra Q(A,B) with two binary quasigroup operations

holds the identity

A(A(x, y), z) = B(x,B(y, z))

iff there exist a group Q(◦) and its automorphisms α, β such that:

A(x, y) = αx ◦ t ◦ β2y,

B(x, y) = α2x ◦ s ◦ βy,

where s, t ∈ Q, and αt ◦ t = s ◦ βs, βα2 = Iβs◦t−1αβ2 (Iu(x) = u ◦ x ◦ u−1 is
an inner automorphism). Thus, quasigroups Q(A) and Q(B) are linear on
the group Q(◦), i.e. the algebra Q(A,B) is linear on the group Q(◦);

4) If the identity

A(A(x, y), z) = B(x,C(y, z))

is satisfied in the algebra Q(A,B,C) with tree quasigroup operations, then
the quasigroup Q(A) is left-linear on a group;

5) If the identity

A(x,A(y, z)) = B(C(x, y), z)

is satisfied in the algebra Q(A,B,C) with tree quasigroup operations, then
the quasigroup Q(A) is right-linear on a group;
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6) In the binary algebra Q(A,B) with two binary quasigroup operations
the following identity

A(A(x, y), z) = A(x,B(y, z))

holds iff there exist a group Q(◦) and a permutations α of Q such that:

A(x, y) = x ◦ αy,

αB(x, y) = αx ◦ αy;

Hence, Q(B) is a group (cf.[278]) isomorphic to Q(◦).
7) In the binary algebra Q(A,B) with two binary quasigroup operations

the following identity

A(x,A(y, z)) = A(B(x, y), z)

holds iff there exist a group Q(◦) and a permutations α of Q such that:

A(x, y) = αx ◦ y,

αB(x, y) = αx ◦ αy.
8) If the identity of mediality

A1(A1(x, y), A1(u, v)) = A2(A2(x, u), A2(y, v))

is satisfied in the algebra Q(A1, A2) with two quasigroup operations, then the
algebra Q(A1, A2) is linear on an Abelian group;

9) If the identity of mediality

A1(A2(x, y), A2(u, v)) = A2(A1(x, u), A1(y, v))

is satisfied in the algebra Q(A1, A2) with two quasigroup operations, then the
algebra Q(A1, A2) is linear on an Abelian group.

10) If the identity of mediality

A1(A2(x, y), A3(u, v)) = A4(A1(x, u), A1(y, v))

is satisfied in the algebra Q(A1, A2, A3, A4) with four quasigroup operations,
then the quasigroup Q(A4) is linear on an Abelian group [179].

In the monograph [20](p. 37) instead of the criterion 6) it is proved a
necessary condition for the following partial case: B(x, y) = A(x, βy), where
β is a permutation of Q (cf. [278]).

A binary algebra A = (Q; Σ) is called 1) invertible, if Q(A) is a quasi-
group for any operation A ∈ Σ; 2) a q-algebra, if Q(A) is a quasigroup for
some operation A ∈ Σ; 3) an e-algebra, if Q(A) is a groupoid with unit for
some operation A ∈ Σ; 4) a functionally non-trivial, if the cardinality of Σ
is: |Σ| > 1.
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Problem 1 Characterize invertible algebras isotopic to Moufang loops.

Problem 2 Characterize invertible algebras isotopic to Commutative Mo-
ufang loops.

Problem 3 Characterize invertible algebras isotopic to Bol loops.

Problem 4 Characterize invertible algebras which are left(right)-linear on
the Moufang loops.

Problem 5 Characterize invertible algebras which are left(right)-linear on
the Commutative Moufang loops.

Problem 6 Characterize invertible algebras which are left(right)-linear on
the Bol loops.

Let [ω] mean the set of all object variables of the word ω. The functional
variable X is called singular in the hyperidentity w1 = w2, if the symbol X
occurs just once in this equality (and so only on one side) and at least one
of the following conditions is true:

a) in the subword w = X(ω1, ω2) there exist object variables x ∈ [ω1]
and y ∈ [ω2] such that each of them occurs just once in the subword w;

b) the subword w = X(ω1, ω2) has the form X(ω1, x) or X(x, ω2) and
there exists an object variable y ∈ [w], different from x and occurring only
once in the subword w.

The functional variable X is called singular in the ∃∀(∀)-identity (4), if
the symbol X occurs just once in the equality w1 = w2 of (4), X = Xi,
where k + 1 6 i 6 m and at least one of the conditions a), b) is valid.

The functional variable X is called singular in the ∀∃∀(∀)-identity (5),
if the symbol X occurs just once in the equality w1 = w2 of (5), X = Xi,
where t+ 1 6 i 6 m and at least one of the conditions a), b) is valid.

Lemma 2 ([170]) The hyperidentity with a singular functional variable can
not be valid in the functional non-trivial q-algebra.

Lemma 3 The ∃∀(∀)-identity (i.e hybrid identity) with a singular func-
tional variable can not be valid in the functional non-trivial q-algebra.

Lemma 4 The ∀∃∀(∀)-identity with a singular functional variable can not
be valid in the functional non-trivial invertible algebra.

Theorem 9 In the class of invertible algebras every ∀∃∀(∀)-identity of as-
sociativity is equivalent to a hyperidentity of associativity.
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Let’s move to the characterization of hyperidentities, defined by the
classical identities of associativity (x · yz = xy · z), left distributivity
(x · yz = xy · xz), right distributivity (xy · z = xz · yz), transitivity
(xz · yz = xy), and the identity of Kolmogoroff (xy · yz = xz). Such hyper-
identities are called hyperidentities of associativity, left distributivity, right
distributivity, transitivity and Kolmogoroff hyperidentities, respectively.

Theorem 10 If a non-trivial hyperidentity of associativity holds in a func-
tional non-trivial q-algebra, then it can only be of the functional rank 2 and
of one of the following forms:

X (x, Y (y, z)) = Y (X(x, y), z) , (7)

X (x, Y (y, z)) = X (Y (x, y), z) , (8)

X (x, X(y, z)) = Y (Y (x, y), z) . (9)

Moreover, operations of q-algebra with a non-trivial hyperidentity of associa-
tivity are isomorphic. In the class of all q-algebras, from the hyperidentity
(9) implies the hyperidentity (8), and from the hyperidentity (8) implies the
hyperidentity (7). More precisely, the hyperidentity (8) is valid in a q-algebra
A with hyperidentity (7) iff the following hyperidentity holds in A:

X(x, Y (y, x)) = X(Y (x, y), x);

The hyperidentity (9) holds in q-algebra A with hyperidentity (8) iff the fol-
lowing coidentity holds in A:

X(a,X(a, a)) = Y (Y (a, a), a).

The similar results for e-algebras can be found in [178].
The semigroups Q(·) and Q(◦) are called interassociative ([311]) if the al-

gebra Q(·, ◦) satisfies the hyperidentity of associativity (7). It is proved that
two interassociative groups are isomorphic ([66]) (which also follows from
the Albert’s ([7, 8]) theorem: isotopic groups are isomorphic (see Lemma
1)). Moreover, if a group and a semigroup are interassociative then they
are isomorphic too ([170]). Interassociative semigroups Q(·) and Q(◦) are
called strongly interassociative if the algebra Q(·, ◦) satisfies the hyperiden-
tity of associativity (8) too. For the structure of strongly interassociative
semigroups see [309].

Binary algebras with the hyperidentity of associativity (7) under the
name of Γ-semigroups (or gamma-semigroups), doppelsemigroups and dop-
pelalgebras also were considered by various authors [14, 130, 217, 259, 261,
262, 225, 243, 308, 310, 6, 129, 35, 36, 66, 79, 80, 81, 82, 83, 311] (see earlier
papers [250, 45] too).
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Theorem 11 If a non-trivial hyperidentity of transitivity holds in a func-
tional non-trivial q-algebra, then it can only be of the functional rank 2 and
of one of the following forms:

Y (X(x, z), Y (y, z)) = Y (x, y), (10)

Y (X(x, z), Y (y, z)) = X(x, y), (11)

X (X(x, z), Y (y, z)) = Y (x, y). (12)

Moreover, in the class of all q-algebras, from the hyperidentity (12) implies
the hyperidentity (11), and from the hyperidentity (11) implies the hyperi-
dentity (10). More precisely, the hyperidentity (11) is valid in a q-algebra A
with hyperidentity (10) iff the following hyperidentity holds in A:

Y (X(x, x), Y (y, x)) = X(x, y);

The hyperidentity (12) holds in q-algebra A with hyperidentity (11) iff the
following coidentity holds in A:

X(X(a, a), Y (a, a)) = Y (a, a).

The similar result is valid for the hyperidentities defined by the identity:
zx · zy = xy.

Theorem 12 If Kolmogoroff’s non-trivial hyperidentity holds in a func-
tional non-trivial q-algebra, then it can only be of the functional rank 2
and of one of the following forms:

Y (X(x, y), X(y, z)) = Y (x, z), (13)

Y (X(x, y), Y (y, z)) = X(x, z), (14)

X (X(x, y), Y (y, z)) = Y (x, z). (15)

Moreover, the hyperidentities (13), (14), (15) are equivalent in the class of
all q-algebras.

Theorem 13 If in a functional non-trivial q-algebra with the trivial hyper-
identity of right distributivity

X (X(x, y), z) = X (X(x, z), X(y, z)) (16)

holds a non-trivial hyperidentity of left distributivity, then it will have only
the functional rank 2 and the form:

X (x, Y (y, z)) = Y (X(x, y), X(x, z)) . (17)



HYPERIDENTITIES AND RELATED CONCEPTS 21

If in a functional non-trivial q-algebra with the trivial hyperidentity of
left distributivity

X (x, X(y, z)) = X (X(x, y), X(x, z)) (18)

holds a non-trivial hyperidentity of right distributivity, then it will only have
the functional rank 2 and the form:

X (Y (x, y), z) = Y (X(x, z), X(y, z)) . (19)

Corollary 1 If the non-trivial hyperidentities of right and left distributivity
hold in the functional non-trivial q-algebra, then the non-trivial hyperidentity
of left distributivity will have the functional rank 2 and the form (17), and
the non-trivial hyperidentity of right distributivity will have the functional
rank 2 and the form (19).

Corollary 2 ( [18], [4]). If the non-trivial hyperidentities of left or right
distributivity holds in the functional non-trivial invertible algebra, then the
non-trivial hyperidentity of left distributivity will have the functional rank 2
and the form (17), and the nontrivial hyperidentity of right distributivity will
have the functional rank 2 and the form (19).

The problem of the characterization of invertible algebras with hyperi-
dentities (17) and (19) of distributivity has been posed by V.D. Belousov
(1965) and was solved in [170]. A more general result on the characterization
of q-algebras with hyperidentities (17) and (19) of distributivity is proved in
[173]. Let us remind that the binary algebra (Q; Σ) is called idempotent, if
the hyperidentity of idempotency X(x, x) = x is valid in it.

Theorem 14 ([173]). If the hyperidentities (17) and (19) are valid in the
q-algebra (Q; Σ), then it is idempotent and there exists a commutative Mo-
ufang loop Q(◦), such that every operation A ∈ Σ is defined by the rule:

A(x, y) = ϕA(x) ◦ ψA(y),

where ϕA, ψA are commutative endomorphisms of the commutative Moufang
loop Q(◦) and algebra (Q; Σ).

Theorem 15 ([178]). The hyperidentities (16) and (17) of distributivity
are valid in an invertible algebra (Q; Σ) iff there exists a commutative Mo-
ufang loop Q(◦), such that every operation A ∈ Σ is defined by the rule:

A(x, y) = ϕA(x) ◦ ψA(y),

where ϕA, ψA ∈ AutQ(◦), ϕA ∈ AutQ(A), (ψA, ε̃) ∈ Aut(Q; Σ), ϕA(x) ◦
ψA(x) = x, x ◦ ϕA(x) ∈ KQ (the kernel of the loop Q(◦)) for all A ∈ Σ,
x, y ∈ Q.
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Theorem 16 The hyperidentities (18) and (19) of distributivity are valid
in an invertible algebra (Q; Σ) iff there exists a commutative Moufang loop
Q(◦) such that every operation A ∈ Σ is defined by the rule:

A(x, y) = ϕA(x) ◦ ψA(y),

where ϕA, ψA ∈ AutQ(◦), ψA ∈ AutQ(A), (ϕA, ε̃) ∈ Aut(Q; Σ), ϕA(x) ◦
ψA(x) = x, x ◦ ϕA(x) ∈ KQ for any A ∈ Σ, x, y ∈ Q.

Corollary 3 The non-trivial hyperidentities (17) and (19) of distributiv-
ity are valid in an invertible algebra (Q; Σ) iff there exists a commutative
Moufang loop Q(◦) such that every operation A ∈ Σ is defined by the rule:

A(x, y) = ϕA(x) ◦ ψA(y),

where ϕA, ψA ∈ AutQ(◦), (ϕA, ε̃), (ψA, ε̃) ∈ Aut(Q; Σ), ϕA(x)◦ψA(x) = x,
x ◦ ϕA(x) ∈ KQ for any A ∈ Σ, x, y ∈ Q.

However, the problem of the characterization of q-algebras with hyperi-
dentities (16) and (17) (or with hyperidentities (18) and (19)) still remains
open. The characterization of invertible algebras (q-algebras) with the hy-
peridentity (17) of distributivity (or with the hyperidentity (19)) still re-
mains open too.

See also [54],[145],[288].
The problem, whether the invertible algebra (q-algebra) with the non-

trivial hyperidentities (17) and (19) of distributivity is isotopic to the algebra
with the non-trivial Moufang hyperidentity:

X(x, Y (x,X(y, z))) = X(Y (x, y), Y (x, z)),

also remains open (see Theorem 69). Moreover, binary algebras (Q; Σ)
and (Q′; Σ′) are called isotopic if there exist bijections α, β, γ : Q → Q′,
ψ̃ : Σ→ Σ′ such that the following condition

αA(x, y) =
[
ψ̃(A)

]
(βx, γy)

is true for any A ∈ Σ, x, y ∈ Q. This definition goes back to the monographs
[170, 173], [269] and paper [94], which are different from the definitions of
A. Albert [7] and A. G. Kurosh [124] for the rings.

Theorem 17 If a ring with an identity element is isotopic to the associative
ring, then they are isomorphic.

Theorem 18 If a binary algebra with associative operations is isotopic to
a binary algebra in which every operation has an identity element, then they
are isomorphic.
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Let us remind that a binary algebra A = (Q; Σ) is called an e-algebra,
if Σ contains an operation with identity element.

Theorem 19 ([173]) If an e-algebra is isotopic to a binary algebra satisfy-
ing a non-trivial associative hyperidentity, then they are isomorphic.

This is a wide generalization of the classical results of A. Albert([7, 8]), N.
J. S. Hughes([98]), and R. Bruck([38]).

The above classifications of hyperidentities are mostly valid for e-algebras
too (also see [167, 168, 169, 171, 1, 93, 118]). On conditional hyperidentities
see [158].

6 Classical termal hyperidentities and

pre-hyperidentities of semigroups

Proposition 2 In the non-trivial binary algebra (Q; Σ) with identical op-
erations δ1

2(x, y) = x and δ2
2(x, y) = y (and consequently in the termal

algebra F(A) of any non-trivial algebra A)
1) the hyperidentity of commutativity X(x, y) = X(y, x) is not valid;
2) the hyperidentity of transitivity X (X(x, z), X(y, z)) = X(x, y) is not

valid;
3) no non-trivial hyperidentity of associativity is valid;
4) no non-trivial Kolmogoroff’s hyperidentity is valid.

Proposition 3 If in the non-trivial binary algebra (Q; Σ) with identical
operations δ1

2(x, y) = x and δ2
2(x, y) = y (and consequently if in the termal

algebra F(A) of any non-trivial algebra A) holds:
5) a non-trivial hyperidentity of mediality, then it will have the functional

rank 2 and the form

X (Y (x, y), Y (u, v)) = Y (X(x, u), X(y, v)) ; (20)

6) a non-trivial hyperidentity of left distributivity, then it will have the
functional rank 2 and the form (17);

7) a non-trivial hyperidentity of right distributivity, then it will have the
functional rank 2 and the form (19).

According to the proposition 2 a non-trivial semigroup does not termally
satisfy the non-trivial hyperidentity of associativity. The semigroup Q(·) is
called hyperassociative, if it termally satisfies the hyperidentity of associa-
tivity

X (X(x, y), z) = X (x, X(y, z)) .
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It is shown in the paper [59], that the variety of all hyperassociative
semigroups is defined by the finite system of identities. Their finite basis of
identities consists of about 1000 identities. It is found in the works [232] and
[221] a basis of identities of this variety consisting of only four identities.

Theorem 20 ( [232] and [221]). The semigroup Q(·) is hyperassociative
iff the following identities:

x4 = x2,

xyxzxyx = xyzyx,

xy2z2 = xyz2yz2,

x2y2z = x2yx2yz

are valid in Q(·).

The following more general result is proved in [206]. The semigroup
Q(·) is called left hyperalternative (cf. [180]) if it termally satisfies the
hyperidentity of left alternativity:

X (X(x, x), z) = X (x, X(x, z)) .

The semigroup Q(·) is called right hyperalternative if it termally satisfies
the hyperidentity of right alternativity:

X (X(x, y), y) = X (x, X(y, y)) .

The semigroup Q(·) is called hyperalternative if it both left and right hy-
peralternative. A semigroup is right hyperalternative iff it is left hyper-
alternative. Consequently the right or left hyperalternative semigroup is
hyperalternative.

First we note that every idempotent semigroup is hyperalternative, since
all the binary terms of an idempotent semigroup are the following: x, y,
x · y, y · x, x · y · x and y · x · y.

Theorem 21 ([206]). The semigroup Q(·) is hyperalternative iff the fol-
lowing identities are valid in Q(·):

x4 = x2, (21)

x3yx3 = x2yx2, (22)

x2y2x2y2 = x2y2, (23)

yx3y = yxyxyxy. (24)
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· 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 4 5
3 3 3 3 3 3
4 1 2 5 4 5
5 5 5 5 5 5

There also exists a hyperalternative semigroup, which is not hyperasso-
ciative.

An example of an idempotent semigroup with 5 elements, which is hy-
peralternative but not hyperassociative, is given by the first Cayley table
below.

As the semigroup having this Cayley table is idempotent, hence it is
hyperalternative. On the other hand, the identity xyxzxyx = xyzyx is not
satisfied for x = 2, y = 4 and z = 3 (as xyxzxyx = 1 and xyzyx = 5). Thus,
this semigroup is not hyperassociative according to the above mentioned
theorem.

Note, that there exist non-idempotent hyperalternative semigroups too.
For example, this semigroup is given by the second Cayley table.

· 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 2 3
3 3 3 3 3 3
4 1 2 3 4 5
5 5 5 5 5 5

In non-associative ring theory, the classical Artin theorem states that
in an alternative algebra the subalgebra generated by any two elements is
associative (see [263]). In the hyperalternative semigroups the following
result is valid.

Theorem 22 ([206]) If the semigroup Q(·) is hyperalternative, then any
two elements in Q(·) generate a hyperassociative subsemigroup, i.e. the fol-
lowing identity

X(X(A(x, y), B(x, y)), C(x, y)) = X(A(x, y), X(B(x, y), C(x, y))), (25)

holds for any binary polynomials X,A,B,C of Q(·), that is the semigroup
Q(·) termally (polynomially) satisfies the following hyperidentity of the func-
tional rank 4:

X(X(Y (x, y), Z(x, y)), U(x, y)) = X(Y (x, y), X(Z(x, y), U(x, y))). (26)
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The semigroup Q(·) is called left hyperdistributive (right hyperdistribu-
tive), if it termally satisfies the hyperidentity of left distributivity (18) (cor-
respondingly the hyperidentity of right distributivity (16)). The semigroup
Q(·) is called hyperdistributive, if it is both left and right hyperdistributive.
A semigroup is right hyperdistributive iff it is left hyperdistributive. Conse-
quently, the right or left hyperdistributive semigroup is hyperdistributive.

The next result shows that the variety of all left hyperdistributive semi-
groups has a finite basis of identities.

Theorem 23 The semigroup Q(·) is left hyperdistributive iff the following
identities

x2 = x3, (27)

xyz = xyxz, (28)

xyz = xzyz (29)

are valid in Q(·).

Corollary 4 Every left hyperdistributive semigroup is a hyperassociative.

Proof. It is required to check the conditions of theorem 20. The identity
x2 = x4 is clear. Then:

xyxzxyx = (xyxz)xyx = xyzxyx =
= xy(zxyx) = xyzyx,

xyz2yz2 = x(yz2yz2) = xy2z2,
x2yx2yz = (x2yx2y)z = x2y2z.

Corollary 5 An medial semigroup (i.e. with the identity of mediality: xy ·
uv = xu · yv) is left hyperdistributive iff it satisfies the following identities:

x2 = x4,

xyz = xyz2,

xyz = x2yz;

Corollary 6 A commutative semigroup is left hyperdistributive iff it satis-
fies the following identities:

x2 = x4,

xyz = x2yz.

Corollary 7 An idempotent semigroup is left hyperdistributive iff it satisfies
the following identities:

xyz = xyxz,

xyz = xzyz.
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Theorem 24 For every semigroup Q(·) the following conditions are equiv-
alent:

i) Q(·) termally satisfies the non-trivial hyperidentity of left distributivity
(17);

ii) Q(·) termally satisfies the non-trivial hyperidentity of right distribu-
tivity (19);

iii) Q(·) satisfies the identities:

x2 = x,

xyz = xyxz,

xyz = xzyz.

About the termal hyperidentities of semigroups see also [298], [299], [48].
Let Q(·) be a semigroup, F(Q) be the set of its termal operations,

F∗(Q) = F(Q)\P , where P is the set of all identical operations (projec-
tions) of Q. A hyperidentity ω1 = ω2 is called a pre-hyperidentity of the
semigroup Q, if the hyperidentity ω1 = ω2 is satisfied in algebra (Q; F∗(Q)).
In this case we say that the pre-hyperidentity ω1 = ω2 is valid in the semi-
group Q.

Two pre-hyperidentities are called equivalent if in every semigroup either
both of them or none of them is satisfied.

Theorem 25 Every non-trivial pre-hyperidentity of associativity of a non-
trivial semigroup is equivalent to one of the following pre-hyperidentities:
(7), (8), (9).

Theorem 26 Every non-trivial pre-hyperidentity of left or right distribu-
tivity of a non-trivial semigroup is equivalent to one of the following pre-
hyperidentities: (17) and

X (x, Y (y, z)) = Z (U(x, y), V (x, z)) . (30)

Moreover, the pre-hyperidentities (30) and (9) are equivalent.

Theorem 27 i) The pre-hyperidentity (7) is valid in the semigroup Q(·) iff
the following identities

xyz = xzy,

xyz = yxz,

x2 = y2,

x2 = x3

hold in Q(·);
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ii) The pre-hyperidentity (8) is valid in the semigroup Q(·) iff the follow-
ing identities

xyz = zxy,

xyz = yzx,

x2 = y2,

x2 = x3

hold in Q(·);
iii) The pre-hyperidentity (9) is valid in Q(·) iff the following identities

xyz = x2,

x2 = y2

hold in Q(·);

Consequently, if the pre-hyperidentity (9) is valid in a semigroup, then
the pre-hyperidentity (7) is also valid in it; And if the pre-hyperidentity
(7) is valid in a semigroup, then the pre-hyperidentity (8) is also valid in it
(compare with the corollary 10).

The characterization of semigroups with pre-hyperidentity of commuta-
tivity X(x, y) = X(y, x) is contained in the paper [58].

Theorem 28 Each of the pre-hyperidentities (10)-(12), (13)-(15) holds in
the semigroup Q(·) iff the identities

x2 = y4,

xy = x2,

x2 = x3

hold in it. Hence the pre-hyperidentities (10)-(12) and (13)-(15) are equiv-
alent.

7 Essential hyperidentities of semigroups

Let Q(·) be a semigroup. Every binary polynomial (term) of Q(·) has the
following form:

F (x, y) = zε11 z
ε2
2 . . . zεnn , (31)

where n ∈ N, ε1, ε2, . . . , εn ∈ N, z1, z2, . . . , zn ∈ {x, y} and zi 6= zi+1. The
number n is called the length of this representation of the polynomial F (x, y).
However, due to the identities in the semigroup Q(·), the same polynomial
F (x, y) can have different representations of the form (31).
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Definition 1 The polynomial F (x, y) essentially depends on the variable
x in the semigroup Q(·) if there are elements x1, x2, y ∈ Q such that
F (x1, y) 6= F (x2, y). In the same way the essentially dependence of the
polynomial F (x, y) on the variable y is defined.

Definition 2 The polynomial F (x, y) is called essential if it essentially de-
pends on both variables x and y.

We let Q2
epol be the collection of all binary essential polynomials of the

semigroup Q(·).
We say that the hyperidentity (∗) is essentially satisfied (valid) or is

satisfied for essential polynomials in the semigroup Q(·) if this hyperidentity
is satisfied in the binary algebra

(
Q;Q2

epol

)
. The hyperidentity (∗) is called

essential hyperidentity of semigroup Q(·) if this hyperidentity is essentially
satisfied in this semigroup.

Definition 3 We say that two hyperidentities are essentially equivalent
(written as ⇔e), if they simultaneously are either essentially satisfied or
none of them is essentially satisfied in any semigroup Q(·). It is said that
the hyperidentity (h1) essentially implies the hyperidentity (h2), written as
(h1)⇒e (h2), if in all semigroups where the hyperidentity (h1) is essentially
satisfied, the hyperidentity (h2) is also essentially satisfied.

Theorem 29 Any non-trivial associative essential hyperidentity of semi-
group is essentially equivalent to one of following hyperidentities:

X (X (x, y) , z) = X (x, Y (y, z)) , (32)

X (X (x, y) , z) = Y (x,X (y, z)) , (33)

X (X (x, y) , z) = Y (x, Y (y, z)) , (34)

X (Y (x, y) , z) = X (x, Y (y, z)) , (35)

X (Y (x, y) , z) = Y (x,X (y, z)) . (36)

Moreover, we have the following implications: (32) ⇒e (34), (32) ⇒e

(33)⇒e (36)⇒e (35) (cf. [204]).

Theorem 30 Any left distributive essential hyperidentity of semigroup is
essentially equivalent either to the hyperidentity:

X(x,X(y, z)) = X(X(x, y), X(x, z)), (37)

or to the hyperidentity:

X(x,X(y, z)) = X(X(x, y), Y (x, z)). (38)

Moreover: (38)⇒e (37) (cf. [205, 213]).

The similar results are valid for hyperidentities of right distributivity,
transitivity and Kolmogoroff hyperidentities too.
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8 Hyperidentities of varieties

It’s obvious that every variety of Ω-algebras is contained in the least hy-
pervariety of Ω-algebras, which is defined by all hyperidentities of the given
variety and is called the hypervariety of Ω-algebras generated by the given
variety. The characterization of a hypervariety means the description of its
hyperidentities and algebras. For example, the problem of characterization
of hypervarieties generated by the variety of all rings is missing until now.
The next example shows that non-trivial hyperidentities are valid in the
variety of all rings.

Example. The following hyperidentities are satisfied in any ring:

X (X (Y (x, x), Y (x, x)) , Y (X(x, x), X(x, x))) =

= X (Y (X(x, x), X(x, x)) , X (Y (x, x), Y (x, x))) ,

X (Y (Y (x, x), X(x, x)) , Y (X(x, x), Y (x, x))) =

= X (Y (X(x, x), Y (x, x)) , Y (Y (x, x), X(x, x))) .

It’s obvious that every hyperidentity w1 = w2 of a non-trivial lattice is
regular, i.e. the same object variables occur in w1 and w2.

Theorem 31 ([177]) Any hyperidentity of the variety of all lattices is a
consequence of the following four hyperidentities:

X(x, x) = x, (39)

X(x, y) = X(y, x), (40)

X (x, X(y, z)) = X (X(x, y), z) , (41)

X (Y (X(x, y), z) , Y (y, z)) = Y (X(x, y), z) . (42)

Theorem 32 ([177]) Any hyperidentity of the variety of all modular lat-
tices is a consequence of the hyperidentities (39)-(42) and hyperidentity:

X (Y (x, X(y, z)) , Y (y, z)) = Y (X (x, Y (y, z)) , X(y, z)) . (43)

Theorem 33 ( [174], [177]) . Any hyperidentity of the variety of all dis-
tributive lattices is a consequence of the hyperidentities (39)-(41), (17).

Since the variety of all distributive lattices doesn’t have its own subvari-
eties, then the theorem 33 induces the characterization of hyperidentities of
an arbitrary individual distributive lattice.
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Corollary 8 Any hyperidentity of a non-trivial distributive lattice is a con-
sequence of the hyperidentities (39)-(41), (17). Hence, every hyperidentity
of a non-trivial bounded commutative BCK-algebra (as a distributive lat-
tice) is a consequence of the hyperidentities (39)-(41), (17) ([101], [102]).
Any hyperidentity of the class of all bounded commutative BCK-algebras is
a consequence of the hyperidentities (39)-(41), (17).

However, the problem of the characterization of hyperidentities of com-
mutative BCK-algebras (with two operations ∗ and ∧) is open.

Theorem 34 ( [178], [174]) Any hyperidentity of the variety of all Boolean
algebras is a consequence of the hyperidentities (39)-(41), (17) as well as
hyperidentities:

F (F (x)) = x, (44)

X (F (x), y) = X (F (X(x, y)) , y) , (45)

F (X (F (X(x, y)) , F (X (x, F (y))))) = x. (46)

All hyperidentities of the variety of Boolean algebras are consequences of
one of its hyperidentities, i.e. the hyperequational theory of the variety of
Boolean algebras is one-based.

The characterization of hyperidentities of the variety of Boolean alge-
bras, given in [174] reduces also to the description of free algebras of the
corresponding hypervariety.

Since the variety of Boolean algebras does not have its own subvarieties,
then it follows from here the characterization of hyperidentities of an arbi-
trary Boolean algebra.

Corollary 9 Any hyperidentity of a Boolean algebra is a consequence of
the hyperidentities (39)-(41), (17),(44)-(46). Hence, any hyperidentity of
an arbitrary bounded implicative BCK-algebra is a consequence of the hy-
peridentities (39)-(41), (17),(44)-(46). Any hyperidentity of the class of all
bounded implicative BCK-algebras is a consequence of the hyperidentities
(39)-(41), (17),(44)-(46).

However, the problem of the characterization of hyperidentities of
bounded BCK-algebras remains open.
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Theorem 35 ([187]) The variety of De Morgan algebras satisfies the fol-
lowing hyperidentities (39)-(41), (17),(44) as well as hyperidentities:

F (x) = G(x), (47)

F (Y (F (X(x, y)), z)) = X(F (Y (F (x), z)), F (Y (F (y), z))), (48)

X(F (X(x, y)), F (x)) = F (x), (49)

X(x,X(y, z)) = X(Y (x, Y (y, z)), F (Y (F (x), Y (F (y), F (z))))), (50)

X(F (X(Y (x, e), Y (x, Y (y, e)))), F (X(Y (z, e), Y (z, Y (t, e))))) =

X(F (X(Y (x, Y (z, e))), Y (x, Y (y, Y (z, Y (u, e))))),

F (X(F (Y (F (Y (x, Y (y, e))), F (Y (z, Y (t, e)))), e)))). (51)

And conversely, every hyperidentity of the variety of De Morgan algebras
is a consequence of the hyperidentities: (39)-(41), (17),(44), (47), (48),
(49), (50), (51).

The hyperequational theory of the variety of De Morgan algebras is not
one-based. �

As noted above, in the study of hyperidentities usually two questions are
posed. The first one is the problem of characterization of hyperidentities
of the given algebra (class of algebras or variety), and the second one is
the problem of characterization of algebras with these hyperidentities. The
proofs of Theorems 31-33, 34 have an advantage that allows to receive the
characterization of algebras with hyperidentities of the corresponding vari-
eties simultaneously. Another structural characterization of algebras with
hyperidentities of the variety of Boolean algebras is given in the work [177].
For that reason the following concept of a Boolean sum is introduced there.
First we give the following natural definition.

Definition 4 An algebra is called super-Boolean algebra if it satisfies the
hyperidentities of the variety of Boolean algebras. An algebra is called super-
De Morgan algebra if it satisfies the hyperidentities of the variety of De
Morgan algebras.

Let A = (Q; Ω
⋃
{F}) be a T -algebra with one unary operation F . Let

(Qi; Ω), i ∈ I, be subsystems (subalgebras) for the algebra A, and let Ai =
(Qi; Ω

⋃
{Fi}) be an algebra with one unary operation Fi for any i ∈ I.

The algebra A = (Q; Ω
⋃
{F}) is called the Boolean sum of the algebras

Ai = (Qi; Ω
⋃
{Fi}), i ∈ I, if

a) Q =
⋃
i∈I Qi, Qi

⋂
Qj = ∅, where i, j ∈ I, i 6= j;

b) one can define a partial order ”6” on the index set I such that I(6)
is a Boolean algebra;
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c) if i 6 j, then there exists an isomorphism:

(ϕi, j, ε̃) : Ai ⇒ Aj, i, j ∈ I,

where ε̃(Fi) = Fj, ε̃(A) = A for any A ∈ Ω, and ϕi, i = ε and ϕi, j ·ϕj, k = ϕi, k,
where i 6 j 6 k;

d) for any i ∈ I there exists an isomorphism:(
hi, ī, ε̃

)
: Ai ⇒ Aī,

where h−1
i, ī

= hī, i and ϕi, 1 = hi, ī · ϕī, 1, and 1 is the unit of the Boolean

algebra I(6) and ī is the complement in this lattice;
e) for any A ∈ Ω, |A| = n > 2, and for any x1, . . . , xn ∈ Q the following

equality holds:

A(x1, . . . , xn) = A (ϕi1, i0(x1), . . . , ϕin, i0(xn)) ,

where x1 ∈ Qi1 , . . . , xn ∈ Qin , i1, . . . , in ∈ I, and i0 = i1 + . . . + in in the
lattice I(6);

f) for the unary operation F and any x ∈ Q:

F (x) = hi, ī (Fi(x)) ,

where x ∈ Qi.

Theorem 36 For every two Boolean algebras B and I there exists an alge-
bra A with the same signature (type), which is the Boolean sum of Boolean
algebras Ai, i ∈ I, where any Ai is isomorphic to B.

Proof. Let Ai = (Ai,+, ·,′ , 0, 1), i ∈ I be a Boolean algebra isomorphic to
B, where Ai ∩ Aj = ∅, i, j ∈ I, i 6= j. Let 0 and 1 be the identity elements
of Boolean algebra I, and ϕ0,i : A0 → Ai be an isomorphism from A0 to Ai,
i ∈ I. For i 6 k, where i, k ∈ I, we define isomorphism ϕi,k : Ai → Ak by
the equality:

ϕi,k = ϕ−1
0,i · ϕ0,k,

and isomorphism hi,̄i : Ai → Aī by the equality:

hi,̄i = ϕi,1 · ϕ−1
ī,1

for every i ∈ I. So, for any i ∈ I we have:

ϕi,i = ϕ−1
0,i · ϕ0,i = ε (= idAi

).

If i 6 j 6 k, where i, j, k ∈ I, we have:

ϕi,j · ϕj,k =
(
ϕ−1

0,i · ϕ0,j

)
·
(
ϕ−1

0,j · ϕ0,k

)
= ϕ−1

0,i · ϕ0,k = ϕi,k.
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Note the following equalities too:

ϕi,1 = hi,̄i · ϕī,1,

hī,i = ϕī,1 · ϕ−1
i,1 =

((
ϕ−1
i,1

)−1 · ϕ−1
ī,1

)−1

=
(
ϕi,1 · ϕ−1

ī,1

)−1

= h−1
i,̄i
.

Now we can define the required algebra A on the set
⋃
i∈I
Ai with the following

unary operation ā and the binary operations a+ b and a · b:

ā = hi,̄i(a
′),

where a ∈ Ai, i ∈ I,

a+ b = ϕi,i+j(a) + ϕj,i+j(b),

a · b = ϕi,i+j(a) · ϕj,i+j(b),

where a ∈ Ai and b ∈ Aj, i, j ∈ I.

Theorem 37 ([177]) An algebra A = Q(+, ·, −, 0, 1) with one unary, two
binary and two nullary operations is a super-Boolean algebra iff A is a
Boolean algebra or a Boolean sum of Boolean algebras.

The similar result is valid for the super-De Morgan algebras too [188].

The next results is the widely generalization of A. Tarski’s and Yu. Yer-
shov’s [301] classical result.

Theorem 38 (Yu. Movsisyan and L. Budaghyan ([196], [197])) Elemen-
tary theory of any super-Boolean algebra with one unary and one binary
operations is decidable.

Theorem 39 (Yu. Movsisyan and L. Budaghyan ([196], [197])) Elemen-
tary theory of the variety of super-Boolean algebras with one unary and one
binary operations is decidable.

Theorem 40 (Yu. Movsisyan and L. Budaghyan ([196], [197])) Elemen-
tary theory of any super-Boolean algebra with one unary and two binary
operations is decidable.

Theorem 41 (Yu. Movsisyan and L. Budaghyan ([196], [197])) Elemen-
tary theory of the variety of super-Boolean algebras with one unary and two
binary operations is decidable.
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9 Free super-Boolean algebras with two bi-

nary one unary and two nullary operations,

and super-Boolean functions

Note that from the hyperidentity X(x) = Y (x) of Boolean algebras follows
that any super-Boolean algebra has a unique unary operation, which we
will denote by ′. We will consider the super-Boolean algebras with two
binary, one unary and two nullary operations (i.e. constants) that satisfy
some natural identities (as given below). We will denote the variety of
such super-Boolean algebras by QB(2, 2, 1, 0, 0). Namely, an algebra A =
(Q; {+, ·, ′, 0, 1}) belongs to QB(2, 2, 1, 0, 0) if and only if it satisfies all the
hyperidentities of the variety of Boolean algebras and also the following two
identities:

x · 1 = x,

1′ = 0.

The free algebras of the variety QB(2, 2, 1, 0, 0) are called the free super-
Boolean algebras with two binary, one unary and two nullary operations.
Our main result in this section is the characterization of the finitely gener-
ated free super-Boolean algebras with two binary, one unary and two nullary
operations.

Recall that B = {0, 1}, D = {0, 1, a, b}. Let us construct a one-to-one
correspondence between the sets D and B ×B as follows:

0↔ (0, 0), a↔ (1, 0), b↔ (0, 1), 1↔ (1, 1).

We define the operations +, ·,∨,∧, ,̄ ′ on the set B ×B as follows:

(u, v)′ = (u′, v′),

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), (u1, v1) · (u2, v2) = (u1 · u2, v1 · v2),

(u1, v1) ∨ (u2, v2) = (u1 + u2, v1 · v2), (u1, v1) ∧ (u2, v2) = (u1 · u2, v1 + v2),

where the operations on the right hand side are the operations of the Boolean
algebra 2. These operations are isomorphic to the corresponding operations
on the set D (the one-to-one correspondence described above is an isomor-
phism).

However, if the tuple (y, z) ∈ B × B corresponds to x ∈ D then we will
write x = (y, z) (this causes no confusion).

Definition 5 A function f : Bn → D is called a super-Boolean function of
n variables.

We will consider the set B as a subset of D. And so all Boolean functions
are super-Boolean functions.
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Lemma 5 For any super-Boolean function f : Bn → D there exist two
Boolean functions f1, f2 : Bn → B such that for all x1, . . . , xn ∈ B the
following equality holds:

f(x1, . . . , xn) = (f1(x1, . . . , xn), f2(x1, . . . , xn)). (52)

These Boolean functions f1, f2 are uniquely determined by the super-Boolean
function f .

Proof: As we said above we will not distinguish the sets B × B and D.
So we can consider the projection functions f1 and f2 such that for any
x1, . . . , xn ∈ B fi(x1, . . . , xn) is the i-th coordinate of f(x1, . . . , xn) in the
set B × B, where i = 1, 2. Then f1 and f2 map Bn into B, i.e. they are
Boolean functions and obviously the equality (52) holds. The uniqueness of
such functions is obvious. �

Note that here for a Boolean function f : Bn → B we have f1 = f2 = f .

Theorem 42 For any super-Boolean function f : Bn → D there exist two
Boolean functions f1, f2 : Bn → B with identity:

f(x1, . . . , xn) = (a · f1(x1, . . . , xn)) + (b · f2(x1, . . . , xn)), (53)

where the operations are the operations on the set D defined above. These
Boolean functions f1, f2 are uniquely determined by the super-Boolean func-
tion f .

Proof: From equality (52) of Lemma 5 we have (we omit the variables):

f = (f1, f2) = ((1, 0) · (f1, f1)) + ((0, 1) · (f2, f2)) = (a · f1) + (b · f2).

The uniqueness follows from Lemma 5. �

Taking into account the equalities in D:

a · x = 0 ∨ x, b · y = 0 ∧ y, (x ∨ y)′ = x′ ∧ y′,
(x ∧ y)′ = x′ ∨ y′, x+ y = (1 ∧ (x ∨ y)) ∨ (0 ∧ x ∧ y), x, y ∈ D,

we get:

a · x+ b · y = (0 ∨ x) + (0 ∧ y) = (1 ∧ (0 ∨ x ∨ (0 ∧ y))) ∨ (0 ∧ y ∧ (0 ∨ x)) =

(1 ∧ x) ∨ (0 ∧ y) = (0 ∨ x′)′ ∨ (1 ∨ y′)′.

Thus we conclude that any super-Boolean function f can be represented in
the following form:

f = (0 ∨ f ′1)′ ∨ (1 ∨ f ′2)′,
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where f1 and f2 are the corresponding Boolean functions with the Boolean
operations ∨ and ′. Note that this form of super-Boolean functions is
the analogue of the b2-canonical form of terms with two binary functional
variables introduced in [174].

Now, we conclude that any super-Boolean function can be represented
in the following form:

f(x1, . . . , xn) =

(
0 ∨

∏
s∈S1

(∏
i∈s

xi ·
∏
i∈s

x′i

)′)′
∨

(
1 ∨

∏
s∈S2

(∏
i∈s

xi ·
∏
i∈s

x′i

)′)′
,

(54)
for uniquely determined sets S1, S2 ⊆ 2{1,...,n} (here the domain of variables
is the set B). This form is called the disjunctive normal form (DNF) of
the super-Boolean function f (and it is unique for a given super-Boolean
function). Note that here if S1 = S2 = Ø then f = 0 and if S1 = S2 = 2{1,...,n}

then f = 1.
Denote by SBn the set of all super-Boolean functions of n variables.

For any two functions f, g ∈ SBn define f + g, f · g, f ∨ g, f ∧ g, f ′

in the standard way, i.e. (fλg)(x) = f(x)λg(x), for all λ ∈ {+, ·,∨,∧},
and f ′(x) = (f(x))′, x ∈ Bn, where the operations on the right hand
side are the operations on the set D defined above. Thus we get the
algebras (SBn; {+,∨, ′, 0, 1}), (SBn; {+,∧, ′, 0, 1}), (SBn; {∨, ·, ′, 0, 1}),
(SBn; {∧, ·, ′, 0, 1}) (here the nullary operations are the constant functions
0(x) = 0 and 1(x) = 1 for all x ∈ Bn), which are Boolean quasilattices (and
they are isomorphic). Denote QBn = (SBn; {∨, ·, ′, 0, 1}).

Consider the projection functions

δin(x1, . . . , xn) = xi, i = 1, . . . , n,

as super-Boolean functions Bn → D. Clearly, (54) implies:

f =

(
0 ∨

∏
s∈S1

(∏
i∈s

δin ·
∏
i∈s

(δin)′

)′)′
∨

(
1 ∨

∏
s∈S2

(∏
i∈s

δin ·
∏
i∈s

(δin)′

)′)′
.

Now let us formulate the following functional representation result, which
relates to the Plotkin’s problem, too (see [186]).

Theorem 43 (Functional representation theorem) ([193]) The alge-
bra QBn is the free super-Boolean algebra with two binary, one unary and
two nullary operations (with the system of free generators ∆ = {δ1

n, . . . , δ
n
n}).

Hence every free n-generated super-Boolean algebra with two binary, one
unary and two nullary operations is isomorphic to the super-Boolean algebra
QBn.

Problem 7 To develop the super-Boolean analogue of the theory of Boolean
functions.
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10 Free super-De Morgan algebras with two

binary and one unary operations, and

super-De Morgan functions

Note that from the hyperidentity X(x) = Y (x) of De Morgan algebras it
follows that any super-De Morgan algebra has a unique unary operation,
which we will denote by ¯.

Denote by QD(2, 2, 1) the variety of all super-De Morgan algebras with
two binary and one unary operations. So the variety QD(2, 2, 1) is a hyper-
variety.

The free algebras of the variety QD(2, 2, 1) are called the free super-De
Morgan algebras with two binary and one unary operations. Our main result
in this section is the characterization of the finitely generated free super-De
Morgan algebras with two binary and one unary operations. Namely, in
this section we introduce the concept of super-De Morgan function and give
a functional representation of the free n-generated super-De Morgan alge-
bras with two binary and one unary operations through super-De Morgan
functions.

Denote E = D×D, where D = {0, 1, a, b}. We will identify the diagonal
subset ∆ = {(0, 0), (1, 1), (a, a), (b, b)} with the set D (we identify (x, x) with
x). And thus we will consider the set D as a subset of E. We define the
operations +, ·,∨,∧,¯ on the set E as follows. For u, v, u1, v1, u2, v2 ∈ D we
set:

(u, v) = (u, v),

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2), (u1, v1) · (u2, v2) = (u1 · u2, v1 · v2),

(u1, v1) ∨ (u2, v2) = (u1 + u2, v1 · v2), (u1, v1) ∧ (u2, v2) = (u1 · u2, v1 + v2),

where the operations on the right hand side are the operations of the De
Morgan algebra 4.

For an element α ∈ E we denote by α1 its first coordinate in D and by
α2 the second coordinate in D, i.e. α = (α1, α2). Obviously, α ∈ D if and
only if α1 = α2.

For a function f : Dn → E we define its projection functions f 1, f 2 :
Dn → D as follows:

f i(x1, . . . , xn) = (f(x1, . . . , xn))i, i = 1, 2.

So every function from Dn to E can be uniquely represented as a tuple of
functions from Dn into D: f = (f 1, f 2) (for simplicity we omit the variables).

Definition 6 A function f : Dn → E is called a super-De Morgan function
of n variables, if its projection functions f 1, f 2 are nonconstant De Morgan
functions.
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Clearly, all nonconstant De Morgan functions are super-De Morgan func-
tions (as we mentioned above, we consider the set D as a subset of E). And
for a nonconstant De Morgan function f we have f 1 = f 2 = f .

If we define c = (1, 0), d = (0, 1) ∈ E then we have: f = (f 1, f 2) =
(1, 0) · (f 1, f 1) + (0, 1) · (f 2, f 2) = c · f 1 + d · f 2.

It follows immediately from Definition 6 that there are (m2n−2)2 super-
De Morgan functions of n variables.

Denote by SDn the set of all super-De Morgan functions of n variables.
For any two functions f, g ∈ SDn define f + g, f · g, f ∨ g, f ∧ g, f
in the standard way, i.e. (fλg)(x) = f(x)λg(x), for all λ ∈ {+, ·,∨,∧},
and f ′(x) = (f(x))′, x ∈ Dn, where the operations on the right hand side
are the operations on the set D defined above. Clearly, the set SDn is
closed under these operations. Thus we get the algebras (SDn; {+,∨, ¯}),
(SDn; {+,∧, ¯}), (SDn; {∨, ·, ¯}), (SDn; {∧, ·, ¯}), which are super-De Mor-
gan algebras (and they are isomorphic). Denote QDn = (SDn; {∨, ·, ¯}).

Denote I = {({1, . . . , n}, {1, . . . , n})}, U = {({i},Ø), (Ø, {i}) : 1 ≤ i ≤
n}. Clearly these sets are antichains. We denote the De Morgan functions
corresponding to these antichains by fI and fU respectively, i.e.

fI(x1, . . . , xn) = x1 · . . . · xn · x1 · . . . · xn,
fU(x1, . . . , xn) = x1 + . . .+ xn + x1 + . . .+ xn = fI(x1, . . . , xn).

It is easy to see that for any nonconstant De Morgan functions f the
following equalities hold:

f + fI = f, f · fI = fI , f + fU = fU , f · fU = f.

And so we conclude that for any super-De Morgan function f the follow-
ing equality is true:

f = (f 1, f 2) = (f 1, fU) ∨ (fI , f
2) = (f 1, fI) ∨ (fU , f 2) =

(fI , fI) ∨ (f 1, f 1) ∨ (fU , fU) ∨ (f 2, f 2) = fI ∨ f 1 ∨ fU ∨ f 2.

Now from the representation of De Morgan functions in DNF we con-
clude that for any super-De Morgan function f : Dn → E there exist two
antichains S1, S2 ⊆ 2{1,...,n} × 2{1,...,n} (that are uniquely determined by the
function f) with S1, S2 6= Ø and S1, S2 6= {(Ø,Ø)} such that:

f(x1, . . . , xn) =
n∏
i=1

xi ·
n∏
i=1

xi ∨
∏

(s1,s2)∈S1

∏
i∈s1

xi ·
∏
i∈s2

xi ∨

∨
n∏
i=1

xi ·
n∏
i=1

xi ∨
∏

(s1,s2)∈S2

∏
i∈s1

xi ·
∏
i∈s2

xi. (55)
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Here the domain of the variables is the set D. This form is called the
disjunctive normal form (DNF) of the super-De Morgan function f . DNF is
unique for a given super-De Morgan function.

Consider the projection functions

δin(x1, . . . , xn) = xi, i = 1, . . . , n,

as super-De Morgan functions Dn → E. Clearly, (55) implies:

f =
n∏
i=1

δin ·
n∏
i=1

δin ∨
∏

(s1,s2)∈S1

∏
i∈s1

δin ·
∏
i∈s2

δin ∨

∨
n∏
i=1

δin ·
n∏
i=1

δin ∨
∏

(s1,s2)∈S2

∏
i∈s1

δin ·
∏
i∈s2

δin.

Now we arrive to the following result, which also relates to the Plotkin’s
problem (see [186]).

Theorem 44 (Functional representation theorem) ([194]) The alge-
bra QDn is the free super-De Morgan algebra with two binary and one unary
operations (with the system of free generators ∆ = {δ1

n, . . . , δ
n
n}). Hence, ev-

ery free n-generated super-De Morgan algebra with two binary and one unary
operations is isomorphic to the super-De Morgan algebra QDn.

Problem 8 To develop the super-De Morgan analogue of the theory of
Boolean functions.

11 Termal hyperidentities of varieties

It’s obvious that every variety of Ω-algebras is contained in the least solid
variety of Ω-algebras, which is defined by all termal hyperidentities of the
given variety and is called the solid variety of Ω-algebras, generated by the
given variety.

Example ([285]). The variety of commutative rings doesn’t satisfy any
termal hyperidentity except w = w . Hence, this variety generates the solid
variety of all Ω-algebras, where Ω is the signature of rings.

Theorem 45 ([174]) Termal hyperidentities of the variety of Boolean al-
gebras don’t have a finite base of hyperidentities.

Proof. The following hyperidentity is the termal hyperidentity of the
variety of Boolean algebras:

X (x1, . . . , xn−1, X (x1, . . . , xn−1, X (x1, . . . , xn))) = X (x1, . . . , xn) (56)
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for every natural n ∈ N .
We shall denote byH(m) the system of hyperidentities, which are termally

valid in the variety of Boolean algebras and have functional variables of the
arity 6 m. Then for every m there exists a hyperidentity w1 = w2, which is
termally satisfied in the variety of Boolean algebras and is not a consequence
of H(m). As a w1 = w2 one can take the hyperidentity (56), under n = 2m.
Indeed, if A = (Q; A) where Q is a free semilattice of rank n, generated by
{a1, . . . , an}, and the n-ary operation A is defined by the rule

A(x1, . . . , xn) =

{
x1, if {x1, . . . , xn} = {a1, . . . , an},
x1 + . . .+ xn, in other cases,

then in the termal algebra F(A) the hyperidentity (56) does not hold, under
n = 2m, although any hyperidentity from H(m) is true in F(A).

Corollary 10 Termal hyperidentities of the variety of Boolean algebras
don’t have a finite t-base of hyperidentities.

For the two-element Boolean algebra, the hyperidentity (56) means the
equivalence of the following two switching circuits:

-
-

-...

-

-
-

...

-

-
-

... -

-

-

-

...
-

The hyperidentity (56) in case n = 2 considered in [256] and [57] as well.

Theorem 46 Any unary termal hyperidentity of the variety of Boolean al-
gebras is a t-consequence of the following hyperidentities:

X(Y (X(X(x)))) = X(Y (x)), (57)

X(Y (X(Y (x)))) = X(Y (Y (X(x)))). (58)
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Proof. First we note that 0, 1, x, x′ are all unary term operation of every
Boolean algebra.

We can shortly denote any unary term (i.e. a term with unary functional
variables)

F (· · · (G(· · · (H(x)) · · · )) · · · )
by

(F • · · · •G • · · · •H)x.

Every unary term contains only one object variable and if the hyperidentity
ω1 = ω2 termally satisfies the variety of Boolean algebras, then [ω1] = [ω2] =
{x}, where [ω] is the set of the object variable of ω. So we can shortly denote
any unary term without an object variable:

F • · · · •G • · · · •H;

The unary term ω is called k-normal form on fucntional variables
(F1, . . . , Fk) if

ω = F1 • ω1 • F2 • ω2 • · · · • Fk • ωk,
where ωi = Fi1 • · · · • Fim , 1 6 i1 < · · · < i 6 im, i = 1, . . . , k or ωi = ∅. If
functional variables F1, . . . , Fk are fixed, this k-normal form is presented as:

ω = (ω1, . . . , ωk).

The following assertion is proved by induction: Let unary hyperidentity
u = v be termally satisfied in the variety of Boolean algebras. If k-normal
forms of u, v are u = (u1, . . . , uk) and v = (v1, . . . , vn), then u1 ≡ v1, . . .,
uk ≡ vk, i.e. u and v graphically coincide with (u ≡ v).

Indeed, if k = 1, then there exist two 1-normal forms on (F1): F1 and
F1 • F1. If F1(x) = x̄, then F1(x) 6= (F1 • F1)(x) = F1(F1(x)).

Let us prove that if the assertion is valid for k − 1, then it is valid for
k. Namely, if u` 6= v` for some ` = 1, . . . , k, then the following two cases are
possible.

1) ` < k. Let ` be the minimal number with this condition. By condition
of induction, the following hyperidentity is not termally valid in the variety
of Boolean algebras:

F1 • u1 • · · · • F` • u` = F1 • v1 • · · · • F` • v`.

Since ui ≡ vi for i < `, then substituting 0 or 1 for some Fi, where i 6 `, we
obtain a valid equality. So we obtain a wrong equality if we substitute x or
x′ for any Fi, where i = 1, . . . , `, i.e. we obtain the equality x = x′. Thus,
if in equality u = v, we substitute the same values for Fi, i = 1, . . . , `, and
Fl+1 = 0, we obtain 0 = 1. Contradiction!

2) ui ≡ vi, where i < k, and uk 6≡ vk. Thus there exists Fr in uk which
is not in vk. From the equality ui ≡ vi, where i < k, it follows that in the
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words u and v, we have different evenness of Fr. Now if in the equality u = v
we substitute x′ for Fr and x for Fi, i < k, we obtain x = x′. Contradiction!

In the next step we prove that one can reduce any unary term to the
k-normal form (cf.[174]) using the following unary termal hyperidentities of
the variety of Boolean algebras: (57), (58),

F = F • F • F, (59)

F •H •G •K • F •G = F •H •G •K •G • F ; (60)

Besides, if we substitute x for Y in (57), we obtain hyperidentity (59),
i.e. (57)⇒t(59), but the hyperidentity (60) follows from (57), (58):

F •H •G •K • F •G (57)
= F •H • F • F •G •K • F •G (57)

=

= F •H • F • F •G •K • F •G • F •G • F •G (58)
=

= F •H • F • F •G •K • F •G • F •G •G • F (57)
=

= F •H •G •K •G • F.

�

Problem 9 Characterize binary termal hyperidentities of the variety of
Boolean algebras.

Problem 10 Characterize algebras with termal hyperidentities (binary ter-
mal hyperidentities) of the variety of Boolean algebras.

Theorem 47 ([218]) Any non-trivial variety of lattices and the variety of
all semi-lattices don’t have a finite t-basis of termal hyperidentities.

Theorem 48 ([219]) Any binary termal hyperidentity of the variety of lat-
tices is a t-consequence of the following hyperidentities: (39), (41), (42)
and

X(X(x, y), X(u, v)) = X(X(x, u), X(y, v)), (61)

X(x, Y (y,X(z,X(u, v)))) = X(x, Y (y,X(Y (y, u), X(z,X(u, v)))). (62)

Theorem 49 ([219]). Any binary termal hyperidentity of the variety of
distributive lattices is a t-consequence of the following hyperidentities: (39),
(41), (61), (17).

Theorem 50 ([25]) The variety of all groups (metabelian groups, monoids)
doesn’t have a finite t-base of termal hyperidentities. Every such hyperiden-
tity is a consequence of one objective variable hyperidentities of this variety.
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Let L be some non-empty set of hyperidentities. We shall denote by KL
the class of all varieties of algebras, in every one of which, any hyperidentity
from L is termally valid. The class of varieties of algebras is called the
variety of varieties, if there exists a system of hyperidentities L, such that

K = KL.

In that case we say that the variety of varieties K is definable by the system
of hyperidentities L.

The intersection of varieties of varieties is the variety of varieties, namely:⋂
i∈I

KLi = K⋃
i∈I Li ,

that’s why for every classK of the varieties of algebras, there exists a smallest
(relative to set-theoretic inclusion) variety of varieties K∗ ⊇ K called the
variety of varieties generated by K. Obviously K∗ is defined by the system
of all termal hyperidentities of the class of varieties K.

Two varieties of algebras are called equivalent if their clones are isomor-
phic. If the class of varieties {Vi | i ∈ J} is a variety of varieties, then the
class of the corresponding clones {Cl(Vi) | i ∈ J} is a variety of clones. One
easily sees, that subvarieties correspond exactly to homomorphic image of
their clones, subclones correspond exactly to forming reduct varieties, prod-
ucts of varieties correspond to direct products of their clones. A variety of
varieties is closed under the formation of equivalent varieties, products of
varieties, reducts of varieties and subvarieties.

Theorem 51 ([285]) If a collection of varieties is closed under these oper-
ators, then it is a variety of varieties.

Sometimes the variety of varieties is called a hypervariety of varieties
([285]).

The class of varieties {Vi | i ∈ J} is called a quasivariety of varieties,
if the class of their clones {Cl(Vi) | i ∈ J} forms a quasivariety of clones.
About the characterization of quasivarieties of varieties see [173].

12 Algebraic foundation of logic

programming structures

In this section we shall consider bilattices as algebras with two separate
bounded lattices satisfying the connecting identities. In [15, 16] Belnap in-
troduced a logic, which is based on the algebraic structure called FOUR,
having four truth values. In the papers [75, 76, 77, 78] M.L. Ginsberg pro-
posed algebraic structures called bilattices that naturally generalize Belnap’s
FOUR.
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Definition 7 An algebra B = (Q; {+, ·,∨,∧, ,̄ 01, 11, 02, 12}) with four
binary, one unary and four nullary operations is called a bilattice if
(Q; {+, ·, 01, 11}) and (Q; {∨,∧, 02, 12}) are bounded lattices and B satisfies
the following identities:

x = x,
x+ y = x · y,
x · y = x+ y,
x ∨ y = x ∨ y,
x ∧ y = x ∧ y.

Recent developments in logic programming are related to the bilattices,
their applications in logic programming semantics and Ginsberg-Fitting the-
orem for characterization of (bounded) distributive bilattices ([78], [70]). See
([246], [12], [160], [161],[73], [211], [212], [184], [185], [201], [203],[34],[237])
about analogous results for interlaced, modular and Boolean bilattices.

The concept of hyperidentity offers a general approach and the general
point of view.

A bilattice is called interlaced if it (as a binary algebra) satisfies the
hyperidentity (42). An interlaced bilattice is called modular (distributive),
if it satisfies the hyperidentity (43) (accordingly hyperidentity (17)). A
distributive bilattice is called Boolean, if it admits a unary operation x→ x′

such that

(x′)′ = x, 0′i = 1i, 1
′
i = 0i, i = 1, 2,

and the hyperidentity

X(x,X(y, y′)′) = x (63)

is satisfied. Thus, a Boolean bilattice is an algebra with one unary, four
binary and four nullary operations. Observe that each of the introduced
classes of bilattices is a variety with nullary operations for the bounds. So
every modular bilattice is an algebra with two bounded modular lattices, ev-
ery distributive bilattice is an algebra with two bounded distributive lattices
and every Boolean bilattice is an algebra with two Boolean lattices which
have the same unary operation ′.

Theorem 52 ([246], [12], [161], [239], [211], [212]) A bilattice is interlaced
iff it is isomorphic to the superproduct of two bounded lattices.

Theorem 53 ([211], [212]) A bilattice is modular iff it is isomorphic to the
superproduct of two bounded modular lattices.

Theorem 54 ([78], [70], [103], [10], [160], [211], [212]) A bilattice is dis-
tributive iff it is isomorphic to the superproduct of two bounded distributive
lattices.
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Theorem 55 ([211], [212]) A bilattice is Boolean iff it is isomorphic to the
superproduct of two Boolean lattices.

Analogous results are valid for bilattices without bounds, and for bilat-
tices with negations [212].

In these theorems the term superproduct (in particular supersquare)
refers to the product in the category of algebras with bihomomorphisms
(ϕ, ψ̃) as morphisms. In particular, the superproduct of two lattices (mod-
ular, distributive, Boolean lattices) is a interlaced bilattice (modular, dis-
tributive, Boolean bilattice). If B1 is a distributive (Boolean) lattice of all
subsets of the set I, and B2 is a distributive (Boolean) lattice of all subsets
of the set J, then every subalgebra of the superproduct of B1 and B2 is
called a natural distributive (Boolean) bilattice of sets I, J . If B1 = B2,
we obtain the concept of natural distributive (Boolean) bilattice of the set
I = J .

Theorem 56 Every distributive bilattice is isomorphic to a natural distribu-
tive bilattice of some sets I, J .

Theorem 57 Every Boolean bilattice is isomorphic to a natural Boolean
bilattice of some sets I, J .

Analogous results are valid for distributive (and Boolean) bilattices with
negations.

Problem 11 For which varieties (axiomatizable classes) of algebras are the
Ginsberg-Fitting type theorems valid ?

Hyperidentities (42), (43) and (17) are in the Theorems 31, 32 and 33 in
which hyperidentities of lattices, modular lattices and distributive lattices
are characterized. The hyperidentity (63) is a consequence of the hyperi-
dentities from Theorem 34 in which hyperidentities of Boolean algebras are
characterized.

Corollary 11 A bilattice is interlaced iff it satisfies all hyperidentities of
the variety of lattices.

Corollary 12 A bilattice is modular iff it satisfies all hyperidentities of the
variety of modular lattices.

Corollary 13 A bilattice is distributive iff it satisfies all hyperidentities of
the variety of distributive lattices.

Corollary 14 A bilattice is Boolean iff it satisfies all hyperidentities of the
variety of Boolean algebras.
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The following results reducts with two binary operations of corresponding
bilattices are characterized (for the Plonka sum see [229]).

Corollary 15 Any reduct with two binary operations of interlaced bilattice
is either a lattice or the Plonka sum of lattices.

Corollary 16 Any reduct with two binary operations of modular bilattice is
either a modular lattice or the Plonka sum of modular lattices.

Corollary 17 Any reduct with two binary operations of distributive bilattice
is either a distributive lattice or the Plonka sum of distributive lattices.

Corollary 18 Any reduct with one unary and two binary operations of
Boolean bilattice is either a Boolean algebra or the Boolean sum of Boolean
algebras (see the section 18).

An algebra Q(+1, ◦1, 01, 11,+2, ◦2, 02, 12,
′ ,− ) with four binary, two

unary and four nullary operations is called a Boolean bilattice with
negation, if Q(+1, ◦1, 01, 11,+2, ◦2, 02, 12,

′ ) is a Boolean bilattice ,
Q(+1, ◦1, 01, 11,+2, ◦2, 02, 12,

− ) is a distributive bilattice with negation −

and the unary operations are commutative. By the equality

(x, y) = (y, x)

we convert the supersquare of Boolean algebra B into a Boolean bilattice
Bbool with negation. In particular, if B is a Boolean algebra of all subsets
of the set I, then every subalgebra of Boolean bilattice Bbool with negation
is called a natural Boolean bilattice with negation of the set I.

Theorem 58 Any Boolean bilattice with negation is isomorphic to Bbool for
some Boolean algebra B.

Theorem 59 Any Boolean bilattice with negation is isomorphic to a natural
Boolean bilattice with negation of some set I.

Theorem 60 Any Boole-De Morgan algebra is a reduct for some Boolean
bilattice with negation.

13 Free distributive bilattices and

bi-De Morgan functions

A bilattice B = (Q; {+, ·,∨,∧, ,̄ 01, 11, 02, 12}) is a distributive bilattice if
any two of its binary operations distribute over each other. In this case
(Q; {+, ·, ,̄ 01, 11) is a De Morgan algebra. Thus, as mentioned above, the
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distributive bilattices form a variety, the free algebras of which are called
free distributive bilattices. In this section we give characterization of the
finitely generated free distributive bilattices.

The superproduct of any two bounded distributive lattices is a distribu-
tive bilattice. And conversely, any distributive bilattice can be represented
as a superproduct of two bounded distributive lattices.

If D = {0, a, b, 1} and 4 = {D; {+, ·, ,̄ 0, 1} be the four-element De Mor-
gan algebra with two fixed points (it is unique up to isomorphism) then
F4 = (D; {+, ·,∨,∧, ,̄ 0, 1, b, a}) is the four-element distributive bilattice (it
is unique up to isomorphism).

Let us remind the definition of the De Morgan function in terms of clone
theory.

A function f : Dn → D is called a De Morgan function if the following
conditions hold:

(1) the function f preserves the unary relation {0, 1} ⊆ D,

(2) the function f preserves the binary relation
{(0, 0), (a, b), (b, a), (1, 1)} ⊆ D2,

(3) the function f preserves the order relation
ρ = {(b, b), (b, 0), (b, 1), (b, a), (0, 0), (0, a), (1, 1), (1, a), (a, a)} ⊆ D2.

Definition 8 (Bi-De Morgan function) A function f : Dn → D is
called a bi-De Morgan function of n variables if it preserves the order relation
ρ.

Examples
The constant functions f = 1 and f = 0 are De Morgan functions, but the
constant functions f = a and f = b are not. Instead, the latter two functions
are bi-De Morgan functions. The functions f(x) = x, g(x) = x, h(x, y) =
x · y, q(x, y) = x + y, where the operations on the right hand side are
the operations of the De Morgan algebra 4, are De Morgan functions. The
functions a ·x, x∨ y, x∧ y are bi-De Morgan functions, but not De Morgan
functions.

Denote the set of all bi-De Morgan functions of n variables by Bn. For
any two functions f, g : Dn → D define f + g, f · g, f ∨ g, f ∧ g, f in
the standard way, i.e. (fλg)(x) = f(x)λg(x), for all λ ∈ {+, ·,∨,∧}, and
f(x) = f(x), where the operations on the right hand side are the operations
on the set D. The set Bn is closed under the operations +, ·,∨,∧,̄ .

We get the following algebra: Bn = (Bn, {+, ·,∨,∧,̄ , 0, 1, b, a}) . Evi-
dently, the algebra Bn is a distributive bilattice.

Let us consider the projection functions

δin(x1, . . . , xn) = xi, i = 1, . . . , n,

as functions Dn → D.
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Theorem 61 A function f : Dn → D is a bi-De Morgan function if and
only if f can be represented in the form:

f = (a · f1) + (b · f2), (64)

where f1 and f2 are De Morgan functions of n variables (here the operations
on the right hand side are the operations of the algebra F4). In that case the
representation is unique.

Corollary 19 There are m2
2n bi-De Morgan functions of n variables.

Corollary 20 For every bi-De Morgan function f of n variables there exists
a unique pair of antichains (S1, S2) (S1, S2 ⊆ 2{1,...,n} × 2{1,...,n}) such that:

f(x1, . . . , xn) =

a ·
∑

(s1,s2)∈S1

(∏
i∈s1

xi ·
∏
i∈s2

xi

)
+ b ·

∑
(s1,s2)∈S2

(∏
i∈s1

xi ·
∏
i∈s2

xi

)
, (65)

where the operations on the right hand side are the operations of the algebra
F4.

The form (65) is called the disjunctive normal form of bi-De Morgan
function f .

The next result is related to the Plotkin’s problem, too (see [186]).

Theorem 62 (Functional representation theorem) ([198]) The alge-
bra Bn is a free distributive bilattice with the system of free generators
∆ = {δ1

n, . . . , δ
n
n}. Hence every free n-generated distributive bilattice is iso-

morphic to the distributive bilattice Bn.

Problem 12 To develop the bi-De Morgan analogue of the theory of Boolean
functions.

14 On the Schauffler type theorems

During the second World War, while working for the German cryptog-
raphy service R. Schauffler developed a method of error detection based
on the usage of ∀∃(∀)-identity of associativity [253], [254], [255] (cf. [84],
[257],[258],[270],[271]). Schauffler’s main result is:

Theorem 63 ([255]) The following conditions are equivalent for any non-
empty set Q:
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1) For every quasigroups Q(X) and Q(Y ) there exist quasigroups Q(X ′)
and Q(Y ′) with identity:

X(x, Y (y, z)) = X ′(Y ′(x, y), z); (66)

2) For every quasigroups Q(X) and Q(Y ) there exist quasigroups Q(X ′)
and Q(Y ′) with identity:

X(Y (x, y), z)) = X ′(x, Y ′(y, z)); (67)

3) Cardinality |Q| 6 3.

The following results are extensions of the Theorem 63.

Theorem 64 ([175]) The following conditions are equivalent for any non-
empty set Q:

4) For every loops Q(X) and Q(Y ) there exist quasigroups Q(X ′) and
Q(Y ′) with identity (66);

5) For every loops Q(X) and Q(Y ) there exist quasigroups Q(X ′) and
Q(Y ′) with identity (67);

6) For every loops Q(X) and Q(Y ) there exist loops Q(X ′) and Q(Y ′)
with identity (66);

7) For every loops Q(X) and Q(Y ) there exist loops Q(X ′) and Q(Y ′)
with identity (67);

8) In the algebra (Q;LQ) the hyperidentity

X(x, Y (y, z)) = Y (X(x, y), z)

is valid, where LQ is the set of all loop operations on Q;

9) In the algebra (Q;LQ) the hyperidentity

X(x, Y (y, z)) = X(Y (x, y), z)

is valid;

10) For every quasigroup Q(X) there exist quasigroups Q(X ′) and Q(Y ′)
with identity:

X(x,X(y, z)) = X ′(Y ′(x, y), z); (68)

11) For every quasigroup Q(X) there exist quasigroups Q(X ′) and Q(Y ′)
with identity:

X(X(x, y), z)) = X ′(x, Y ′(y, z)); (69)

12) Cardinality |Q| 6 3.
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Theorem 65 ([120]) The following conditions are equivalent for any non-
empty set Q:

13) For every groupoids Q(X) and Q(Y ) there exist groupoids Q(X ′) and
Q(Y ′) with identity (66);

14) For every groupoids Q(X) and Q(Y ) there exist groupoids Q(X ′) and
Q(Y ′) with identity (67);

15) The set Q is infinite or one-element.

The following result is general than Theorems 63, 64 and 65.

Theorem 66 ([175]) The following conditions are equivalent for any non-
empty set Q:

16) For every quasigroups Q(X) and Q(Y ) there exist groupoids Q(X ′)
and Q(Y ′) with identity (66);

17) For every quasigroups Q(X) and Q(Y ) there exist groupoids Q(X ′)
and Q(Y ′) with identity (67);

18) For every loops Q(X) and Q(Y ) there exist groupoids Q(X ′) and
Q(Y ′) with identity (66);

19) For every loops Q(X) and Q(Y ) there exist groupoids Q(X ′) and
Q(Y ′) with identity (67);

20) For every quasigroup Q(X) there exist groupoids Q(X ′) and Q(Y ′)
with identity (68);

21)For every quasigroup Q(X) there exist groupoids Q(X ′) and Q(Y ′)
with identity (69);

22) The set Q is infinite or cardinality |Q| 6 3.

Corollary 21 Non associative loop Q(◦) is infinite iff the following func-
tional equation has a solution in the set Q:

x ◦ (y ◦ z) = A(B(x, y), z);

Corollary 22 Non associative loop Q(◦) is infinite iff the following func-
tional equation has a solution in the set Q:

(x ◦ y) ◦ z = A(x,B(y, z)).

Problem 13 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

A(x,B(y, z)) = C(D(x, y), z)

is valid.
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Problem 14 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

A(B(x, y), z)) = C(x,D(y, z))

is valid.

Problem 15 Characterize the semigroups Q(◦) with the following condi-
tion: for any binary term operation A of Q(◦) there exist two binary term
operations C,D of Q(◦) such that the identity

A(x,A(y, z)) = C(D(x, y), z)

is valid.

Problem 16 Characterize the semigroups Q(◦) with the following condi-
tion: for any binary term operation A of Q(◦) there exist two binary term
operations C,D of Q(◦) such that the identity

A(A(x, y), z)) = C(x,D(y, z))

is valid.

Problem 17 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

A(D(x, y), z)) = C(x,B(y, z))

is valid.

Problem 18 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

A(D(x, y), z)) = B(x,C(y, z))

is valid.

Problem 19 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

D(A(x, y), z)) = C(x,B(y, z))

is valid.

Problem 20 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

D(A(x, y), z)) = B(x,C(y, z))

is valid.



HYPERIDENTITIES AND RELATED CONCEPTS 53

15 ∀∃∗(∀)-identity of distributivity and

hyperidentities

For functional equations in algebra, logics, real analysis and topology see
[2, 3, 5, 18, 55, 67, 119, 120, 121, 122, 123, 148, 149, 150].

However the solution of general functional equation of left (right) dis-
tributivity with quasigroup operations is open [2, 3, 5, 119]. The well known
Belousov’s Theorem [17] stated that every distributive quasigroup is isotopic
to a certain commutative Moufang loop (cf. [104],[146],[273]).

Lemma 6 If the binary algebra Q(A,B,H,K) with four operations satisfies
the following identity

A(x,B(y, z)) = H(K(x, y), K(x, z)),

where A and K are quasigroup operations, then quasigroups Q(A) and Q(K)
are isotopic to some quasigroup Q(A0), and groupoids Q(B) and Q(H) are
isotopic to some idempotent groupoid Q(B0) such that the operations A0 and
B0 satisfy the identity of left distributivity:

A0(x,B0(y, z)) = B0(A0(x, y), A0(x, z)).

Besides,

A(x,B0(y, z)) = B
L−1
A

0 (A(x, y), A(x, z)),

where LA(x) = A(0, x) and 0 is a fix element in Q and

Bα
0 (x, y) = α−1B0(αx, αy).

In particular, if the operation B is idempotent, then

A(x,B(y, z)) = BL−1
A (A(x, y), A(x, z)).

If Q(B) is a quasigroup, then Q(H) and the idempotent groupoid Q(B0) are
also quasigroups.

We say that the binary algebra (Q; Σ) with quasigroup operations sat-
isfies the ∀∃∗(∀)-identity of left distributivity, if for every quasigroup opera-
tions X, Y ∈ Σ there exist quasigroup operations X ′, Y ′ on Q with identity:

X(x, Y (y, z)) = X ′(Y ′(x, y), Y ′(x, z));

A binary algebra (Q; Σ) with quasigroup operations is called Dr-algebra, if
it satisfies the ∀∃∗(∀)-identity of left distributivity and hyperidentity of dis-
tributivity (16). Dl-algebra is defined in the dual way, i.e. by hyperidentity
of distributivity (18) and ∀∃∗(∀)-identity of right distributivity:

X(Y (x, y), z)) = X ′(Y ′(x, z), Y ′(y, z));
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Theorem 67 If (Q; Σ) is a Dl-algebra, then all quasigroup operations from
Σ are distributive and consequently isotopic to commutative Moufang loops.
Every Dl-algebra satisfies the following hyperidentity:

X(Y (X(y, z), z), x) = X(Y (X(y, x), X(z, x)), X(z, x)).

Theorem 68 If (Q; Σ) is a Dr-algebra, then all quasigroup operations from
Σ are distributive and consequently isotopic to commutative Moufang loops.
Every Dr-algebra satisfies the following hyperidentity:

X(x, Y (y,X(y, z))) = X(X(x, y), Y (X(x, y), X(x, z))).

Corollary 23 If the quasigroups Q(A), Q(K) and a groupoid Q(H) satisfies
the following identities:

A(x,A(y, z)) = A(A(x, y), A(x, z)),

A(A(y, z), x) = H(K(y, x), K(z, x)),

then Q(A) and Q(K) are isotopic to a commutative Moufang loop.

Corollary 24 If the quasigroups Q(A), Q(K) and a groupoid Q(H) satisfies
the following identities:

A(A(y, z), x) = A(A(y, x), A(z, x)),

A(x,A(y, z)) = H(K(x, y), K(x, z)),

then Q(A) and Q(K) are isotopic to a commutative Moufang loop.

Corollary 25 If the quasigroups Q(A), Q(K), Q(K ′) and groupoids Q(H),
Q(H ′) satisfies the identities:

A(x, x) = x,

A(A(y, z), x) = H(K(y, x), K(z, x)),

A(x,A(y, z)) = H ′(K ′(x, y), K ′(x, z)),

then Q(A), Q(K) and Q(K ′) are isotopic to a commutative Moufang loop.

Let Σl be the set of loop operations corresponding to the quasigroup
operations from Dl-algebra (Q; Σ) according to the previous Theorem. We
obtain a new algebra (Q; Σl).

Let Σr be the set of loop operations corresponding to the quasigroup
operations from Dr-algebra (Q; Σ) according to the previous Theorem, too.
We obtain an algebra (Q; Σr).

Our next result shows the connection (through the hyperidentity) be-
tween the loop-operations from Σl and Σr.
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Theorem 69 If (Q; Σ) is a D`-algebra (Dr-algebra), then the algebra (Q; Σl)
(algebra (Q; Σr)) satisfies the following non-trivial hyperidentity:

X(x, Y (x,X(y, z))) = X(Y (x, y), Y (x, z)). (70)

Problem 21 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

A(x,B(y, z)) = C(D(x, y), D(x, z))

is valid.

Problem 22 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist three
binary term operations C,D,H of Q(◦) such that the identity

A(x,B(y, z)) = C(D(x, y), H(x, z))

is valid.

Problem 23 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist two binary
term operations C,D of Q(◦) such that the identity

A(B(x, y), z)) = C(D(x, z), D(y, z))

is valid.

Problem 24 Characterize the semigroups Q(◦) with the following condi-
tion: for any two binary term operations A,B of Q(◦) there exist three
binary term operations C,D,H of Q(◦) such that the identity

A(B(x, y), z)) = C(D(x, z), H(y, z))

is valid.

16 Binary representations of groups and

semigroups. Binary G-sets, their

hyperidentities

Let us consider the monoid O
(2)
p Q of binary operations on Q under the

multiplication:
f · g(x, y) = f(x, g(x, y)).
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Let G be an arbitrary semigroup, which in general has no connection with
Q; Every homomorphism of semigroups ϕ : G → O

(2)
p Q is called the bi-

nary representation of G on Q. If G is a monoid with identity element e,
then the homomorphism ϕ is considered as a homomorphism of semigroups
with nullary operations e and δ2

2, i.e. ϕ(e) = δ2
2. If homomorphism ϕ is a

monomorphism, then the binary representation is called faithful. Binary rep-
resentation ϕ : G→ O

(2)
p Q of monoid G is called symmetric, if (ϕα)∗ ∈ ϕ(G)

for every α ∈ G,α 6= e, where A∗(x, y) = A(y, x) for all x, y ∈ Q.
A set Q with a mapping

G×Q2 → Q

is called a (left) binary G-set, if it associates with each α ∈ G and every pair
(x, y) ∈ Q2 with an element α(x, y) ∈ Q such that the following condition is
valid:

α · β(x, y) = α(x, β(x, y))

for all x, y ∈ Q and all α, β ∈ G. If G is a monoid with an identity element
e ∈ G, we add the condition e(x, y) = y to the definition of binary G-set.
So the elements of G act on Q as binary operations α : (x, y) → α(x, y).
Consequently, Q becomes a binary G-algebra satisfying the identity:

α · β(x, y) = α(x, β(x, y)).

Hence if Q is a binary G-set, then the mapping ϕ : α → α(x, y) defines a
binary representation of G on Q, and vice versa.

Examples. 1)If G(◦) is a semigroup, then equality

α(x, y) = α ◦ y,

where x, y, α ∈ G, converts Q = G into a binary G-set ;
2)If G(◦) is a group, then the equality

α(x, y) = y ◦ x−1 ◦ α−1 ◦ x,

where x, y, α ∈ G, converts Q = G into a binary G-set.
We say that the binary G-set Q or the binary representation of G on Q

satisfies the hyperidentity w1 = w2 (or the other formula), if the correspond-
ing binary G-algebra satisfies this hyperidentity (or the given formula). A
binary representation is said to be right invertible if the corresponding bi-
nary G-algebra Q is right invertible, that is for arbitrary α ∈ G and a, b ∈ Q
the equation α(a, x) = b has a unique solution x in Q. A binary representa-
tion is said to be orthogonal, if any two operations α 6= β of corresponding
binary G-algebra is orthogonal ([42, 69, 186]). A binary representation of G
on Q is said to be transitive if Q is a singleton or else for all a, b, c in Q with
b 6= a 6= c there exists an element α in G with equality α(a, b) = c.
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Lemma 7 Every binary representation of a group is a right invertible.

Proposition 4 (Binary Cayley theorem for semigroups). Every semigroup
has a faithful binary representation satisfying the hyperidentities: (18), (61).

Proposition 5 (Binary Cayley theorem for idempotent semigroups). Ev-
ery idempotent semigroup has a faithful binary representation satisfying the
hyperidentities: (18), (61), (41).

Proposition 6 (Binary Cayley theorem for commutative semigroups). Ev-
ery commutative semigroup has a faithful binary representation satisfying
the hyperidentities: (17), (20).

Theorem 70 ( [172], [178]: Binary Cayley theorem for multiplicative
groups of fields). A monoid is the multiplicative group of a field iff it has a
faithful transitive right invertible binary representation satisfying the hyper-
identities: (17), (39).

Theorem 71 (Binary Cayley theorem for multiplicative groups of Grätzer
algebras). A monoid is the multiplicative group of a Grätzer algebra iff it
has a faithful transitive right invertible symmetric and orthogonal binary
representation satisfying the hyperidentity (39).

Theorem 72 The multiplicative groups of finite Grätzer algebras and finite
near-fields are the same (for definitions see [186]).

The investigation of topological binary representations for topological
semigroups and topological groups leads to the solution of Pontryagin’s prob-
lem on the characterization of topological multiplicative groups of topologi-
cal fields.

17 Other Open Problems

Along with the problems above, naturally there arise a set of other problems
about the characterization of hyperidentities and termal hyperidentities of
varieties related to classical varieties of groups, rings, lattices and Boolean
algebras. The solutions of these problems could serve for the development
of the next steps of the results and concepts involved in the current survey.

1. Characterize {1, 2}-algebras with hyperidentities of commutativity
(40), associativity (41) and Robbins’s hyperidentity (46). Can every
{1, 2}-algebra with these three hyperidentities and one unary operation
be extended to an algebra with hyperidentities of Boolean algebras?
Characterize subdirectly irreducible T = {1, 2}-algebras with these
three hyperidentities.
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2. Let Gr be the class of all Grätzer algebras, and let qGr be the class of
all Grätzer q-algebras (see [186]).

Characterize hyperidentities and termal hyperidentities of Gr.

Characterize hyperidentities and termal hyperidentities of qGr.

Characterize algebras with hyperidentities (termal hyperidentities) of
Gr.

Characterize algebras with hyperidentities (termal hyperidentities) of
qGr.

3. Characterize hyperidentities and termal hyperidentities of the variety
of De Morgan bisemigroups.

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety of De Morgan bisemigroups.

4. Characterize hyperidentities and termal hyperidentities of the variety
of Boole-De Morgan algebras.

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety of Boole-De Morgan algebras.

5. Characterize hyperidentities of the variety of bilattices with negations;

Characterize hyperidentities of the variety of interlaced bilattices with
negations;

Characterize hyperidentities of the variety of modular bilattices with
negations;

Characterize hyperidentities of the variety of distributive bilattices
with negations;

Characterize hyperidentities of the variety of Boolean bilattices with
negations .

6. A lattice ordered group (briefly an l-group) is an algebra A =
Q(+, ·, ◦) with tree binary operations such that Q(+, ·) is a lattice,
A(◦) is a group, and the group multiplication is isotone in each of its
argument. Actually, the lattice reduct Q(+, ·) of an l-group in always
distributive, and the group operation ◦ distributes over lattice joins
and meets. Indeed, the maps x → a ◦ x and x → x ◦ a are ordinary
automorphisms of Q(+, ·). Let Lp be the variety of all l-groups.

Characterize hyperidentities and termal hyperidentities of the variety
Lg. Is every hyperidentity of the variety Lg the consequence of hy-
peridentities with functional rank 6 2 of this variety? (posed by V.
Garbunov).
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Characterize algebras with hyperidentities (termal hyperidentities) of
the variety Lg.

7. An algebra Q(+, ·, →) with three binary operations is called Heyting
algebra (see H. Rasiowa [241], who calls them pseudo-Boolean alge-
bras), if it satisfies the following conditions:

Q(+, ·) is a distributive lattice,

(x→ y) · y = y,

x · (x→ y) = x · y,
x→ (y · z) = (x→ y) · (x→ z),

(x+ y)→ z = (x→ z) · (y → z).

These algebras were introduced by G. Birkhoff under a different name,
Brouwerian algebras, and with a different notation (v : u for u → v).
For example, if Q(+, ·, ′) is a Boolean algebra and x → y = x′ + y,
then Q(+, ·, →) is a Heyting algebra. Let He be the variety of all
Heyting algebras.

Characterize hyperidentities and termal hyperidentities of the variety
He. Is every hyperidentity of the variety He the consequence of hy-
peridentities with functional rank 6 2 of this variety?

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety He.

Characterize hyperidentities and termal hyperidentities of polyadic
Heyting algebras.

Characterize hyperidentities and termal hyperidentities of cylindric
Heyting algebras.

8. An Ockham algebra ([26], [106]) is an algebra A = Q(+, ·, f) such
that Q(+, ·) is a distributive lattice and f is an antiendomorphism of
Q(+, ·), i.e. for every x, y ∈ Q:

f(x+ y) = f(x) · f(y),

f(x · y) = f(x) + f(y).

Let O be the variety of all Ockham algebras.

Characterize hyperidentities and termal hyperidentities of the variety
O.

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety O.
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The equation
f 2(x) = x

defines the subvariety of De Morgan algebras.

Characterize termal hyperidentities of the variety of De Morgan alge-
bras.

Characterize algebras with termal hyperidentities of the variety of De
Morgan algebras.

9. A modal algebra ([32]) is an algebra A = Q(+, ·, ′, f, 0, 1) such that
Q(+, ·, ′, 0, 1) is a Boolean algebra and f is a unary operation (the
modal operator) that satisfies the identity f(1) = 1 and

f(x · y) = f(x) · f(y).

Modal algebras have been extensively investigated because of their
connection with the modal logic. Let M be the variety of all modal
algebras.

Characterize hyperidentities and termal hyperidentities of the variety
M.

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety M.

Several varieties of modal algebras have received a great deal of atten-
tion in the investigations. We mention the varieties of interior algebras,
monadic algebras, diagonalizable algebras, etc.

10. A relation algebra ([281], [107], [155], [156], [131], [105], [132], [133],
[134], [135], [136], [137], [138]) is an algebra A = Q(+, ·, ′, ◦, −, 0, 1)
such that Q(+, ·, ′, 0, 1) is a Boolean algebra and Q(◦) is a monoid,
and that the identities

(x+ y) ◦ z = (x ◦ z) + (y ◦ z),

x+ y = x+ y,

x ◦ y = y ◦ x,
x = x,

x ◦ (x ◦ y)′ 6 y′

hold. Let Re be the variety of all relation algebras.

Characterize hyperidentities and termal hyperidentities of the variety
Re. Is every hyperidentity of the variety Re the consequence of hyper-
identities with functional rank 6 2 of this variety?

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety Re.
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Characterize hyperidentities and termal hyperidentities of all symmet-
ric relation algebras (x = x).

Characterize hyperidentities and termal hyperidentities of all commu-
tative relation algebras (x ◦ y = y ◦ x).

Characterize hyperidentities and termal hyperidentities of all (full) re-
lation algebras of binary relations.

Characterize hyperidentities and termal hyperidentities of all repre-
sentable relation algebras.

Clearly, every symmetric relation algebra is commutative and every
Boolean algebra is a relation algebra with

x ◦ y = x · y and x = x.

11. Characterize hyperidentities of the variety of all rings. Are all hyperi-
dentities, satisfied by the variety of all rings, the consequences of one
object variable hyperidentities of this variety? (posed by B.I.Plotkin).

Characterize binary algebras with hyperidentities of the variety of all
rings.

Characterize hyperidentities of all fields.

Characterize hyperidentities of all fields with a fix characteristic.

Characterize hyperidentities of all finite fields.

12. The loop Q(·) is called a Moufang loop ([164], [38], [20], [125], [170],
[274]) if one of the following equivalent identities

(zx · y)x = z(x · yx),

x(y · xz) = (xy · x)z,

xy · zx = x(yz · x)

is valid in it. Commutative Moufang loops are characterized by one
identity:

x2 · yz = xy · xz.

Moufang’s theorem([164], [38], [20]). If the relation a · bc = ab · c
is valid in a Moufang loop for its some three elements a, b, c, then the
subloop, generated by these three elements, is a group.

Characterize termal hyperidentities of the variety of all Moufang loops
(commutative Moufang loops) (posed by V.D.Belousov).

Characterize algebras with termal hyperidentities of the variety of all
Moufang loops (commutative Moufang loops).
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Characterize termal hyperidentities of G-loops (see G.M.Bergman
([25])).

13. Let P be a linearly ordered field. The interval (0, 1) ⊆ P is a semigroup
under multiplication of field P . The binary algebra A = (Q, Σ) is
called a stochastic algebra over P (in other terminology is a convexor
([266]) or a barycentric algebra ([244])), if A is a Ω-algebra, under
Ω = (0, 1), and the following equations are true:

S1. α(x, x) = x,

S2. α(x, y) = (1− α)(y, x),

S3. α(x, β(y, z)) = αβ(α(1−β)
1−αβ (x, y), z)

for any x, y, z ∈ Q and α, β ∈ (0, 1). The first axiom is a hy-
peridentity of idempotency, while the second and third equations are
∀∃(∀)-identities of commutativity and associativity. Non-trivial hy-
peridentities (17) and (19) of left and right distributivity are satisfied
in every stochastic algebra:

β (α(x, y), α(x, z)) = βα

(
β(1− α)

1− βα
(α(x, y), x) , z

)
=

= βα

(
1− βα− β + βα

1− βα
(x, α(x, y)) , z

)
=

= βα

(
(1− β)α

1− βα
(x, y), z

)
= α (x, β(y, z)) ,

while from the hyperidentity (17) and axiom S.2 implies the hyperi-
dentity (19).

In addition, the solution of L.A.Skornyakov’s problem about the char-
acterization of ideals’ lattices of stochastic algebras is obtained taking
into account these facts.

Theorem 73 A lattice of ideals of every stochastic algebra is isomor-
phic to a lattice of ideals of some semilattice.

Theorem 74 Every ideal of a stochastic algebra is an intersection of
its simple ideals.

Let Stoch be the variety of all stochastic algebras.

Characterize hyperidentities (termal hyperidentities) of the variety
Stoch (posed by L.A.Skornyakov).

Characterize algebras with hyperidentities (termal hyperidentities) of
the variety Stoch.
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14. Characterize termal hyperidentities of the class of BCK-algebras
(BCH-algebras, BCC-algebras) ([101], [102]) (posed by K.Iseki).
Characterize algebras with termal hyperidentities of BCK-algebras
(BCH-algebras, BCC-algebras).

15. Obtain categorical characterization of

a) hypervarieties of Ω-algebras;

b) hypervarieties of T -algebras ;

c) solid varieties of Ω-algebras;

d) solid hypervatieties of T -algebras;

(posed by J.D.H.Smith).

See [127], [231] and [291].

16. a) Is elementary theory of any De-Morgan algebra decidable?

b) Is elementary theory of the variety of De-Morgan algebras decid-
able?

c) Is elementary theory of any super-De Morgan algebra with one unary
and one binary operations is decidable?

d) Is elementary theory of the variety of super-De Morgan algebras
with one unary and one binary operations is decidable?

e) Is elementary theory of any super-De Morgan algebra with one unary
and two binary operations is decidable?

f) Is elementary theory of the variety of super-De Morgan algebras
with one unary and two binary operations is decidable?

See [252], [281] and [301].

17. In the paper [308] free algebras of the variety of algebras with two
binary operations satisfying the hyperidentity of associativity (ass)1

were characterized.

a) Characterize free algebras of the variety of algebras with two binary
operations satisfying the hyperidentity of associativity (ass)2.

b) Characterize free algebras of the variety of algebras with two binary
operations satisfying the hyperidentity of associativity (ass)3.
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