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Editorial on the Research Topic

Neural Computation in Embodied Closed-Loop Systems for the Generation of Complex

Behavior: From Biology to Technology

1. INTRODUCTION

The brain of biological organisms is a highly complex and very efficient computing unit. It
can deal with a multitude of tasks from low-level sensorimotor coordination to high-level
cognition. Specifically, it can process high-dimensional sensory information and, dependent on
this, generate coordinated motor commands in real time, resulting in actions (like, locomotion and
manipulation). Simultaneously, it can also perform cognitive functions (such as navigation, goal-
oriented behavior, reasoning and decision making, interaction, communication). This amazing
performance is achieved by using the full capacity of its neural dynamics, learning, memory, and
adaptation as well as by interacting with the environment through its body (i.e., sensory-motor
system). Thus, actions and cognition require dynamical brain-body-environment interactions and
thereby cannot be disembodied. A traditional view of embodiment has also emphasized that
complex behavior emerges from continuous and dynamical interactions between computational
and physical means with the environment (Wilson, 2002; see also the embodiment scheme in Pfeifer
et al., 2007). While this radical scientific concept has been promoted since the last three decades
(Brooks, 1991; Chiel and Beer, 1997; Calvo and Gomila, 2008; Pfeifer et al., 2014), the detailed
interaction of the (neural) computation within and across different brain areas, as the sensory,
motor, and higher integrative areas, with the environment to generalize complex and adaptive
behaviors have not been fully addressed.

According to this, this Research Topic called researchers from different fields (including
Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent
developments and results and to update our research community with remaining open questions.
The topic has in total 17 articles which cover neural and morphological computations as well
as the transfer of results to real world applications, like prosthesis and orthosis control and
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neuromorphic hardware implementation. Eight articles focus on
the three main areas (sensory, motor, and integrative areas) of the
controller or brain (Figure 1). Among these, two focus on neural
computation mechanisms in sensory areas for action recognition
of a human agent

(Layher et al.) and for acoustic motion perception (Shaikh
and Manoonpong), twointegrative areas for motor-skill learning
(Arena et al.), navigation learning (Goldschmidt et al.), motor
planning and internal representations (Schilling and Cruse), and
self-organized complex locomotion patterns (Martin et al.). In
addition, two articles present neural closed-loop architectures
that link between sensory and motor areas for reaching and
grasping (Knips et al.) and for, e.g., obstacle avoidance behavior
(Pasemann). Three articles consider a tight interaction between
the body and the sensory and motor areas for sensorimotor
coordination of legged robots (Aoi et al.; Owaki et al.) and a
robot arm (Der and Martius). One article provides an insight on
the computation of morphological body for optimal locomotion
learning (Urbain et al.). Regarding to technology transfer, two
articles show the transfer of the principles of the nervous system
for orthosis (Braun et al.) and prosthesis control (Oyama et al.)
and one shows the transfer to neuromorphic hardware-based

FIGURE 1 | The diagram of an embodied closed-loop system. The system concerns an agent that is situated in the environment. It can perceive the environmental

information through its sensors and perform its actions using its motors. In principle, the agent consists of two main components: Nervous system (or controller) and

body. There are three main areas inside the nervous system: Sensory, motor, and higher integrative areas. In the embodied perspective, while all external and internal

stimuli are processed in the nervous system, this computational processing can be offloaded to the body (i.e., morphological computation) for a successful interaction

with the environment (see text for more details).

control (Milde et al.). Based on these contributions, we organize
subsections into two main categories: Embodied closed-loop
systems and their technology transfer.

2. OVERVIEW

2.1. Embodied Closed-Loop Systems
An embodied closed-loop system or a brain-body-environment
system (Chiel and Beer, 1997) is generally formed by three
main ingredients: Nervous system (or controller), body, and the
environment. The nervous system has in general three subareas:
Sensory, motor, and higher integrative areas. Environmental
information is perceived through sensors and processed in the
sensory areas. The sensory areas can be also influenced by
forward internal models (Kawato, 1999) embedded in the higher
integrative areas for sensory prediction and noise cancellation
(von Holst and Mittelstaedt, 1950; Blakemore et al., 1999) as well
as state estimations (Frens and Donchin). The outputs of the
sensory areas are transmitted to motor and higher integrative
areas. The motor areas translate the sensory information into
motor commands to control the body. They also send a copy of
motor commands (efference copy) to the forward models. The

Frontiers in Neurorobotics | www.frontiersin.org 2 August 2018 | Volume 12 | Article 53

https://doi.org/10.3389/fnbot.2017.00013
https://doi.org/10.3389/fnbot.2017.00011
https://doi.org/10.3389/fnbot.2017.00012
https://doi.org/10.3389/fnbot.2017.00020
https://doi.org/10.3389/fnbot.2017.00003
https://doi.org/10.3389/fnbot.2017.00012
https://doi.org/10.3389/fnbot.2017.00009
https://doi.org/10.3389/fnbot.2017.00005
https://doi.org/10.3389/fnbot.2017.00039
https://doi.org/10.3389/fnbot.2017.00029
https://doi.org10.3389/fnbot.2017.00008
https://doi.org10.3389/fnbot.2017.00016
https://doi.org10.3389/fnbot.2018.00037
https://doi.org/10.3389/fnbot.2017.00019
https://doi.org/10.3389/fnbot.2017.00028
https://doi.org10.3389/neuro.03.013.2009
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Manoonpong and Tetzlaff Neural Computation in Embodied Systems

higher integrative areas have multiple complex functions with
multiple-time scales plasticity (i.e., long-term and short-term
synaptic plasticity) for motor-skill learning, navigation learning,
motor planning, and internal representations. Their outputs
project to both sensory and motor areas. Through these internal
(inside the controller) and external (between the body and the
environment) interactions in the closed-loop system, adaptive
behaviors emerge.

Regarding interactions in embodied closed-loop systems for
adaptive behavior generation, in the Research Topic, Aoi et al.
review various adaptive locomotor behaviors that emerge from
the interactions between the body dynamics, the nervous system,
and the environment in animals and legged robots. They
identify key factors and mechanisms for adaptations to different
speeds, environmental situations, body properties, and tasks.
The factors and mechanisms include CPGs, sensory feedbacks,
forward model, learning model, and muscle stiffness. Owaki
et al. present a novel and minimal Tegotae-based approach, that
exploits the interactions between foot contact sensor signals,
body dynamics, and the environment for adaptive interlimb
coordination of a hexapod robot. The approach can generate
various insects’ gait patterns that allows the robot to adapt to
different locomotion speeds, changes in the weight distribution,
and leg amputation. Der and Martius report self-organized
behavior of an anthropomorphic musculoskeletal robot arm.
The behavior emerges from the interaction between a self-
learning neural controller (nervous system), the elastically
musculoskeletal arm (body), and an object (environment)
through proprioceptive sensory feedback. Through the agent-
environment coupling, the robot can perform handshaking,
pendulum swinging, bottle shaking, rotating a wheel, wiping a
table, and hand-eye coordination.

As a part of embodied closed-loop systems, dynamical
system-based architectures that link between sensory and motor
areas are introduced in the Research Topic. Knips et al.
present a neural dynamic architecture for reaching and grasping
objects. It integrates several modules, having functions for
scene representation, concurrent object classification and pose
estimation, behavioral organization, and movement generation,
into a large dynamical system of an anthropomorphic robot arm
equipped with a Kinect sensor. In addition to the perception,
integration, and movement generation, the architecture can also
allow for the online adaptation of the performed movement
of the robot for successful completion of the grasp. Pasemann
proposes the exploitation of the discrete-time neurodynamics
of networks in a sensorimotor loop for generating adaptive
behavior, like adaptive obstacle avoidance of mobile robots. The
behavior generation is a result from a projection of attractor
transients or meta-transients, embedded in neurodynamics, to
the motor space.

2.1.1. Sensory Areas
In a closed-loop scenario, agents have to extract and process
relevant information from the environment, they are situated
in. For this, the initial step is to perceive at least parts
of the environment via the sensory system. Thereby, the
sensory modality can be multifaceted and requires various

types of sensors in the system, as for visual, touch, or
sound perception. As the next step, the sensory system has
to preprocess the perceived environmental information to
support the computation done in subsequent areas. Based on
experimental insights from the lizard auditory system (Fletcher
and Thwaites, 1979; Christensen-Dalsgaard and Manley, 2005),
Shaikh and Manoonpong developed a model of the auditory
system that can learn to perceive a sound, and to process the
information to localize its source and to estimate the speed and
direction of the motion of the source. Different to previous
approaches, the model can track the source, although it is
occluded for a certain duration. By using the model for the
auditory system of a wheeled robot, the robot was always able
to perceive, to locate, and, by its sensor-motor interaction, to face
the sound source.

The extraction of more abstract but complex concepts from
the environmental stimulus stream requires, in general, a larger
and more sophisticated sensory system. Layher et al. trained a
deep neural network to recognize human poses from a stream
of images. The pose recognition is based only on features of
human body motions and shapes not requiring feedback from
higher integrative areas. By implementing the network on a
neuromorphic hardware, the recognition process becomes real
time with about 1,000 frames per second. Remarkably, the system
already shows indications of generalization of poses.

2.1.2. Motor Areas
Central pattern generators (CPGs) have been identified as one of
key mechanisms in the motor areas particulary for locomotion
control. The principle of biological CPGs has been widely used
for robot locomotion control (Ijspeert, 2008). Although CPGs
do not need any external input or feedback to produce basic
rhythmic activity, they still require sensory feedback to adapt
and tune their produced activity, e.g., their frequency or phase.
Reactive and adaptive mechanisms have been introduced for
this purpose (Buchli et al., 2006). A reactive mechanism can
entrain the CPG signal where the frequency of the signal matches
to sensory feedback. However, if the feedback disappears, the
CPG signal will return to its intrinsic frequency. By contrast, an
adaptive mechanism modifies the intrinsic frequency of the CPG
permanently. Here, Nachstedt et al. propose a novel frequency
adaptation mechanism through fast dynamical coupling (AFDC)
of a CPG model. It is an extension of the standard frequency
adaptation mechanism (Righetti et al., 2009) and based on
dynamically adapting the coupling strength of sensory feedback
to a CPG model. Using this AFDC technique, they achieve fast
and precise adaptation for a wide range of initial intrinsic and
target frequencies without the need for parameter fine tuning.

Hunt et al. report a CPG-based motor control circuit with
sensory feedback and an automatic process for neural parameter
setting. It is based on the known connectivity of mammalian
locomotor systems. The process, faster and more reliable than
manual tuning, can tune neural parameters to generate adaptive
locomotion in the rear legs of a dog-like robot driven by artificial
muscles. Using the CPG-based control approach, they show
that the dog-like robot can adapt its stepping continuously and
maintains rhythmic walking.
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2.1.3. Higher Integrative Areas
Different to sensory and motor areas, higher integrative areas
are associated with cognitive processes as learning, planning,
navigation, or generalization. For instance, Goldschmidt et al.
developed a system, which learned in a reward-based manner to
represent the path an agent has walked. By this, the agent is able
to robustly localize itself within the environment and to find back
to the home position. Thereby, the resulting behaviors are quite
similar to behaviors of insects as desert ants.

Interestingly, the neuronal network underlying cognitive
processes can be quite small by using the computational resources
of other areas or by utilizing the temporal dynamics of the
system (Buonomano and Maass, 2009). Martin et al. use the
ongoing dynamics of short-term synaptic plasticity (Tsodyks and
Markram, 1997) in a three-neuron system to switch between
different, complex motor patterns. Here, Schilling and Cruse
show that already a small neuronal network is sufficient for
successful planning within an environment and generalization
to other environments, if the system recruits and orders the
resources of the downstream motor areas. In other words, the
small network reorders diverse reactive behaviors, each stored
in a different part of the motor area, to adapt according to new
environments.

There is a clear indication that higher integrative areas
are not mandatory for cognitive processes (Cruse and
Wehner, 2011). Arena et al. show in a theoretical model
that learning within the Drosophila mushroom body, which is
in general associated with the sensory processing of olfactory
inputs, adapts motor commands or primitives in the motor
area. Thus, by changes in the sensory area, the sensory-
motor relations are updated yielding new behaviors. This
was demonstrated on a six-legged robot, which can learn
by this mechanism to climb up stairs. The authors also
address the role of Neural Reuse as one of the possible
keys for the emergence of complex behaviors in simple
brains.

2.1.4. Body
Apart from neural computation in the nervous system,
morphological computation also contributes to the generation
of complex behavior. Morphological computation considers
that certain processes can be performed by the body instead
of the nervous system (Pfeifer and Bongard, 2006). In other
words, it captures conceptually the observation that biological
systems utilize their flexible and compliant morphology to
conduct computations required for a successful interaction with
their complex environments. There are numerous illustrative
applications of morphological computation and embodiment
for efficient locomotion in biological systems (Dickinson et al.,
2000) and artificial systems (McGeer, 1990; Jayaram and
Full, 2016; Manoonpong et al., 2016). Here, Urbain et al.
present an analysis of the trade-offs between morphology,
efficiency of locomotion, and the ability of a mechanical
body. This is done by using a detailed dynamical model of
a Mass-Spring-Damper (MSD) network. They also analyze the
computational capacity of a MSD body to generate motor control

signals and integrate the signals as feedback to a locomotion
controller.

2.2. Technology Transfer
Analyzing the neural computation in closed-loop systems, on
the one hand, yields insights of the underlying neural dynamics
and principles and, on the other hand, provides new solutions
for technological control problems. Braun et al. developed a
neural controller which tracks and predicts the gait of a patient
to control the gait-supporting knee-ankle-foot orthosis. This
controller is independent of the actual environmental situation,
as walking on a flat terrain or climbing stairs, and requires a
minimal feedback from the patient.

Based on adaptive principles in neural circuits, Oyama
et al. developed an adaptive controller for a hand prosthesis.
A standard controller requires the user to interfere to avoid
errors given in different environmental conditions. By contrast,
the adaptive controller self-adapts according to the new
environmental state or different hand poses.

Milde et al. transferred the neural controller and the whole
neural sensory processing onto neuromorphic hardware. By
implementing this hardware architecture, they developed an
autonomous, neuromorphic robotic agent, which is able to avoid
obstacles and to acquire targets. Due to the neural nature of the
controller, the agent behaves robustly according to unexpected
changes in the environment.

3. CONCLUSION

The Research Topic presents an embodied closed-loop approach
that considers the interaction of (neural) computation across
sensory, motor, and higher integrative areas with the agent’s
body and the environment. The studies in this Topic cover
the broad spectrum of this approach and show that, indeed,
complex behaviors emerge from the interplay between different
parts of an agent. Thereby, the majority of these studies
focus on the interplay between a subset of the available parts.
The results from these studies confirm that the embodied
approach can be a powerful method to develop autonomous
robotic agents performing complex behaviors and it can even
be a key to understand high-level cognition. Given these and
further studies, it is now possible to address the interaction
between all parts of an agent’s controller (brain), body, and the
environment.
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