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The unitary Birkhoff theorem states that any unitary matrix 
with all row sums and all column sums equal unity can be 
decomposed as a weighted sum of permutation matrices, 
such that both the sum of the weights and the sum of 
the squared moduli of the weights are equal to unity. If 
the dimension n of the unitary matrix equals a power of 
a prime p, i.e. if n = pw, then the Birkhoff decomposition 
does not need all n! possible permutation matrices, as the 
epicirculant permutation matrices suffice. This group of 
permutation matrices is isomorphic to the general affine group 
GA(w, p) of order only pw(pw − 1)(pw − p)...(pw − pw−1) �
(pw)!.
© 2019 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let D(n) be the semigroup of n ×n doubly stochastic matrices; let P(n) be the group 
of n × n permutation matrices. Birkhoff [1] has demonstrated
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Theorem 1. Every D(n) matrix D can be written

D =
∑
σ

cσPσ

with all Pσ ∈ P(n) and the weights cσ real, satisfying both 0 ≤ cσ ≤ 1 and 
∑

σ cσ = 1.

The question arises whether a similar theorem holds for matrices from the unitary 
group U(n). This question is discussed by De Baerdemacker et al. [2] [3]. For this purpose, 
the subgroup XU(n) of U(n) is introduced [4] [5]. It consists of all U(n) matrices with 
all line sums (i.e. all row sums and all column sums) equal to 1. Whereas U(n) is an 
n2-dimensional Lie group, the group XU(n) is only (n − 1)2-dimensional. A unitary 
Birkhoff theorem has been proved for XU(n) matrices [2] [3]. Remarkable is the fact 
that the case n = p with p an arbitrary prime [3] has been treated in a very different way 
from the case where n is an arbitrary integer [2]. As a result, the decomposition, tailored 
to prime numbers [3], can be restricted to n2 terms, whereas the general case [2] leads 
to a summation over all n! (or at least over n!/2) permutation matrices, albeit with a 
large number of degrees of freedom. In the present paper, we will treat the two cases in 
a unified way. Moreover, the unified approach will be applied to the case n = pw, i.e. 
n equal to an arbitrary power w of an arbitrary prime p.

In general, the Birkhoff theorem for unitary matrices is based on the two following 
lemmas. Let G(n) be a finite subgroup of XU(n).

Lemma 1. If an XU(n) matrix X can be written

X =
∑
σ

cσGσ

with all Gσ ∈ G(n), then the weights cσ satisfy 
∑

σ cσ = 1.

The proof is trivial: all line sums of Gσ equal unity; therefore, all line sums of the 
matrix cσGσ equal cσ and thus all line sums of the matrix 

∑
σ cσGσ are equal to 

∑
σ cσ. 

As all line sums of X are equal to 1, we thus need 
∑

σ cσ = 1.

Lemma 2. If every XU(n) matrix X can be written

X =
∑
σ

aσGσ

with all Gσ ∈ G(n), then there exists a decomposition

X =
∑
σ

bσGσ ,

such that not only 
∑

σ bσ = 1, but also 
∑

σ |bσ|2 = 1.
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This fact follows from the Klappenecker–Rötteler theorem [6].
Lemmas 1 and 2 have the following consequence: it suffices to find an appropriate 

finite subgroup G(n) of XU(n) such that every member X of XU(n) can be written as 
X =

∑
σ aσGσ, in order to guarantee the existence of a decomposition X =

∑
σ bσGσ

with both 
∑

σ bσ = 1 and 
∑

σ |bσ|2 = 1. In case there exist more than one candidate 
subgroup G(n), it is profitable to choose the smallest one, such that the sum 

∑
σ bσGσ

is as short as possible.
In the following sections, i.e. in Sections 3 to 6, we will present such subgroup G(n) 

in three different cases:

• arbitrary dimension n,
• prime dimension n, and
• prime-power dimension n.

However, for finding G(n), we will need some properties of XU(n) matrices, which will 
be presented in next section, i.e. Section 2.

2. The group XU(n)

Remark 1. For sake of convenience, in the present paper, the rows and colums of a matrix 
are not numbered starting from 1, but instead starting from 0. Thus the upper-left entry 
of any m ×m square matrix A is A0,0 and its lower-right entry is Am−1,m−1.

We recall that the group XU(n) is an (n − 1)2-dimensional subgroup of the 
n2-dimensional unitary group U(n). Any member X of XU(n) can be written

X = T

(
1

U

)
T−1 , (1)

where U is a member of U(n − 1) and where the constant matrix T is an n ×n transfor-
mation matrix with following properties:

• it is unitary;
• all its upper-row entries T0,k and left-column entries Tj,0 are equal.

As a consequence, we have

|T0,k|2 = |Tj,0|2 = 1/n .

A possible choice for T is 1/
√
n times a dephased complex Hadamard matrix [7]. Thus 

(1) constitutes a 1-to-1 mapping between X and U . Because of

Tj,0 = T0,k = 1/
√
n , (2)
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eqn (1) leads to

Xk,l = 1
n

+
n−1∑
r=1

n−1∑
s=1

Tk,r Ur−1,s−1 (T−1)s,l .

With T being unitary, i.e. with T−1 = T †, this becomes

Xk,l = 1
n

+
n−1∑
r=1

n−1∑
s=1

Ur−1,s−1 Tk,rTl,s .

We thus can write the matrix X as a sum of 1 + (n − 1)2 matrices:

X = W + 1
n

n−1∑
r=1

n−1∑
s=1

Ur−1,s−1Mr,s , (3)

where W is the n × n van der Waerden matrix, i.e. the doubly stochastic matrix with 
all entries equal to 1

n , and where Mr,s is an n × n matrix defined by

(Mr,s)k,l = nTk,rTl,s . (4)

In Sections 4, 5, and 6, the matrix W and the (n −1)2 matrices Mr,s will be decomposed 
as a weighted sum of matrices Gσ, such that we will obtain a decomposition of X of the 
desired form 

∑
σ aσGσ and will be able to apply Lemmas 1 and 2.

The labels r and s of the matrix Mr,s run from 1 to n − 1, in contrast to the indices k
and l of its entries, which run from 0 to n − 1. We thus have (n − 1)2 such matrices, 
each having n2 entries. Each entry of the matrix Mr,s equals the leftmost entry of its 
row times the uppermost entry of its column. Taking into account (2), one indeed easily 
checks

(Mr,s)0,l (Mr,s)k,0 = (Mr,s)k,l . (5)

Both the zeroth row and the zeroth column of Mr,s equal a line of the Hadamard matrix 
T (up to complex conjugation and up to the factor 

√
n):

(Mr,s)0,l =
√
n Tl,s

(Mr,s)k,0 =
√
n Tk,r . (6)

Because T is 1/
√
n times a Hadamard matrix, we have |Tl,s| = 1/

√
n and |Tk,r| = 1/

√
n, 

such that |(Mr,s)0,l| = 1 and |(Mr,s)k,0| = 1, and thus, because of (5), we conclude that 
all entries (Mr,s)k,l have unit modulus.
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3. Underlying framework

In the present section, we consider an arbitrary doubly transitive group G(n) of n ×n

permutation matrices. We denote by N the order of the group. We generalize the ideas 
and computations in Reference [2], where G(n) is equal to the group P(n) of all n × n

permutation matrices, thus G(n) being isomorphic to the symmetric group Sn and N
being equal to n!.

In the next three sections, we will apply the Lemmas 1 and 2 to three different choices 
of G(n):

• In case of arbitrary n, we choose the group of all n × n permutation matrices (i.e. a 
group isomorphic to the symmetric group Sn). See Section 4.

• In case of n equal to some prime p, we choose the group of all n × n supercirculant 
permutation matrices (i.e. a group isomorphic to a semidirect-product group Cn : 
Cn−1). See Section 5.

• In case of n equal to some power w of some prime p (i.e. equal to pw), we choose the 
group of all n × n epicirculant permutation matrices (i.e. a group isomorphic to the 
general affine group GA(w, p)). See Section 6.

The meaning of the words ‘supercirculant’ and ‘epicirculant’ will be made clear below. 
The mentioned groups are doubly transitive, as it is known that the symmetric group
Sn is n-transitive, the alternating group An is (n − 2)-transitive, and the affine groups 
are 2-transitive [8], in contrast to e.g. the cyclic group Cn, which is only 1-transitive.

In each of the three cases, we will prove below (i.e. in Sections 4, 5, and 6, respectively) 
that every XU(n) matrix X can be written as

X =
∑
σ

cσGσ (7)

with all Gσ member of the appropriate group G(n). Because of Lemmas 1 and 2, we are 
then allowed to put the case that both 

∑
σ cσ = 1 and 

∑
σ |cσ|2 = 1. For the explicit 

computation of the weights cσ, we note that the G(n) matrices form an n-dimensional 
reducible representation of some abstract group G. We assume that G has μ different 
irreducible representations. According to Lemma (29.1) of [9], because G is 2-transitive, 
the n-dimensional natural representation is the sum of the 1-dimensional trivial repre-
sentation and an (n − 1)-dimensional irreducible representation, which we will call the 
standard representation.

As soon as the group G is determined, the coefficients cσ of the decomposition (7) can 
be found using the following procedure. We start by writing down a set of linear matrix 
equations in cσ, involving the μ irreducible representations D(ν) (with 0 ≤ ν ≤ μ − 1) 
of G and a set of arbitrary nν × nν unitary matrices U (ν), with the exception of ν = 0
and ν = 1 (see further):
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U (ν) =
∑
σ

cσD
(ν)
σ . (8)

Here, nν is the dimension of the νth representation D
(ν)
σ of Gσ. Note that we have μ such 

matrix equations (8). Each matrix eqn constitutes n2
ν scalar equations. We thus have a 

total of 
∑μ−1

ν=0 n
2
ν = N scalar equations with N unknowns cσ:

∑
σ

cσ(D(ν)(σ))k,l = (U (ν))k,l .

Thank to Schur’s orthogonality theorem, this set of N linear equations with N unknowns 
is an invertible matrix [2]. The solution of this set of equations is:

cσ = 1
N

∑
ν

nν

nν−1∑
i=0

nν−1∑
j=0

(D(ν)(σ))i,j (U (ν)(σ))i,j

= 1
N

∑
ν

nν Tr
(
D(ν)(σ)† U (ν)(σ)

)
. (9)

We choose for ν = 0 the trivial representation, i.e. the 1-dimensional irreducible repre-
sentation with all characters equal to 1. We choose for ν = 1 the standard representation, 
i.e. the (n − 1)-dimensional irreducible representation obtained by applying (1) to the 
permutation matrix Gσ:

Gσ = T

(
1

D(1)(σ)

)
T−1

and thus (
1

D(1)(σ)

)
= T−1GσT .

In (9), the matrix U (0)(σ) equals the 1 × 1 unit matrix and the matrix U (1)(σ) equals 
the (n − 1) × (n − 1) lower-right block of

(
1

U

)
= T−1XT .

A key observation is that (among the μ matrix equations (8)), the two matrix equalities

U (0) =
∑

cσD
(0)(σ)

and U (1) =
∑

cσD
(1)(σ) ,

together with the choices U (0) = 1 and U (1) = U , in fact mean
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1 =
∑

cσ 1

and T−1XT =
∑

cσT
−1GσT

and thus suffice to guarantee 
∑

cσ = 1 and 
∑

cσGσ = X, respectively. As a result, 
for the remaining matrices U (ν)(σ) with 2 ≤ ν ≤ μ − 1, we are allowed to choose any 
unitary matrix of the right dimension nν . This usually allows a large number of degrees 
of freedom. Here, we propose two different strategies to take advantage of this freedom.

3.1. First strategy

For each matrix U (ν)(σ) with 2 ≤ ν ≤ μ −1, we choose the nν ×nν unit matrix. Then 
(9) becomes

cσ = 1
N

[ n0 Tr
(
D(0) †(σ)

)
+ n1 Tr

(
D(1) †(σ)U

)
+

μ−1∑
ν=2

nν Tr
(
D(ν) †(σ)

)
] . (10)

We take advantage of Schur’s orthogonality relation:
∑
ν

nν Tr
(
D(ν) †(σ)

)
=

∑
ν

nν Tr
(
D(ν) †(σ)D(ν)(ε)

)
= δσ N ,

where ε is the identity permutation and where δε = 1 while δσ = 0 if σ �= ε. Because 
moreover D(1) †(σ) = D(1)(σ−1) and n1 = n − 1, we obtain the explicit expression for 
the weight:

cσ = δσ + n− 1
N

Tr
(
D(1)(σ−1)U

)
− n− 1

N
χ(1)(σ−1) . (11)

The number χ(ν)(G) denotes the character of the element G of the group G according to 
the νth representation. It is equal to Tr(D(ν)(G)). In particular, we have Tr(D(1)(G)) =
Tr(G) − 1.

3.2. Second strategy

The second strategy is only applicable if the group G has an anti-standard irreducible 
representation, non-equivalent to the standard representation. The anti-standard repre-
sentation, which we will assign the label ν = 2 (if it exists), has the same characters 
as the standard representation (with label ν = 1), except for a factor −1 if the corre-
sponding permutation is an odd permutation. We note that, if G has an anti-standard 
representation, it also has an anti-trivial representation (a.k.a. sign representation), i.e. 
the 1-dimensional irrep with all characters equal to 1 (even permutations) or to −1 (odd 
permutations). As we thus have n0 = 1 for the trivial representation, n1 = n − 1 for the 
standard representation, n2 = n − 1 for the anti-standard representation, and n3 = 1 for 
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the anti-trivial representation, and as N =
∑

ν n
2
ν , a necessary condition for the second 

strategy is

N ≥ 2 + 2(n− 1)2 . (12)

As in the first strategy, we again choose the 1 × 1 unit matrix for U (0)(σ) and the 
(n − 1) × (n − 1) matrix U for U (1)(σ). However, in this second strategy, we also choose 
the matrix U for each matrix U (2)(σ). For each matrix U (ν)(σ) with 3 ≤ ν ≤ μ − 1, we 
choose the nν × nν unit matrix. Then (9) becomes

cσ = 1
N

[ n0 Tr
(
D(0) †(σ)

)
+ n1 Tr

(
D(1) †(σ)

)
+ n2 Tr

(
D(2) †(σ)

)

+
μ−1∑
ν=3

nν Tr
(
D(ν) †(σ)

)
] . (13)

Again taking advantage of Schur’s orthogonality relation and n1 = n2 = n −1, we obtain

cσ = δσ + 2(n− 1)
N

Tr
(
D(1)(σ−1)U

)
− 2(n− 1)

N
χ(1)(σ−1) if σ even

= 0 if σ odd . (14)

In the second strategy, the group G ∩ An thus takes over the role of G and N/2 takes 
over the role of N .

4. The case of arbitrary dimension n

If n is an arbitrary positive integer, then we choose for the n ×n Hadamard matrix T

of Section 2 the n × n discrete Fourier transform F , with entries

Fk,l = 1√
n

ωkl ,

where ω is equal to the nth root of unity. One finds [2]:

Lemma 3. Every XU(n) matrix X can be written

X =
∑
σ

cσPσ

with all Pσ ∈ P(n).

The proof is provided by [3], by means of induction on n. Combining Lemmas 1, 2, 
and 3 leads to the unitary Birkhoff theorem:
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Theorem 2. Every XU(n) matrix X can be written

X =
∑
σ

cσPσ

with all Pσ ∈ P(n), such that both 
∑

σ cσ = 1 and 
∑

σ |cσ|2 = 1.

4.1. First strategy

We can apply result (11) with N = n!. The only possible values of χ(1) are Tr(Pσ)−1
and thus −1, 0, 1, 2, ..., n − 1, with exception of n − 2.

Appendix A gives an algorithm for, given an XU matrix, computing the n! weights cσ, 
using the algebraic language GAP.

4.2. Second strategy

The character tables of the groups S2 and S3 show no anti-standard representation. 
For n > 3, the group Sn has an anti-standard representation. In this case, we can apply 
result (14) with N = n!. The restriction n > 3 is not surprising, as (12) with N = n! is 
fulfilled neither if n = 2 nor if n = 3.

5. The case of prime dimension n = p

We call an n × n matrix A supercirculant iff each row k equals row k − 1 shifted 
x positions to the right. Thus Ak,l = Ak−1,l−x, where addition and subtraction are 
modulo n. We equivalently may write

A0,a = Ak,a+kx .

We call x the pitch of the matrix. If x = 1, then the supercirculant matrix is called 
circulant; if x = n − 1, then the supercirculant matrix is called anticirculant.

If p denotes a prime, then the p × p supercirculant permutation matrices are denoted 
Sa,x, where x is the pitch and a (called the shift) is the column with the unit entry in 
the upper row (i.e. row 0). The unit entries of such p × p permutation matrix thus are 
located at the p positions (0, a), (1, a +x), (2, a +2x), ..., and (p −1, a +(p −1)x), where 
sums are to be taken modulo p. Because x and p are co-prime, the consecutive columns 
with a 1, i.e. the columns a, a + x, a + 2x, ..., and a + (p − 1)x, are all different.

If n equals some prime p, then, just like in Section 4, we choose for the Hadamard 
matrix T the p × p discrete Fourier transform F :

Fk,l = 1
√
p
ωkl ,

where ω is equal to the pth root of unity. Thus (4) becomes
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(Mr,s)k,l = ωkr−ls .

From [3], we know that M can be written as a weighted sum of p supercirculant permu-
tation matrices:

Mr,s =
p−1∑
a=0

(Mr,s)0,a Sa,x(r,s) , (15)

where the pitch x of the matrix Sa,x is a function of r and s. Indeed, the condition

(Mr,s)k,a+kx = (Mr,s)0,a

yields

kr − (a + kx)s = −as

and thus r − xs = 0. Thus x has to satisfy the eqn

sx = r mod p .

This eqn has one solution:

x = rs−1 mod p ,

where s−1 is the inverse of s modulo p. As p is prime, each non-zero integer has exactly 
one inverse. With (Mr,s)0,a = ω−as, we finally obtain

Mr,s =
p−1∑
a=0

ω−asSa,rs−1 .

The supercirculant p × p permutation matrices form a group S(p), subgroup of P(p) 
(proof in Appendix B), isomorphic to the semidirect product of the cyclic group of order p
and the multiplicative group of integers modulo p. The group thus is isomorphic to the 
semidirect product of two cyclic groups:

Cp :Cp−1 ,

a non-Abelian group of order p(p − 1).

Lemma 4. If n is prime, then every XU(n) matrix X can be written

X =
∑
σ

cσSσ

with all Sσ ∈ S(n).
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The proof is as follows. If n is a prime p, then all matrices Mr,s are supercirculant 
with a pitch x = rs−1 modulo p. Also the van der Waerden matrix W is supercirculant, 
as it is circulant:

W =
n−1∑
a=0

1
n

Sa,1 .

Hence, according to (3), X is a weighted sum of supercirculant permutation matrices.
Combining Lemmas 1, 2, and 4 leads to

Theorem 3. If n is prime, then every XU(n) matrix X can be written

X =
∑
σ

cσSσ

with all Sσ ∈ S(n), such that both 
∑

σ cσ = 1 and 
∑

σ |cσ|2 = 1.

5.1. First strategy

We can apply result (11) with N = p(p −1). The only possible values of χ(1) are −1, 0, 
and p −1, as demonstrated in Appendix C. Thus we find a unitary Birkhoff decomposition 
with only p(p − 1) terms. For a prime exceeding 3, this number is substantially smaller 
than the number p!/2 of Subsection 4.2. The resulting unitary Birkhoff theorem is also 
slightly stronger than the theorem in [3], where the Birkhoff decomposition consists of 
p2 terms.

5.2. Second strategy

The group S(2), isomorphic to the cyclic group C2, has only two irreducible repre-
sentations: the trivial one and the standard one. Also the group S(n) with n equal to 
an odd prime p, has no inequivalent anti-standard representation. Indeed, because all 
odd supercirculant permutations have non-unit pitch (see Appendix D) and thus have 
unit trace (see Appendix C) and hence have zero character χ(1), all characters of the 
anti-standard representation equal the corresponding characters of the standard repre-
sentation. Therefore, the standard and anti-standard representations are equivalent. We 
conclude that we cannot apply the second strategy of Subsection 3.2. The absence of 
any inequivalent anti-standard representation is no surprise, as N = n(n − 1) does not 
satisfy (12).

6. The case of prime-power dimension n = pw

For n = pw with arbitrary positive w, we can choose for T of Section 2 the Kronecker 
product of w small (i.e. p × p) Fourier matrices F :
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T = F ⊗ F ⊗ ...⊗ F = F⊗w .

The n × n matrix T has following entries:

Ta,b = 1√
n

ωf(a,b) ,

where f(x, y) is the sum of the ditwise product of the p-ary numbers x and y:

f(x, y) =
∑
j

xjyj mod p .

As a consequence, we have

(Mr,s)k,l = ωf(k,r)−f(s,l) . (16)

Among the n2 entries of this matrix, n2/p are equal to 1, n2/p are equal to ω, ..., and 
n2/p are equal to ωp−1.

Remark 2. For sake of convenience, below, the rows and the colums of a matrix will 
sometimes be pointed at, not by a number, but instead by a vector. This will allow 
matrix computations for the row and column numbers. For this purpose, any num-
ber z = z0 + z1p + z2p

2... + zw−1p
w−1 has an associated boldfaced w × 1 vector 

z = (z0, z1, z2, ..., zw−1)T , consisting of the w dits of the number z.

We call a matrix A epicirculant if row k equals row 0, ‘shifted to the right’ according 
to

A0,a = Ak, a+xk ,

where a is the w × 1 vector associated with the column number a and where x is a 
w × w matrix called the pitch matrix, consisting of w2 entries, all ∈ {0, 1, ..., p − 1}. A 
matrix of the form (16) is automatically epicirculant. It is a weighted sum of epicirculant 
permutation matrices E: we have

Mr,s =
p−1∑
a=0

(Mr,s)0,a Ea,x(r,s) . (17)

Here, x is an appropriate w × w pitch matrix, depending on r and s. Proof is in Ap-
pendix E. We note that vector a and matrix x constitute a pair, fully specifying an affine 
transformation [10].

If n is a prime power, say n = pw, then the epicirculant pw×pw permutation matrices 
form a group E(n), subgroup of P(n) (proof in Appendix F), isomorphic to the general 
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affine group GA(w, p), a semidirect product of the direct product of cyclic groups of 
order p and the general linear group GL(w, p):

GA(w, p) = Cw
p : GL(w, p)

of order

pw(pw − 1)(pw − p)(pw − p2)...(pw − pw−1) . (18)

We note that GA(w, p) is a maximal subgroup of the symmetric group Spw (O’Nan–Scott 
theorem) [11].

Each of the w subgroups Cp consists of p matrices, each a Kronecker product with a 
total of w factors:

I ⊗ I ⊗ ...⊗ I ⊗M ⊗ I ⊗ ...⊗ I ,

where I denotes the p × p unit matrix and M a p × p circulant permutation matrix Sa,1.

Lemma 5. If n is a prime power, then every XU(n) matrix X can be written

X =
∑
σ

cσEσ

with all Eσ ∈ E(n).

The proof is as follows. If n is a prime power pw, then all matrices Mr,s are epicirculant 
with an invertible pitch matrix x. Also the van der Waerden matrix W is epicirculant, 
as it is circulant:

W =
n−1∑
a=0

1
n

Ea,1 ,

where the pitch matrix 1 denotes the w × w unit matrix. Hence, according to (3), X is 
a weighted sum of epicirculant permutation matrices.

Combining Lemmas 1, 2, and 5 leads to

Theorem 4. If n is a prime power, then every XU(n) matrix X can be written

X =
∑
σ

cσEσ

with all Eσ ∈ E(n), such that both 
∑

σ cσ = 1 and 
∑

σ |cσ|2 = 1.
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6.1. First strategy

We can apply result (11) with N given by (18). The only possible values of χ(1) are 
−1, 0, p − 1, p2 − 1, p3 − 1, ..., and pw − 1, as demonstrated in Appendix G.

6.2. Second strategy

For w > 1 and p > 2, the general affine groups have, besides the standard representa-
tion, also an inequivalent anti-standard representation. For a proof, it suffices to point 
to a single example of an odd epicirculant permutation matrix with trace different from 
unity. We choose the pw × pw matrix

E = I ⊗ I ⊗ ...⊗ I ⊗M ,

i.e. the Kronecker product of w − 1 matrices I (i.e. the p × p unit matrix) and the 
p × p supercirculant matrix M = S 0,q. The w×w pitch matrix associated with E is the 
diagonal matrix diag(q, 1, 1, ..., 1).

On the one hand, we have the following property of the Kronecker product of two 
square matrices:

Det(A⊗B) = [ Det(A) ]dim(B) [ Det(B) ]dim(A) . (19)

Therefore, we have Det(E) = Det(M)(pw−1). We choose the number q such that 
Det(M) = −1 and thus Det(E) = −1. This is always possible. Suffice it to choose q
equal to g(p), where g is a generator of the modulo p multiplication group [12]. Unfor-
tunately, there is no algorithm known for finding such generator except brute force [13]. 
Nevertheless, we can prove that Det(S0,g(p)) = −1, without a priori knowing the value 
of g(p): see Appendix D.

On the other hand, we have Tr(E) = pw−1 Tr(M) = pw−1 1 = pw−1. Because w > 1, 
we have Tr(E) > 1 and thus χ(1) > 0. We thus conclude that we can apply result (14)
with N according to (18).

The above reasoning is not valid for p = 2, because, in that case, Det(M) = −1 does 
not imply Det(E) = −1. For the case p = 2, we will prove that all 2w × 2w epicirculant 
matrices are even permutations. For this purpose, it is sufficient to demonstrate that all 
group generators are even. From reversible computing [14] [15] [16], it is known that the 
group GA(w, 2) is generated by following matrices:

A = I ⊗ I ⊗ ...⊗ I ⊗
(

0 1
1 0

)
⊗ I ⊗ I ⊗ ...⊗ I
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Table 1
Applicability of the second 
strategy for the Birkhoff de-
composition of an XU(n) 
matrix with n = pw.

p = 2 p ≥ 3

w = 1 no no
w = 2 yes yes
w ≥ 3 no yes

B = I ⊗ I ⊗ ...⊗ I ⊗

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠⊗ I ⊗ I ⊗ ...⊗ I

C = I ⊗ I ⊗ ...⊗ I ⊗

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟⎠⊗ I ⊗ I ⊗ ...⊗ I ,

with a total of w−1 (for A) or w−2 (for B and C) factors I. In the context of computing, 
these matrices represent NOT gates, respectively controlled NOT gates. Applying (19), we 
have:

Det(A) = [ Det
(

0 1
1 0

)
](p

w−1) = (−1)2
w−1

= 1

Det(B) = [ Det

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ ](p

w−2) = (−1)2
w−2

= 1

Det(C) = [ Det

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟⎠ ](p

w−2) = (−1)2
w−2

= 1 ,

except if w = 2. Thus, for w > 2, all members of GA(w, 2) represent even permutations 
and the second strategy (Subsection 3.2) is not applicable.

This leaves us with the case p = 2 and w = 2. The epicirculant matrices form a group 
E(4) isomorphic to the symmetric group S4. As stated in Section 4.2, the second strategy 
is applicable. The results on the applicability of the second strategy are summarized in 
Table 1.
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Table 2
Number of Birkhoff terms in the decomposition of an arbitrary n ×n unit-linesum 
unitary matrix.

n 1 2 3 4 5 6 7 8 9 10 11
1 2 6 12 20 360 42 1,344 216 1,814,400 110

n 12 13 14 15 16 17
239,500,800 156 43,589,145,600 653,837,184,000 322,560 272

7. Conclusion

According to [2], every unit-linesum n × n unitary matrix can be decomposed as a 
weighted sum of the n ×n permutation matrices, such that both the sum of the weights 
and the sum of the squared moduli of the weights equal unity. Such Birkhoff sum contains 
n! terms. In the present paper, we demonstrate the following:

• If n ≥ 4, then n!/2 terms suffice.
• If n = pw with p an arbitrary prime and w an arbitrary integer, then pw(pw −

pw−1)(pw − pw−2)...(pw − p)(pw − 1) suffice.
• If n = pw with p an arbitrary odd prime and w an integer ≥ 2, then pw(pw −

pw−1)(pw − pw−2)...(pw − p)(pw − 1)/2 suffice.

For numerical examples, see Table 2.
We see that in some cases the upper bounds on the number of Birkhoff terms are 

quite small. This triggers the question whether anything can be said about lower bounds. 
Because the n! permutation matrices of dimension n are member of XU(n) and because 
there exist (n −1)2 +1 linear independent n ×n permutation matrices [17], any Birkhoff 
decomposition of an arbitrary XU(n) matrix needs at least (n − 1)2 + 1 terms. Hence, 
(n −1)2 +1 is a lower bound on the number of Birkhoff terms. This amount also appears 
in discussions on the classical Birkhoff theorem, e.g. in the Marcus–Ree theorem [18]
[19] [20]. As some numbers in Table 2 are far in excess of the Marcus–Ree number, 
there is still room for better upper bounds. In particular, the case of n equal to the 
product of two different primes is left for further investigation. Another subject of deeper 
investigation is the geometric interpretation of the results. The classical Birkhoff theorem 
on doubly stochastic matrices has a clear interpretation, i.e. a polytope within an (n −
1)2-dimensional Euclidean space, with the n! permutation matrices as corners [21]. The 
line segments between two corners form straight edges. In contrast, the Birkhoff theorems 
on unitary matrices lead to a closed curve between each two permutation matrices [2]
[22], within a compact (n − 1)2-dimensional curved space.
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Appendix A. Algorithm

We present here a GAP program that, given an n × n XU matrix, computes the N
weights cσ of the Birkhoff decomposition, according to Subsection 4.1 and applying eqn 
(11):

# Introducing the matrix XU

XU := (1/4) * [[ 3-1*E(4) , -1+1*E(4) , 1-1*E(4) , 1+1*E(4) ],
[ 1-1*E(4) , 3-1*E(4) , 1+1*E(4) , -1+1*E(4) ],
[ 0+0*E(4) , 0+0*E(4) , 2+2*E(4) , 2-2*E(4) ],
[ 0+2*E(4) , 2+0*E(4) , 0-2*E(4) , 2+0*E(4) ]];

dim := DimensionsMat(XU); n := dim[1];

# Generating the group G

permutation1 := (1,2);
ll := List([1..n], x -> x+1); ll[n] := 1;
permutation2 := PermList(ll);
generator1 := PermutationMat( permutation1, n);
generator2 := PermutationMat( permutation2, n);
G := Group(generator1, generator2); N := Order(G);

# Introducing the constant matrix T

T := NullMat(n,n);
for row in [1..n] do
for column in [1..n] do
T[row][column] := (1/Sqrt(n)) * E(n)^( (row-1)*(column-1) ); od; od;

# Defining the standard irreducible representation

StandardIrrep := function(matriks)
local A,a;
A := T * matriks * T^(-1);
a := NullMat(n-1,n-1);
for row in [1..(n-1)] do
for column in [1..(n-1)] do
a[row][column] := A[row+1][column+1]; od; od;
return a;
end;



44 A. De Vos, S. De Baerdemacker / Linear Algebra and its Applications 578 (2019) 27–52
# Computing the matrix U and the weights c

U := StandardIrrep(XU);

PermuList := [];
IrrepList := [];
for j in [1..N]
do Append(PermuList, [ Elements(G)[j] ]);

Append(IrrepList, [StandardIrrep(Elements(G)[j])]); od;

WeightList := [];
for j in [1..N]
do if PermuList[j]=IdentityMat(n) then C1 := 1; else C1 := 0; fi;

C2 := ((n-1)/N) * Trace(IrrepList[j]^(-1)*U);
C3 := ((n-1)/N) * Trace(IrrepList[j]^(-1) );
Append(WeightList, [C1 + C2 - C3]); od;

# Checking the properties of the weights c

check1 := 0; check2 := 0; check3 := NullMat(n,n);

for j in [1..N]
do check1 := check1 + WeightList[j];

check2 := check2 + WeightList[j] * ComplexConjugate(WeightList[j]);
check3 := check3 + WeightList[j] * PermuList[j]; od;

check1 = 1; check2 = 1; check3 = XU;

# Presenting the weights c

output := WeightList;

Above, the two permutation matrices generator1 and generator2 generate the group
G, equal to the symmetric group Sn. For Subsections 4.2, 5.1, 6.1, and 6.2, similar algo-
rithms can be constructed, applying appropriate generators, the appropriate matrix T , 
and the appropriate formula for the weights (i.e. either eqn (11) or eqn (14)).

Appendix B. The group of supercirculant permutation matrices

The supercirculant n × n permutation matrices form a group. Indeed, the product of 
two such matrices (say Sa,x and Sb,y) yields a third such matrix. In order to prove this 
fact, we compute the matrix entry at position (u, v):
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(Sa,x Sb,y)u,v =
∑
f

(Sa,x)u,f (Sb,y)f,v

=
∑
f

δf, a+ux δv, b+fy

= δv, b+(a+ux)y

= δv, b+ay+uxy = (Sb+ay, xy)u,v

and hence

Sa,x Sb,y = Sb+ay, xy . (20)

If n is a prime p, each non-zero number x has an inverse number x−1. Applying (20), we 
find

Sa,x S−ax−1, x−1 = S0,1 .

The right-hand side being the p ×p unit matrix, the result proves that each supercirculant 
matrix has an inverse matrix that also is supercirculant:

(Sa,x)−1 = S−ax−1, x−1 .

We conclude by considering two applications of eqn (20):

• choosing x = y = 1 leads to

Sa,1 Sb,1 = Sa+b, 1

illustrating that the p matrices Sa,1 are isomorphic to the addition modulo p;
• choosing a = b = 0 leads to

S0,x S0,y = S0, xy

illustrating that the p −1 matrices S0,x are isomorphic to the multiplication modulo p.

Each supercirculant matrix can be decomposed as the product of a zero-shift matrix and 
a unit-pitch matrix:

Sa,x = S0,x Sa,1

= Sax−1,1 S0,x .
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Appendix C. The trace of a supercirculant permutation matrix

We compute the trace of the supercirculant permutation matrix Sa,x:

Tr(Sa,x) =
∑
u

(Sa,x)u,u =
∑
u

δu, a+ux .

If the eqn

u(1 − x) = a

is fulfilled, then the corresponding number u points to a unit entry in position (u, u) of 
the matrix Sa,x. We notice:

• If x �= 1, then u = a(1 − x)−1 is the one and only solution;
• if x = 1 and a �= 0, then the eqn has no solution u;
• if x = 1 and a = 0, then u may have any value from {0, 1, 2, ..., p − 1}.

Thus we conclude:

• Tr(Sa,x) = 1, if x �= 1,
• Tr(Sa,1) = 0, if a �= 0, and
• Tr(S0,1) = p.

Appendix D. The determinant of a supercirculant permutation matrix

As mentioned in Appendix B, each supercirculant matrix can be decomposed as fol-
lows:

Sa,x = S0,x Sa,1 .

Hence:

Det(Sa,x) = Det(S0,x) Det(Sa,1) .

We have Sa,1 = (S1,1)a and therefore Det(Sa,1) = (Det(S1,1))a. If p is odd, then 
Det(S1,1) = 1, such that Det(Sa,1) = 1. In other words: for odd primes, all of the 
p circulant permutation matrices have unit determinant. The situation is different for 
the p − 1 matrices S0,x. Half of them have unit determinant and half of them have de-
terminant equal to −1. In order to prove this fact, the key observation is the fact that 
the cyclic group is Abelian; so there exists a similarity transformation that diagonalizes 
all matrices S0,x. We now prove that the following matrix F serves our purpose:
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Fu,v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if u = v = 0
0 if u = 0 and v �= 0
0 if u �= 0 and v = 0
ωvϕ(u)
√
p−1 if u �= 0 and v �= 0 ,

where ω = exp( 2πi
p−1 ) is the (p − 1)th root of unity, and the function ϕ(a) gives the 

‘position’ of the number a in the cyclic group Cp−1 (multiplicative group modulo p), as 
a power of the (a priori unknown) generator g, i.e.

a = gϕ(a) .

From this definition, the following interesting properties of ϕ can be deduced:

ϕ(1) = 0

ϕ(g) = 1

ϕ(ab) = ϕ(a) + ϕ(b) .

These properties are key in the following derivation. We compute the similarity trans-
formation given by F †S0,xF . Because both F and S0,x are block diagonal with a single 1 
in the upper-left corner, we only need to compute the lower-right part:

(F †S0,xF )u,v =
p−1∑
k=1

p−1∑
l=1

Fk,u (S0,x)k,l Fl,v

= 1
p− 1

p−1∑
k=1

p−1∑
l=1

ω−uϕ(k) δl,xk ω
vϕ(l)

= 1
p− 1

p−1∑
k=1

ω−uϕ(k)+vϕ(xk)

= 1
p− 1

p−1∑
k=1

ω−uϕ(k)+vϕ(x)+vϕ(k)

= ωvϕ(x) δu,v .

This result leads to two conclusions:

• By choosing x = 1, we find that (F †F )u,v = δu,v and thus that F is unitary.
• By choosing x arbitrary, we find that the matrix S0,x has the eigenvalues ωvϕ(x) plus 

an additional 1 from the upper-left matrix block.
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The determinant is just the product of all eigenvalues:

Det(S0,x) =
p−1∏
v=1

ωvϕ(x) = ωϕ(x)
∑p−1

v=1 v = ωϕ(x) p(p−1)
2

= e
2πi
p−1 ϕ(x) p(p−1)

2 = eπiϕ(x)p .

Now, if p is an odd prime, then eπip = −1, such that Det(S0,x) = (−1)ϕ(x), which proves 
that the sign of the determinant of S0,x alternates in the chain of successive elements 
of Cp−1. More in particular, the position of x = g always is ϕ(g) = 1, so we have 
Det(S0,g) = −1.

We note that the above results for both Sa,1 and S0,x are only valid for odd primes p. 
If p is even, i.e. if p = 2, then there exist only two supercirculant matrices S0,1 =

( 1 0
0 1

)
, 

with determinant equal to 1, and S1,1 =
( 0 1

1 0
)
, with determinant equal to −1.

Appendix E. The pitch matrix

In (17), the epicirculant matrix Ea,x needs a unit entry in position (k, a + xk) if

(Mr,s)k,a+xk = (Mr,s)0,a

implying

f(k, r) − f(s, a +
∑
u

∑
v

xu,vkvp
u) = f(0, r) − f(s, a)

or

∑
j

kjrj −
∑
j

sj

(
aj + (

∑
u

∑
v

xu,vkvp
u )j

)
= −

∑
sjaj

and thus
∑
j

sj
∑
v

xj,vkv =
∑
j

kjrj

or
∑
v

kv
∑
j

xj,vsj =
∑
v

kvrv

and thus
∑

kv (
∑

xj,vsj − rv ) = 0 .

v j
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We fulfill this condition by the set of w non-coupled eqns
∑
j

sjxj,v = rv . (21)

For each eqn, we expect pw−1 solutions (as we can choose w − 1 out of the w dits xj,v

arbitrarily from {0, 1, ..., p − 1}). However, many solutions have to be rejected. Indeed, 
each column of the matrix Ea,x in (17) should contain one and only one unit entry. For 
this purpose, it is necessary and sufficient that the matrix x is invertible. Proof is as 
follows. We require that for any two different row numbers (k′ �= k) the unit entry of the 
permutation matrix is in another column:

a + xk′ �= a + xk

and thus x(k′ − k) �= 0. This requires that for any non-zero number K we have

xK �= 0 .

This, in turn, requires that the rows of x are linearly independent and thus that the 
matrix x is invertible.

We now prove that, for any pair (r, s), the set (21) has at least one acceptable solution, 
i.e. a solution such that the matrix x is invertible. Indeed:

• Because both r and s are non-zero, at least one dit ru is non-zero and at least one 
dit sj is non-zero. Let rα be the least-significant non-zero dit of r; let sβ be the 
least-significant non-zero dit of s.

• We choose all dits xj,v = 0, except the dits xv,v, xβ,v, and xα,β. Thus eqns (21)
become

svxv,v + sβxβ,v = rv mod p if v �= β

sαxα,β + sβxβ,β = rβ mod p . (22)

• For v �= α and v �= β, we choose xv,v = 1. Further we choose xα,α = 0 and xα,β = 1. 
Thus eqns (22) become

sβxβ,v = rv − sv mod p if v �= α and v �= β

sβxβ,α = rα mod p (23)

sβxβ,β = rβ − sα mod p

which lead to a single solution set xβ,v.

The resulting pitch matrix x consists of a non-zero diagonal, one non-zero row, and 
one extra unit entry. E.g. for w = 7, α = 2, and β = 4, we have:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

0 1
1

x4,0 x4,1 x4,2 x4,3 x4,4 x4,5 x4,6

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We note that here Det(x) equals x4,2. In general, we have

Det(x) = ± xβ,α = ± rα s−1
β .

Because Det(x) �= 0, we have that x is invertible.

Appendix F. The group of epicirculant permutation matrices

The epicirculant permutation matrices form a group. An arbitrary entry (at location 
(k, l)) of such matrix Ea,x is δl, a+xk. The product of two such matrices yields a third 
such matrix. Indeed:

(Ea,x Eb,y)u,v =
∑
f

(Ea,x)u,f (Eb,y)f,v

=
∑
f

δf , a+xu δv, b+yf

= δv, b+ya+yxu

= (Eb+ya, yx)u,v

and hence

Ea,x Eb,y = Eb+ya, yx .

Straightforward application of this result leads to

Ea,x E−x−1a, x−1 = E0,1 .

The right-hand side being the pw×pw unit matrix, the result proves that each epicirculant 
matrix has an inverse matrix that also is epicirculant:

(Ea,x)−1 = E−x−1a, x−1 .

Each epicirculant matrix can be decomposed as the product of a matrix with zero 
shift vector a and a matrix with unit pitch matrix x:
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Ea,x = E0,x Ea,1

= Ex−1a,1 E0,x .

Appendix G. The trace of an epicirculant permutation matrix

We compute the trace of the epicirculant permutation matrix Ea,x:

Tr(Ea,x) =
∑
u

(Ea,x)u,u =
∑
u

δu, a+xu .

If the eqn

(1 − x)u = a

is fulfilled, then the corresponding number u points to a unit entry in position (u, u) of 
the matrix Ea,x. Here, 1 denotes the w × w unit matrix. We notice:

• If (1 − x) is invertible, then u = (1 − x)−1a is the one and only solution;
• if (1 − x) = 0 and a �= 0, then the eqn has no solutions u;
• if (1 − x) = 0 and a = 0, then u may have any value from {0, 1, 2, ..., pw − 1};
• if (1 − x) is neither invertible nor zero, then (1− x) has rank λ with 1 ≤ λ ≤ w− 1

and u can have as many values as there are solutions of the eqn (1− x)u = 0, i.e. 
as the size of the kernel of (1 − x), i.e. pw−λ.

Thus we conclude:

• Tr(Ea,1) = 0, if a �= 0,
• Tr(E0,1) = pw, and
• Tr(Ea,x) = pw−λ, if (1 − x) has rank λ �= 0.

References

[1] G. Birkhoff, Tres observaciones sobre el algebra lineal, Universidad Nacional de Tucumán: Revista 
Matemáticas y Física Teórica 5 (1946) 147–151.

[2] S. De Baerdemacker, A. De Vos, L. Chen, L. Yu, The Birkhoff theorem for unitary matrices of 
arbitrary dimension, Linear Algebra Appl. 514 (2017) 151–164.

[3] A. De Vos, S. De Baerdemacker, The Birkhoff theorem for unitary matrices of prime dimension, 
Linear Algebra Appl. 493 (2016) 455–468.

[4] A. De Vos, S. De Baerdemacker, The NEGATOR as a basic building block for quantum circuits, 
Open Syst. Inf. Dyn. 20 (2013) 1350004.

[5] A. De Vos, S. De Baerdemacker, On two subgroups of U(n), useful for quantum computing, in: 
Proceedings of the 30th International Colloquium on Group-Theoretical Methods in Physics, Gent, 
July 2014, J. Phys. 597 (2015) 012030.

[6] A. Klappenecker, M. Rötteler, Quantum software reusability, Internat. J. Found. Comput. Sci. 14 
(2003) 777–796.

[7] W. Tadej, K. Życzkowski, A concise guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 
(2006) 133–177.

http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6269726B686F6666s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6269726B686F6666s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib64656261657264656D61636B6572s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib64656261657264656D61636B6572s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6465766F73s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6465766F73s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6E656761746F72s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6E656761746F72s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib73756267726F757073s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib73756267726F757073s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib73756267726F757073s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6B6C6170s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6B6C6170s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib746164656As1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib746164656As1


52 A. De Vos, S. De Baerdemacker / Linear Algebra and its Applications 578 (2019) 27–52
[8] mathworld .wolfram .com /TransitiveGroup .html, 2018.
[9] M. Burrow, Representation Theory of Finite Groups, Dover, New York, 1965.

[10] Wikipedia, Affine group, https://wikipedia .org /wiki /Affine _group, 2018.
[11] M. Liebeck, C. Praeger, J. Saxl, A classification of the maximal subgroups of the finite alternating 

and symmetric groups, J. Algebra 111 (1987) 365–383.
[12] mathworld .wolfram .com /ModuloMultiplicationGroup .html, 2018.
[13] K. Conrad, Cyclicity of (Z/(p))×, http://www .math .uconn .edu /~kconrad /blurbs /grouptheory /

cyclicmodp .pdf, 2018.
[14] T. Beth, M. Rötteler, Quantum algorithms: applicable algebra and quantum physics, in: G. Alber, 

T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. 
Zeilinger (Eds.), Quantum Information, Springer Verlag, Berlin, 2001, pp. 96–150.

[15] K. Patel, I. Markov, J. Hayes, Optimal synthesis of linear reversible circuits, Quantum Inf. Comput. 
8 (2008) 282–294.

[16] A. De Vos, Reversible Computing, Wiley–VCH, Weinheim, 2010.
[17] H. Farahat, Sets of linearly independent permutation matrices, J. Lond. Math. Soc. 2 (1970) 

696–698.
[18] M. Marcus, R. Ree, Diagonals of doubly stochastic matrices, Q. J. Math. 10 (1959) 296–302.
[19] R. Bruali, Notes on the Birkhoff algorithm, Canad. Math. Bull. 25 (1982) 191–199.
[20] F. Dufossé, B. Uçar, Notes on the Birkhoff-von Neumann Decomposition of Doubly Stochastic 

Matrices, Research Report, 8852 Institut National de Recherche en Informatique et en Automatique, 
2016.

[21] I. Bengtsson, A. Ericsson, M. Kuś, W. Tadej, K. Życzkowski, Birkhoff’s polytope and unistochastic 
matrices, N = 3 and N = 4, Comm. Math. Phys. 259 (2005) 307–324.

[22] A. De Vos, S. De Baerdemacker, From reversible computation to quantum computation by Lagrange 
interpolation, unpublished, https://arxiv .org /abs /1502 .00819, 2015.

http://mathworld.wolfram.com/TransitiveGroup.html
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib627572726F77s1
https://wikipedia.org/wiki/Affine_group
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6C69656265636Bs1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6C69656265636Bs1
http://mathworld.wolfram.com/ModuloMultiplicationGroup.html
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicmodp.pdf
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib62657468s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib62657468s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib62657468s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib706174656Cs1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib706174656Cs1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib626F656Bs1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib66617261686174s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib66617261686174s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6D6172637573s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib627275616C69s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6475666F737365s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6475666F737365s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib6475666F737365s1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib62656E677473736F6Es1
http://refhub.elsevier.com/S0024-3795(19)30209-5/bib62656E677473736F6Es1
https://arxiv.org/abs/1502.00819
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicmodp.pdf

	The Birkhoff theorem for unitary matrices of prime-power dimension
	1 Introduction
	2 The group XU(n)
	3 Underlying framework
	3.1 First strategy
	3.2 Second strategy

	4 The case of arbitrary dimension n
	4.1 First strategy
	4.2 Second strategy

	5 The case of prime dimension n=p
	5.1 First strategy
	5.2 Second strategy

	6 The case of prime-power dimension n=pw
	6.1 First strategy
	6.2 Second strategy

	7 Conclusion
	Appendix A Algorithm
	Appendix B The group of supercirculant permutation matrices
	Appendix C The trace of a supercirculant permutation matrix
	Appendix D The determinant of a supercirculant permutation matrix
	Appendix E The pitch matrix
	Appendix F The group of epicirculant permutation matrices
	Appendix G The trace of an epicirculant permutation matrix
	References


