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Associating expression and genomic data
using co-occurrence measures
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Abstract: Recent technological evolutions have led to an exponential increase in data in all the omics fields. It is
expected that integration of these different data sources, will drastically enhance our knowledge of the biological
mechanisms behind genomic diseases such as cancer. However, the integration of different omics data still remains
a challenge. In this work we propose an intuitive workflow for the integrative analysis of expression, mutation and
copy number data taken from the METABRIC study on breast cancer. First, we present evidence that the expression
profile of many important breast cancer genes consists of two modes or ‘regimes’, which contain important clinical
information. Then, we show how the co-occurrence of these expression regimes can be used as an association
measure between genes and validate our findings on the TCGA-BRCA study. Finally, we demonstrate how these co-
occurrence measures can also be applied to link expression regimes to genomic aberrations, providing a more
complete, integrative view on breast cancer. As a case study, an integrative analysis of the identified MLPH-FOXA1
association is performed, illustrating that the obtained expression associations are intimately linked to the
underlying genomic changes.
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Background
Systems genetics approaches that collect genomic informa-
tion with matching transcript information from phenotyp-
ically well characterized individuals provide a powerful way
to study the molecular mechanisms underlying complex
phenotypes. For this reason systems genetics approaches
have become increasingly popular in the domain of cancer
genomics [1–3]. However, the analysis and integration of
these different data sources is non-trivial. Indeed, although
many integrative or multi-omics models have been pro-
posed [4–6], the relation between genetic variants and sub-
sequent changes in gene expression remains poorly
understood [7, 8]. A fundamental problem when integrat-
ing expression data with genomic information lies in the
different nature of both datasets. While expression data is
quantitative, consisting of continuous values that indicate
the degree to which a gene in a sample is being transcribed,
genomic data is essentially qualitative. A common way to
deal with this problem is to convert the continuous expres-
sion measurements into more qualitative, discrete values.

Two strategies exist for this conversion: the identification
of a set of differentially expressed genes [5] and the direct
binning of expression data into discrete categories [6].
The focus of this work will be on the second strategy,
where expression data is binned or discretized as a pre-
processing step. This discretization is non-trivial and
many different techniques exist, as reviewed in the work
of Gallo et al. [9] in the context of single-source expres-
sion analysis. The advantages of discretization in
single-source expression analysis are mainly related to
mathematical convenience [10] and reduction of noise in
the data [11–13]. However, in the context of data integra-
tion for cancer research there are some other arguments
for the discretization of expression data.
First, many continuous methods rely on mutual infor-

mation or correlation based measures to define whether
the expression of two genes is related or not [14]. While
these measures are suited to describe co-expression, they
might not be the measure of choice, if the expression of
two genes is related only under a specific set of condi-
tions. For cancer this might be a very relevant concern
as a cohort of samples often contains several subtypes
and/or network rewiring due to genomic changes that
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affect local gene expression behavior [15, 16]. The recon-
struction of these condition-specific modules or subnetworks
from expression data has been a research question for over
20 years [17–19] and some methods indeed rely on data
discretization as a preprocessing step [20]. The problem find-
ing condition-specific modules is in essence a bi-clustering
problem, where one tries to find modules of genes that show
similar behavior in a subset of the samples [21, 22].
Second, the use of correlations for the identification of

co-expressed genes assumes that an increase in one gene
(e.g. transcription factor) will trigger a proportional in-
crease or decrease in another gene (target) [23]. However,
this assumption is often a simplification of reality as many
examples of complex feedback mechanisms in the human
body exist, where definite changes only take place once a
certain threshold is crossed [24, 25]. It therefore makes
sense to describe the expression of a gene in terms of
discrete regimes and to model the gene interaction net-
work as a complex nonlinear system, consisting of many
discrete states. These networks are perturbed by an exter-
nal trigger, such as the occurrence of a somatic mutation,
that affects many genes in the network and causes them
to undergo a shift in expression.
In this work we want to show that the discretization of

expression data into expression ‘regimes’ also yields an im-
portant third benefit, related specifically to the integration
of expression data with genomic information. The
discretization of expression data essentially converts the
quantitative transcriptome measurements into qualitative
data, that indicate in which expression regime a gene is
found to be. Because genomic information is in essence
qualitative, integration of transcriptome and genomic data
sources can now be done by simply counting how many
times a given genomic aberration co-occurs with an expres-
sion regime. In the same way, phenotypes and clinical sub-
groups can be analyzed by counting how many times they
co-occur with aberrations and/or regimes, and identifying
the most overrepresented aberrations and regimes using a
suitable association measure. To this end, we propose the
use of ‘co-occurrence measures’ that are calculated between
subgroups of a cohort, rather than over the whole cohort.
In this work we present evidence that the expression

profile of many important genes in breast cancer, actu-
ally follows a bimodal distribution, where the mode or
‘regime’ of a gene contains important clinical informa-
tion. The presence of these regimes allows for a drastic
simplification of the subsequent analysis, as expression
data can be discretized in a biologically sound way with-
out much loss in information content. Using a breast
cancer dataset, we demonstrate that measures that count
the co-occurrence of these expression regimes between
different genes (‘co-occurrence measures’) are a suitable
association measure for the analysis of expression data.
We compare the co-occurrence measures with two

commonly used measures, the Pearson correlation coef-
ficient and Mutual Information [26]. The genetic associa-
tions obtained when using these co-occurrence measures
seem to closely reflect the underlying genomic changes and
are complementary to what is found using the conventional
association measures. Finally, we demonstrate how these
co-occurrence measures can also be used to associate mu-
tation and copy number information with expression re-
gimes, obtaining a more complete, integrative picture of
the different elements that constitute a particular
phenotype or clinical subgroup. As a case study we analyze
the relation between MLPH and FOXA1 in breast cancer.

Results
Many clinically important genes in breast cancer, e.g. ESR1
[27] and ERBB2 [28], appear to follow a bimodal expression
distribution across the samples of a cohort. We hypothe-
sized that these regimes reflected the underlying genomic
changes. For instance, in the case of ERBB2, a gene that is
known to be amplified in breast cancer [28], we could ob-
serve that many samples in regime 1 indeed have an ampli-
fication in ERBB2. To be able to perform a large-scale
analysis of these expression regimes, we used a Gaussian
Mixture Model (GMM) to assign samples to a cluster/re-
gime (see Fig. 1) and repeated this procedure for every gene
in the METABRIC [29, 30] study (see methods). Because
there is no a priori reason why expression profile would bi-
modal, we select for each gene the number of regimes
based on the Bayesian Information Criterion (BIC) [31].
The only parameter in the discretization procedure is the
maximum number of regimes that a gene profile can con-
sist of. Using this approach we verified whether the genes
from the KEGG pathway [32] associated with breast cancer
showed this multimodal behavior (see methods). We ob-
served that all genes in the breast cancer pathway indeed
displayed this multimodal behavior. In total, we found that
about 60% of the genes in the METABRIC study (114,652
out of 24,630 different transcripts measured), displayed a
multimodal behavior. In this work, we show that these
modes or ‘regimes’ of a gene actually convey important
clinical information and can be associated to underlying
genomic changes.

Information content of expression regimes
To estimate how much information is lost during the
discretization step, Random Forest classifiers are trained
on the METABRIC dataset to predict the PAM50
subtypes, including the Claudin-low and Normal-like sub-
types [33–35]. The first classifier is trained on the original,
continuous data and compared to classifiers trained on
the GMM discretized data, again comparing the three
values for the maximum number of regimes. Random For-
est classifiers are chosen, because the underlying decision
trees also threshold the data, but in a sequential and
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supervised fashion. Consequently, the classification per-
formance reflects how the unsupervised discretization of
the expression data compares to a supervised thresholding.
We also compare to a naive binarization strategy, in which
the expression is normalized to unit variance and zero
mean and then binned into three categories (]-∞, − 1.5σ[,
[− 1.5σ, 1.5σ],]1.5σ, ∞[; where σ is the standard deviation).
Figure 2 shows a Boxplot of the validation accuracy

when training classifiers to predict the PAM50 subtype. It
shows that the validation accuracy on the GMM discre-
tized data is only slightly worse than the continuous data,
in line with what was found in Ding et al. [12]. Conversely,
a naive discretization strategy leads to a worse perform-
ance. Surprisingly, the model trained on the binary data
achieves a slightly higher average accuracy, at the cost of a
larger standard deviation, compared to models trained on

data that consist of more regimes (GMM 3 and GMM 6).
In the remainder of this work we will limit to the number
of regimes to 2, resulting in binary expression data, and
show that this still allows to find many important
associations between gene expression and the underlying
genomic alterations. For other cancer types, this assump-
tion may not hold, but the presented framework (and ac-
companying implementation) supports the general case of
n regimes. In the remainder of this work, we will use the
convention that regime ‘0’ denotes the low expression
regime of a gene and ‘1’ the high expression regime, in ac-
cordance with Fig. 1.

Clinical relevance of the expression regimes
The results in Fig. 2 indicate that, for the PAM50 classifica-
tion, not much information is lost in the GMM
discretization step, even if we restrict the discretization to
only two values (the GMM 2 scenario). However, if these
binary expression regimes are truly informative, they should
also convey important information about the prognosis.
For each gene that has two different expression regimes in
the METABRIC study, we calculated the age-corrected haz-
ard ratio between samples that are in regime ‘0’ and ‘1’.
Table 1 shows the 5 genes that have the highest hazard ra-
tio, as well as the regime (‘0’/‘1‘) and the number of samples
in which this regime is present (see methods). Here the
hazard ratio of 2.31 for SPATA4 implies that samples where
SPATA4 is in regime ‘1’ decease at a 2.31 faster rate than
the group where SPATA4 is in regime ‘0’.
Out of these five genes, only SPATA4 has not been re-

ported in breast cancer literature [36–39]. Figure 3 shows
the distribution of hazard ratios, comparing to a random
permutation of samples across each gene, illustrating that
the hazard ratios found are not generated by chance.

Co-occurrence of expression regimes as an association
measure
Our previous results seem to suggest the existence of clin-
ically relevant regimes in the expression profile of a gene.
A perturbation, e.g. a genomic aberration, can trigger a re-
gime shift. Even if the trigger of this regime shift is un-
known, it is still possible to identify pairs of genes that
often co-occur in their regimes. To find such pairs of
genes, the p-value under the assumption of independence
is calculated between all genes (see methods). Unsurpris-
ingly, many pairs of genes are found that co-occur signifi-
cantly more than expected by random. 1,342,459 gene
pairs are significant at a conservatively corrected 0.001
level (see methods), illustrating that the expression of
genes is tightly connected and that co-occurrence of these
regimes can indeed be used as an association measure. To
get an idea of how consistent this association measure is,
we compare the associations to those found using Pearson
correlation coefficient on the continuous data and Mutual

a

b

Fig. 1 The expression profile for the notorious breast cancer gene
ERBB2/HER2 across the METABRIC (a) and TCGA (b) cohort. In both
profiles the expression distribution over the samples approximately
follows a bimodal distribution. The expression data is discretized by
assigning a 0 to the samples belonging to the blue distribution and
a 1 to the samples in orange
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Information (MI) on the discretized data (see methods). In
addition, we compared all associations found on the
METABRIC to another breast cancer study (TCGA-BRCA,
see methods). For both studies we thus obtain 3 ranked lists
of associations, one for each association measure. Each line
in Fig. 4a is obtained by simultaneously going down the
TCGA-BRCA and METABRIC ranked lists for the same
measure, at each depth calculating the relative overlap or
agreement between the two lists [40]. In case of two identi-
cal lists, the result would be a perfect agreement of 1, for
each depth. The small peak at depth 2 for the co-occurrence
measure is due to the strong association between MLPH
and FOXA1, that is found in both datasets (cf. infra).
Note that the measures that rely on discretized data,

i.e. the co-occurrence measure and the MI, are at a dis-
advantage. Indeed, if a gene is multimodal in one dataset
and unimodal in the other dataset, then all associations
found in the first dataset cannot be found back in the
second dataset. To be able to compare the performance

of the association measures, both datasets are filtered,
keeping only genes that are bi-modal in both datasets.
The impact of this can be seen in Fig. 3a by comparing
the blue line (co-occurrence on the unfiltered datasets) to
the orange line (Co-occurrence filtered). On the filtered
datasets it can be seen that both MI and co-occurrence
lead to higher consistency between the top ranked associa-
tions. At larger depth the correlation measure is slightly
more consistent, but note that the two datasets show a ra-
ther poor overlap for each of the measures. Possible rea-
sons for this poor overlap are the differences in
technology and cohort composition (see methods).
Interestingly, we note that the overlap between the asso-

ciations is rather small for the different methods (see Add-
itional file 1: Figure S1), indicating that the different
association measures provide complementary information.
Among the most significant gene pairs we see that

many genes occur several times, such that small cliques
of co-occurring genes are formed (see Additional file 2:
Figure S2 and Additional file 6: Table S1). An important
point is that these subnetworks are in fact bi-clusters, as
the samples in which these regimes are present together
are also known.

Data integration using co-occurrence
By discretizing the expression data, we have essentially
converted the quantitative measurements into qualitative
data, indicating the regime to which a gene belongs.

Fig. 2 Accuracy on the validation set for PAM50 subtype classification, comparing training on continuous microarray data to training on GMM
discretized data and a naive discretization strategy (STD). For the GMM discretization, we allowed the maximum number of regimes to be 2
(GMM 2), 3 (GMM 3) and 6 (GMM 6). Cross-validation was repeated 20 times, with a 0.7/0.3 training/validation ratio using a Random Forest
classifier with 1500 trees [49]

Table 1 Top 5 genes with the highest hazard ratio

Gene Hazard ratio N samples Regime

1 SPATA4 2.31 306 0

2 UCP1 2.24 159 0

3 AURKA 2.17 796 1

4 GLA 2.14 243 0

5 PGAP3 2.12 238 0
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Based on the results from the previous section, measures
such as MI and co-occurrence can be used to identify
associations between this qualitative data. Because genomic
information is mostly qualitative, these measures can also
be applied to calculate the co-occurrence or MI between
mutations and expression. Here too, we assessed how well
the associations in METABRIC agree with TCGA. The re-
sults are shown in Fig. 4b and can be compared to Fig. 4a.
It can be seen that associations between mutation and ex-
pression data are more consistent between the two datasets,
for both the MI and the co-occurrence. Because the
co-occurrence measure used here represents a p-value,
pairs can be selected based on a chosen significance level.
Aiming for a significance level of 0.001 and taking into ac-
count multiple hypothesis testing (see methods), we obtain
1876 significant pairs for METABRIC and 802 for TCGA.
The discrepancy in number of significant pairs is due to the
different sample size for the two datasets. In general we see
that a higher significance level does indeed lead to a better
overlap between the datasets (see Additional file 3: Figure
S3). Also, we observe that from the top 1000 associations,
682 overlap between MI and Co-occurrence, which more
than what was found for expression (see Additional file 1:
Figure S1). More than 97% of the associations involve mu-
tations in TP53 in both studies, where TP53 is the strongest
associated with low expression in ESR1.
As an illustration Fig. 5 graphically shows the 30 genes

that co-occur most significantly with mutations in TP53 in
the METABRIC study. The association between TP53 and
ESR1, which was found in both datasets, has been reported

in literature [41, 42]. Additionally, the presence of a muta-
tion in TP53 and subsequent loss of activity in ESR1 is an
indicator of a poor prognosis (Additional file 4: Figure S4).
Note that from the 30 most significantly co-occurring
genes, only 4 are directly interacting with TP53 according
to BioGRID [43, 44]. For instance, CDCA7 is the second
most significantly co-occurring gene, but does not interact
with TP53. By lowering the threshold on the significance of
the association level between TP53 and expressed genes, an
increasing number of genes are added to the subnetwork,
revealing that indeed many of the genes are indirectly con-
nected to the mutations in TP53. We also observed that
out of the 30 genes displayed in Fig. 5, 21 genes have a
shortest path distance of 2 to TP53 on the BioGRID net-
work, while 4 genes have a distance of 3. This shows that
the effect of a genomic aberration can propagate far down
an interaction network, obviating the detection of such re-
lations by local network methods.
Figure 5 illustrates how mutation data can be integrated

with expression data. However, it is also possible to inte-
grate all data sources, including the copy number data
that is available. We therefore developed a query-based
workflow that allows to perform a focused analysis of a
particular phenotype, condition or relation that is relevant
only to a subgroup of a cohort. As an example, we investi-
gated the MLPH-FOXA1 relation, that was among the top
two most significant expression associations in both
TCGA and METABRIC. For all samples with low MLPH
and low FOXA1 expression, additional genes with signifi-
cantly co-occurring expression regimes, copy number

Fig. 3 Comparison of the Hazard ratio for the data that was binarized in 2 regimes (orange) and the same binarized data where the samples
were randomly permuted for each gene (green)

Larmuseau et al. Biology Direct           (2019) 14:10 Page 5 of 14



changes and/or mutations were identified. The identified
genes were mapped on the BioGRID network and the dir-
ection of the interaction was deduced using conditional
probabilities (see materials and methods). The resulting
network is shown in Fig. 6.
The network consists of three hubs (TP53, EGFR,

FOXA1), but note that MLPH is not connected to FOXA1.
Indeed, this association has not yet been reported in litera-
ture. The genomic changes associated with the
MLPH-FOXA1 association, are amplifications in GATA3
and deletions in FOXA1, KRT18 and REEP5, alongside mu-
tations in TP53.
In total we identified 113 genes that are strongly asso-

ciated with MLPH-FOXA1 (see methods), but only 38
genes could be mapped onto known interactions from
BioGRID (Additional file 5: Figure S5). Lowering the
significance threshold to include more associations in-
creases the fraction of genes that can be connected. For
instance, if we use a conservative lower bound on the
significance level (see methods) we find known interac-
tions between 902 out of 1728 associated genes.

Using this workflow we analyzed the top 1000
strongest associations that were found when analyzing
the expression data. Interestingly, we found that for the
METABRIC study 695 associations co-occurred signifi-
cantly with mutations or copy number alterations. For
TCGA this number was lower, here 365 associations
could be linked to an underlying genomic change. These
results clearly show that co-occurrence measures on ex-
pression regimes indeed allow for the discovery of asso-
ciations that are condition specific.

Discussion
In this work a straightforward and intuitive workflow has
been proposed to integrate expression data genomic
information. The expression data is first discretized into
expression regimes, using a GMM clustering based on the
BIC criterion. In breast cancer, we observed that import-
ant breast cancer genes actually follow a bimodal distribu-
tion, such that it suffices to discretize the data into only
two expression regimes. This is confirmed when training a
Random Forest on the discretized data to predict the
PAM50 subtype, resulting in a slightly better classification
performance on the binarized data compared to data that
allowed for more than two regimes. The binarized model
also scored on par with a classifier trained on the
continuous data, showing that the binarized data retains
important clinical information. This is confirmed when
we calculate the hazard ratio for each gene, comparing the
survival chances of patients that are in the low expression
regime to those in the high expression regime. We find
that 4 out of 5 genes have been reported in literature and
that the hazard ratios are higher than expected by chance.
By calculating the p-value under independence assump-

tion, many significant associations were found in the ex-
pression data, showing that this co-occurrence measure
can indeed be used to identify important relations from
expression data. We compared the p-values against two
other association measures, the Mutual Information and
the Pearson correlation coefficient and compared our
findings on the METABRIC study to TCGA-BRCA. In
general all measures demonstrated a rather poor overlap,
which is presumably caused by the intrinsic differences
between the two studies. Nevertheless, we found some im-
portant overlap such as the association between MLPH
and FOXA1. In general the association measures seem to
prioritize different associations, showing that association
studies can greatly benefit from the inclusion of different
association measures.
We’ve also demonstrated that the discretized data is

consistent with the genomic information, in the sense that
many expression regimes co-occur significantly with mu-
tations and copy number changes. Here again, we obtain
p-values that are so low that these occurrences are ex-
tremely unlikely to have occurred by chance. Remarkably,

a

b

Fig. 4 a Agreement between the associations found on TCGA-BRCA
with METABRIC, for three different assocation measures (see text). b
The agreement of the TCGA and METABRIC associations between
expression regimes and mutations
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the two datasets show a better agreement when associat-
ing genomic information with expression data. This result
aptly illustrates the relevance of data-integration, where in
our case genomic information is used to unravel the many
signals present in expression data. This increase in
consistency is also noted when comparing the top associa-
tions found using MI to those found with co-occurrence.
The biggest advantage of using co-occurrence mea-

sures such as correlation or MI lies in the fact that the
samples for which the association holds are also known.

By taking the MLPH-FOXA1 association as an example,
a query-based workflow was presented to integrate gen-
omic information such as mutation and copy number
data in an interpretable way. The proposed workflow al-
lows to quickly mine associations between different data
sources and discover important relations. It is also very
flexible, allowing for the integration of expression data
with many different data sources, provided that the data
is qualitative. However, confronting our findings with
known interactions in BioGRID showed that many of

Fig. 5 The 30 genes of which the expression regime co-occurs most significantly with mutations in TP53 (indicated in yellow). The red lines
connect TP53 to all genes with which it displays a co-occurrence relation, with thickness indicating the association strength (all log10(p-value) < −
35, far below our conservative lower bound on the significance level). The black lines denote interactions that are present in BioGRID. The
expression regimes of the co-occurring genes are indicated with border colors, where orange and blue respectively denote the regimes of high
and low expression

Fig. 6 The MLPH-FOXA1 subnetwork identified using the co-occurrence measures between different data sources. We defined a subgroup of
samples that were in the low expression regime for both MLPH and FOXA1. Then we calculated all significantly co-occurring expression regimes,
mutations and copy number alterations. The expression regimes are denoted by blue (low expression) and orange (high expression) border color.
The node color is used to indicate genes that are significantly mutated (yellow), amplified (purple) and deleted (green). Arrows indicate the
estimated direction of the association (see text)
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these associations cannot yet be explained. Indeed, many
of the associations found using the co-occurrence meas-
ure are actually strongly related to mutations or copy
number changes, such that these some associations
might represent cases of genetic rewiring that are not
yet well understood.
Our results show that the GMM discretization of expres-

sion data is a viable strategy for performing data integra-
tion, and our results indicate that the found expression
regimes have both a clinical and biological meaning. This il-
lustrates again that there are more reasons than merely
mathematical convenience to discretize expression data [9].
Nevertheless, every sample that is mislabeled in this
discretization step, is irreversibly lost in downstream ana-
lysis. Moreover, it has to be further investigated how differ-
ent preprocessing of the data influences the quality of the
proposed discretization approach. Additional work is also
required to improve the consistency between the micro-
array and RNA-seq data. In this work, the same
discretization scheme was applied to both datasets, but a
better overlap might be obtained if the data is processed in
a more technology-specific manner.

Materials and methods
Dataset
The data was taken from the METABRIC study [29, 30]
and TCGA-BRCA. METABRIC consists of whole-genome
microarray data (1904 samples), whole-genome aCGH data
(2173 samples) and targeted mutation data (2394 samples)
for a panel of 174 genes. The aCGH data and expression
data have been preprocessed as described in Margolin et al.
[29]. The aCGH data has hereby been processed to contain
5 discrete values indicating whether many gains/deletions,
some gains/deletions or no gains or deletions exist in a
sample. The TCGA-BRCA data consists of whole genome
RNA-seq data (Illumina HiSeq 2000 RNA Sequencing plat-
form, 1218 samples), copy number data (Affymetrix
Genome-Wide Human SNP Array 6.0 platform, 1080 sam-
ples) and mutation data (1057 samples). The expression
data was normalized using FPKM-UQ and then
log-transformed. The copy number data was processed
using GISTIC2 [45] from the TCGA FIREHOSE pipeline
and binned into the same five categories as the METABRIC
study. The somatic mutations were called using MuTect 2
[46]. Table 2 shows the clinical subtypes for both datasets,
where the clinical information for TCGA-BRCA was taken
from Berger et al. [47]. To visualize the interactions be-
tween genes, we used the BioGRID interaction database –
version 3.4.161 [43, 44] and Cytoscape [48].

Preprocessing
For many genes it can be observed that expression follows
a bimodal distribution, as is illustrated in Fig. 1 for ERBB2.
The expression profile can be divided into different

‘regimes’, that can be described by a Gaussian Mixture
Model (GMM) [49]. Essentially, the expression profile of
each gene is clustered into n clusters or regimes, where
the Bayesian Information Criterion (BIC) is used to deter-
mine the optimal number of clusters [31]. This idea is
similar to using k-means for the clustering of expression
profiles [9, 50], but here the number of clusters (i.e. re-
gimes) is derived from the data and can thus vary between
genes. An important parameter for the discretization is
the maximum number of regimes that an expression pro-
file can consist of. For most of the results shown in this
work, the maximum number of regimes was set to 2 (see
results section). For this value, bimodal expression profiles
will be clustered into 2 regimes, and the data is binarized
by replacing the continuous expression measurement by a
‘0’ and ‘1’ indicating the cluster or regime the expression
measurement belongs to. In total 14,341 out of 24,630
transcripts are bimodal, for the METABRIC study, while
49,184 out of 56,861 transcripts were found to be bimodal
in the TCGA study. The copy number data was binned
into three categories: deletions, unchanged and amplifica-
tions. Between METABRIC and TCGA-BRCA 15864 tran-
scripts had an identical gene symbol, the correlation and
unfiltered co-occurrence from Fig. 3a were calculated on
this dataset. From these 15,864 genes only 7022 were bi-
modal in this both datasets. This smaller dataset was used
to calculate the MI filtered and co-occurrence filtered.

Clinical information
To check that important breast cancer genes have a
multimodal expression profile, we downloaded the
KEGG breast cancer pathway, which consists of 15
highly curated genes related to breast cancer [32]. We
only considered the genes that were over- or underex-
pressed or amplified/deleted, resulting in a list of ten
genes (ESR1, FGFR1, CCND1, EGFR, KIT, Notch1,
Notch4, FZD7, LRP6, ERBB2).
To calculate the hazard ratios we used the lifelines

module [51] in Python to fit a Cox proportional hazard
model to the patient survival data, for each gene. To
correct for patient age the model had two covariates, pa-
tient age and a binary variable indicating the regime of
the gene. The hazard ratio for each gene was then calcu-
lated as max(exp(γ), exp(−γ)), where γ is the coefficient

Table 2 The percentage of patients in each PAM50 subtype,
comparing METABRIC and TCGA-BRCA

Subtype METABRIC TCGA-BRCA

LumA 35.46 51.80

LumB 24.06 19.26

Her2 11.35 7.56

claudin-low 11.04 NC

Basal 10.59 17.70
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belonging to the binary variable in the Cox proportional
hazard model. The resulting ratio represents the hazard
ratio for the regime with the poorest prognosis and is al-
ways larger than 1. Hazard ratios were only calculated
when both regimes of a gene occurred in at least 10% of
the samples, this to assure that the obtained ratios were
representative. To obtain the random hazard ratios, we
permuted the samples and calculated the hazard ratio in
the same way.

Co-occurrence measures
To analyze the relations between genes two different
measures were used that define how closely two genes
are related, conditional on their status (which can be an
expression or mutational status). A first measure can be
interpreted as the p-value of co-occurrence under inde-
pendence assumption. The second measure is an esti-
mate of the conditional probability that a gene will be in
a certain regime, given the regime of another gene. Both
measures will be illustrated using the expression status
of the genes involved in the association.
The first measure is a p-value under the hypothesis

that two genes are independent, i.e. the expression re-
gime of one gene is independent from the other. Under
this independence assumption, we can approximate the
probability that gene A is in regime i while gene B is in
regime j:

PðAi ∩BjjH0Þ ¼ PðAiÞPðBjÞ

≈
j Ai jj Bj j
N2

samples

The expected number of co-occurrences is compared
to the observed number, under a binomial distribution.
This work focuses on finding regimes that co-occur
more than expected by chance, as such one sided testing
suffices. The resulting quantity can be interpreted as a
p-value under the independence assumption, i.e. a meas-
ure that expresses how much more the expression re-
gimes of two genes co-occur than expected by chance.
The second measure can be interpreted as the condi-

tional probability that a gene will be in a certain expres-
sion regime, given the regime of another gene. Using the
same example as above, we have:

PðAijBjÞ ¼ PðAi ∩BjÞ
PðBjÞ

≈
j Ai j ∩ j Bj j

j Bj j

With |Ai| ∩ |Bj| the number of samples in which gene A
is in regime ‘i’ and gene B in regime ‘j’, i.e. the number of
times Ai and Bj co-occur. Remark, that the conditional

probability has the undesirable property that it can still be
close to one, when both ∣Ai | and ∣Bj∣ are small. This
makes it unsuited for identifying associations in large
datasets. However, as the conditional probability is a di-
rected measure, i.e. in general P(Ai| Bj) ≠ P(Bj|Ai), it can
be used to deduce a direction between associated genes
(cf. Figure 6).
The measures can be extended in a trivial way to assess re-

lations between genes that involve a genomic status (muta-
tion, amplification, deletion) e.g. by counting the number of
times an aberration co-occurs in both genes or by counting
the number of times an aberration in one gene co-occurs
with a specific expression regime of another gene.

Mutual information (MI)
Mutual information is an association measure that can is
often used in the field of information theory to express
the dependence of two random variables [26, 52]. In the
continuous case, the MI between two random variables
X and Y is defined as:

MI X;Yð Þ ¼ ∬P x; yð Þ log
P x; yð Þ
P xð ÞP yð Þ

� �
dx dy

In our case X and Y both correspond to the expression
measurements of a gene in different samples. Because
the underlying distributions p(x), p(y) and p(x, y) are un-
known, the MI cannot readily be calculated. However,
there exist methods to estimate the MI directly from the
continuous expression measurements [53]. In this work,
however, we calculate the MI between the discretized ex-
pression profiles of gene A and gene B as:

MIðA;BÞ ¼
X
i

X
j

PðAi∩BjÞ log
PðAi∩BjÞ
PðAiÞPðBjÞ

� �

¼
XjXj
i

XjY j
j

j Ai∩Bj j
Nsamples

log
j Ai∩Bj j Nsamples

j Ai jj Bj j
� �

Where we see that the MI is actually closely related to
the concept of co-occurrence from the previous para-
graph. Indeed, each term in the summation is a
co-occurrence measure, as it described how well regime
Ai overlaps with regime Bj. The big difference is that MI
quantifies the association between two genes based on the
sum over all possible regimes, whereas a co-occurrence
measure only depends on one regime per gene.

Correction for multiple hypothesis testing
Using the p-value under independence as an association
measure has the advantage that the measure has a clear
interpretation and that all pairs at a given significance
level can be determined. However, because of multiple hy-
pothesis testing, correctly determining the significance
level is by no means trivial. A common approach to deal
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with this problem is to rely on the False Discovery Rate
(FDR) [54, 55], as classical measures such as Bonferroni
are deemed too conservative [56]. However, the scope of
this work is not to present an extensive list of significant
associations, and we leave the significance level as a model
parameter such that the user can decide. Whenever we
mention the number of significant pairs, we use the Bon-
ferroni correction as a conservative lower bound. Aiming
for a significance level α, the corrected threshold θ for all
associations between two datasets is computed as:

ϑ ¼ α
N nreg M mreg

Where nreg and N are the number of regimes and
number of genes in the first dataset and mreg and M that
for the second dataset. In this work we set α = 0.001, i.e.
we work at a 0.001 significance level, which for the
METABRIC expression dataset results in a threshold of

0:001
ð14341�2Þ2 ≈ 1:26� 10−12.

Data integration using co-occurrence
To create Fig. 5 and Additional file 5: Figure S5, all ex-
pression regimes, mutations, deletions and amplifications
that significantly co-occur with the subgroup of samples
that have a low expression in MLPH and FOXA1 are cal-
culated. To keep the size of the network small enough for
displaying it, only expression regimes with a p-value < 10−
50 were kept (154 genes in total). For the copy number
and mutations a threshold p-value < 10− 20 was taken,
retaining only TP53 as significant mutation, 2243 dele-
tions and 390 amplifications. All expression regimes that
significantly co-occurred with the TP53-ESR1 relation
were mapped onto the BioGRID network [43, 44], retain-
ing 38 interactions between only 38 of the 113 genes. All
links were filtered by imposing that between every link Ai

– Bj, either P(Ai| Bj) > 0.5 or P(Bj|Ai) > 0.5 for their rele-
vant regimes, as not all genes that co-occur with
MLPH-FOXA1 are necessarily co-occurring with each
other. However, for these parameter settings all found in-
teractions passed the filtering criterion. The direction
from the interaction was deduced from the expression re-
gimes using the simple heuristic that if P(Ai| Bj) > P(Bj
|Ai), then Bj→Ai. For copy numbers changes, it was veri-
fied that the changes co-occurred significantly with the ex-
pression regimes in the same gene, using the same
threshold that was used to select the copy numbers
(p-value < 10− 20). Finally, all genes and their attributes (i.e.
genomic status) were visualized using Cytoscape [48].

Reviewers’ comments
Reviewer’s report 1: Dirk Walther
Review comment: My two main questions/ concerns relate
to the statistical methodology: When establishing

correlations between discrete variables, the first metric that
comes to (my) mind is mutual information (MI) - or some-
thing similar (Jaccard distance). In fact, MI has been used
to correlate genes before (Steuer et al. 2002, Bioinformatics,
“The mutual information: …” - I think, you should also cite
this paper). Instead, binomial testing of co-occurrence of
states is used. However, there are four possible states for
two-state variables (++,--,+−,−+), which need to be consid-
ered. But they are not independent. So why not used MI,
which does everything in one go and automatically ac-
counts for number of different states per gene?
Author’s response: We would like to thank the reviewer

for this important point. Indeed, Mutual information
would be the first choice for the discretized data and
we’ve added a comparison between mutual information
and the binomial testing procedure. The results seem to
indicate that these two associations measures find (or at
least rank) different associations. This is indeed due to
the fact that the Mutual information considers all states
of a gene at once, which make MI a robust and reliable
association measure. However, because MI is calculated
over all states at once (and thus all samples), the found
associations can no longer be related to a subgroup of
samples. This is different for the proposed co-occurrence
measures. For instance, in the case of the MLPH-FOXA1
association that we found, we know that this association
is present in all samples where both MLPH and FOXA1
are in a low regime (information that is lost in MI by ag-
gregating over all the states). This allows us to obtain not
only the association, but also the subgroup of patients in
which the association is present. Because, we exactly
know in which samples the association MLPH-FOXA1 is
present we can again calculate the co-occurrence between
this associations and expression regimes/mutation data/
copy number data of other genes. We’ve used this simple
concept to perform data integration.
Review comment: You can also establish significance by

using randomized data. - Multiple testing correction:
142,827 gene pairs with co-occurring regimes with p <
1E-30, are being reported. The authors do not mention
any performed testing for multiple testing. This MUST be
done. And if not done so, authors should introduce proper
correction. Actually, throughout the manuscript. Though,
one way to do it, is to compare to random data as done by
the authors in the paragraph above (91 vs. none).
Author’s response: Another very important remark.

We’ve added some more text to better justify the signifi-
cance levels that were chosen throughout the work. When
seen as an association measure, the p-values represent a
number that indicate how strong the association between
two genes is. In that case, selecting a significance level is
the same as deciding upon a threshold for the correlation
coefficient to determine which pairs are correlated and
which aren’t. However, because the associations have this
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interpretation of being a p-value, there exist statistically
sound ways to determine a threshold, finding a delicate
balance between sensitivity and specificity, such as FDR.
The fact that this interpretation exists could be consid-
ered an advantage of the co-occurrence over other associ-
ation measures such as correlation or MI. We’ve
considered and tried random data for testing, but it
turns out to be very hard to accurately estimate the tail
of the distribution. However, the results obtained with
this random testing procedure are in line with the conser-
vative lower bound used throughout the work.
Review comment: The GMM approach should be ex-

plained in more detail. Perhaps, it would even make
sense to treat it as part of results. When reading the art-
icle start-to-finish, it is not clear upon first encounter
(l106), what GMM actually is and that, in fact, it is the
heart of the study.
Author’s response: We completely agree with the com-

ment and have modified the manuscript such that this
should be more clear to the reader.
Review comment: Please provide some overview statis-

tic: for the dataset(s) used, how many genes were found
to be unimodal, bimodal, > 2 states etc.. The used ex-
perimental dataset should be explained more. How many
different subtypes have been described (is 5 (l264) the
relevant number? unclear).
Author’s response: We have included additional infor-

mation on this in the methods section.
Review comment: The term “regime” is a bit nebulous.

At least the authors should provide a sentence or two as
to what they if in mind when talking about regimes.
Author’s response: Again a very valid comment. We

have added additional clarification in results section.
Review comment: Frequently, the term “binarization”

is used. Even though the methodology would also allow
for more than two states. Either the authors mean “bin-
ning” or indeed, a two-state (binary) situation. Please ex-
plain/ make unambiguous.
Author’s response: We would like to thank the reviewer

for the many relevant comments, which will really im-
prove the quality of this work. Indeed, the proposed work-
flow can be extended to the general case of n regimes.
There is one slight caveat, as a high number of regimes
might imply that some regimes contain a low number of
samples. For these regimes it will be impossible to achieve
high p-values. As a part of our results we show that
working with 2 regimes, i.e. binarizing the expression
data, is actually sufficient to recover many of the signals
in the data. We have elaborated these results a bit more
in the results section.

Reviewer’s report 2: Francisco Garcia
Review comment: Is the code available in any repository?
Reproducibility is a good and necessary value.

Author’s response: The code will soon be made avail-
able on Github. Everything is written in Python and
builds upon pandas and numpy.
Review comment: Did you try your strategy in more

real or simulated datasets?
Author’s response: We’ve added a comparative ana-

lysis, that validates our results on another large breast
cancer dataset (TCGA-BRCA). Our results probably
underestimate the overlap between the datasets, as we
didn’t take any platform bias into account (METABRIC
uses microarray expression and TCGA RNA-seq). Never-
theless, we observe that significant pairs found on
METABRIC can often be recovered in the TCGA dataset.
Review comment: Did you compare your results with

other methods for the same dataset? Maybe it would be a
good proof to demonstrate the power of this new approach.
Author’s response: This is a very good point, and some-

thing that was indeed missing in the first version of this
work. In the new version we’ve compared the
co-occurrence measures to two other measures, Pearson
correlation coefficient and Mutual Information.

Reviewer’s report 3: Isabel Nepomuceno
Review comment: Authors propose a straightforward
and intuitive workflow to integrate genomic information
with expression data. Furthermore, they claim that they
developed a query-based workflow that allows perform-
ing a focused analysis of a particular phenotype, condi-
tion or relation that is relevant to a subgroup of the
samples. For this assertion, I expected a stand-alone
software or web to reproduce the analysis. Authors
should provide at least the script to reproduce the study
and explain the tools used to implement it.
Author’s response: The Python code for performing the

analysis will be made available on Github, such that
people can reproduce our results and run their own
analyses.
Review comment: Authors claim that co-expression mea-

sures might not be the measure of choice if the expression
of two genes is related only under a specific set of condi-
tions. In this case, it should be mentioned some methods
based on local search strategy, which try to extract the simi-
larities under a subset of samples using biclustering as [1]
or other methods that partition the search space as [2]. ( [1]
Mitra, Sushmita, et al. “Gene interaction–An evolutionary
biclustering approach.” Information Fusion 10.3 (2009):
242–249. [2] Nepomuceno-Chamorro, Isabel A., Jesus S.
Aguilar-Ruiz, and Jose C. Riquelme. “Inferring gene re-
gression networks with model trees.” BMC bioinformatics
11.1 (2010): 517).
Author’s response: We thank the reviewer for pointing

out the missing references to the local search methods. In-
deed, the work we present is very much related to the
concept of bi-clustering, but the bi-clustering methods
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and other local search approaches were not properly re-
ferred to, this is now added.
Review comment: General structure of the paper is clear,

but there are several confusing details. I endorse the publi-
cation, but I strongly suggest the authors to revise next
comments: In subsection “Clinical relevance of the expres-
sion regimes” the PGAP3 gene is ranked on the 10th place
in the list, do the authors refer to the list of genes in Table
1? This list only shows the first 5 genes. - In Table 1, the
hazard ratio is shown, how is it calculated? This is not men-
tioned on the section materials and methods. Figure refer-
ences should be checked carefully. On page 3 first
paragraph authors mentioned that Fig. 2 shows a boxplot,
but the boxplot is Fig. 1. On page 4, the Fig. 3b is refer-
enced instead of Fig. 2b, I guess. And in the last paragraph
of this section authors claim that “the resulting network is
shown in Fig. 5” and this figure shows a distribution of re-
gimes. Throughout the results section it is not clear which
co-occurrence measure is used from the two explained in
the subsection “Co-occurrence measures”. I guess it is both
of them, but it is confusing when it is used one or the other.
The datasets used are not explained in detail. The micro-
array is described by the number of samples, but the num-
ber of attributes and the number of subtypes are not
mentioned. The equations of the two co-occurrence mea-
sures use the intersection symbol instead of the logical op-
erator conjunction “and”.
Author’s response: We have revised these comments and

would like to thank the reviewer for pointing them out.

Additional files

Additional file 1: Figure S1. Overlap between the 1000 strongest
associations found in the METABRIC expression data using different
association measures. The largest overlap can be observed between both
discrete measures (Mutual Information and Co-occurrence). (PDF 12 kb)

Additional file 2: Figure S2. the subnetworks that are present in
Additional file 6: Table S1, where the red dotted lines connect significantly co-
occurring genes pairs. The expression regime of the gene is indicated with a
blue and orange border color, for low and high expression respectively.
Remark that for every subnetwork, the corresponding samples are known such
that each subnetwork corresponds to a small bi-cluster. (PDF 3 kb)

Additional file 3: Figure S3. Fraction of associations from TCGA-BRCA
that are found back in METABRIC for different significance levels. (PDF 29
kb)

Additional file 4: Figure S4. Survival characteristics of the patients that
have a mutation in TP53 and low expression in ESR1 (TP53-ESR1, green).
The survival curve is compared against a group that has no mutation in
TP53 and high expression in ESR1 (Baseline, blue), a group that has only
mutations in TP53 but no low expression in ESR1 (only TP53, orange),
and a group that has only low expression in ESR1 (only ESR1, red). It can
be observed that low expression in ESR1 is associated with a poor
prognosis, irrespective of the mutation status of TP53, but that the co-
occurrence of a mutation in TP53 and low expression in ESR1 seems to
be less aggressive compared to the independent occurrence of either.
(PDF 24 kb)

Additional file 5: Figure S5. all 154 genes that are found to be co-
occurring with the MLPH-FOXA1 association, where the red dotted lines
connect all genes with a clinical subgroup or phenotype of interest (in

this example the subgroup corresponds to all patients that have are in
the low expression regime of both MLPH and FOXA1). The black edges
correspond to interactions that are found in BioGrid and represent the
subnetwork that is depicted in Fig. 6. The arrows indicate the estimated
direction of the interaction. For each gene, the expression regime that is
found to significantly co-occur with the MLPH-FOXA1 association is
indicated with an orange (high expression regime) or a blue (low
expression regime) border color. Colors are used to indicate mutations
(yellow), amplifications (purple) and deletions (green) that co-occur
significantly with the MLPH-FOXA1 relation. (PDF 22 kb)

Additional file 6: Table S1. The thirty most co-occurring expression
regimes. (DOCX 18 kb)
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