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STRONGLY GRADED GROUPOIDS

AND STRONGLY GRADED STEINBERG ALGEBRAS

LISA ORLOFF CLARK, ROOZBEH HAZRAT, AND SIMON W. RIGBY

Abstract. We study strongly graded groupoids, which are topological groupoids G equipped with a
continuous, surjective functor κ : G → Γ, to a discrete group Γ, such that κ−1(γ)κ−1(δ) = κ−1(γδ), for
all γ, δ ∈ Γ. We introduce the category of graded G-sheaves, and prove an analogue of Dade’s Theorem:
G is strongly graded if and only if every graded G-sheaf is induced by a Gε-sheaf. The Steinberg algebra
of a graded ample groupoid is graded, and we prove that the algebra is strongly graded if and only if the
groupoid is. Applying this result, we obtain a complete graphical characterisation of strongly graded
Leavitt path and Kumjian-Pask algebras.

1. Introduction

Graded rings possess a high degree of structure, or rigidity, that often compensates for otherwise
exotic behaviour. A ring A is graded by a group Γ if it has a decomposition into additive subgroups
A =

⊕
γ∈ΓAγ such that AγAδ ⊆ Aγδ for all γ, δ ∈ Γ. The ring is strongly graded if AγAδ = Aγδ for

all γ, δ ∈ Γ. From our point of view, strong grading is the very best kind of grading. Strongly graded
rings were studied extensively by Everett Dade. Among other theorems, he proved in [15] that A is
strongly graded if and only if the category of graded A-modules is naturally equivalent to the category of
Aε-modules (where ε is the identity in Γ). In other words, the ε-component “speaks” for the whole ring
and carries some information about its other homogeneous components. If A is strongly graded, there is
a one-to-one correspondence between the graded left ideals of A and the left ideals of Aε (see [20, Remark
1.5.6]). It follows that A satisfies the ascending/descending chain condition on graded left ideals if and
only if Aε satisfies the ascending/descending chain conditions on left ideals. In a similar vein, a strongly
graded ring is graded von Neumann regular (every homogeneous element has a von Neumann inverse) if
and only if its ε-component is von Neumann regular.

In this paper, we develop a theory of strongly graded étale groupoids. In many respects, it resembles
the classical theory of strongly graded rings. A topological groupoid G is Γ-graded (by a discrete group
Γ) if there is a continuous functor κ : G → Γ. Equivalently, G is a disjoint union of clopen subsets
G =

⊔
γ∈Γ Gγ such that GγGδ ⊆ Gγδ for all γ, δ ∈ Γ. In analogy with graded rings, we say that G is

strongly graded if GγGδ = Gγδ for all γ, δ ∈ Γ. It is much easier to work with gradings on groupoids than
it is to work with gradings on rings and, in particular, it is much easier to verify if a groupoid is strongly
graded. To illustrate this, in a graded ring A =

⊕
γ∈ΓAγ , the set AγAδ contains not only those elements

of the form aγaδ, where aγ ∈ Aγ and aδ ∈ Aδ, but also all finite sums of such elements. In contrast, if
G =

⊔
γ∈Γ Gγ is a graded topological groupoid, then GγGδ is nothing more than the set of elements of the

form gγgδ, where gγ ∈ Gγ and gδ ∈ Gδ. There are no sums to worry about. Moreover, every subgroupoid
of a graded groupoid is graded, while not every subring of a graded ring is graded. Every element of a
graded groupoid is homogeneous, while most elements in a graded ring are not homogeneous.

It is a common theme in mathematics that the theory of an algebraic structure benefits from an ex-
trinsic approach. For instance, studying G-sets, on which a group G acts, often illuminates the properties
of G. Dade’s Theorem shows that the “internal” definition of strong grading for rings has an equivalent
“external” characterisation: one that takes meaning in the category of modules. In many situations,
a sheaf is the appropriate kind of external structure on which an étale groupoid should act. That is,
sheaves are to groupoids what modules are to rings. With this principle in mind, we define the category
of graded G-sheaves, associated to a graded étale groupoid G. In Theorem 3.9, we prove a groupoid-
theoretic analogue of Dade’s Theorem. It says that an ample groupoid is strongly graded if and only if
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every graded G-sheaf is “induced” by a Gε-sheaf. This result gives an external characterisation of strong
grading for groupoids.

While this theory is interesting in its own right, our main application is the study of strongly graded
Steinberg algebras. Steinberg algebras AR(G) are convolution algebras of functions from an ample
groupoid G to a commutative ring R. They first appeared independently in papers by Steinberg [33]
and Clark, Farthing, Sims, and Tomforde [11]. The primary motivation for constructing these algebras
was to generalise other classes of algebras, especially inverse semigroup algebras and Leavitt path alge-
bras. Steinberg algebras provide a unifying theory and a new way of studying these seemingly disparate
classes of algebras. For instance, various papers [35, 36, 37] have used Steinberg algebras to characterise,
in terms of the underlying graph or inverse semigroup, when a Leavitt path algebra or inverse semigroup
algebra is simple, (semi)prime, (semi)primitive, noetherian, or artinian. The Steinberg algebra model has
also been put to use in [12, 33] to describe the centres of these algebras. Other classes of algebras that
arise as Steinberg algebras include partial skew group rings associated to topological partial dynamical
systems [9], and the higher-rank analogues of Leavitt path algebras, known as Kumjian-Pask algebras
[13]. Additionally, the theory of Steinberg algebras has succeeded in producing algebras with interest-
ing prescribed properties, including the first examples of simple algebras of arbitrary Gelfand-Kirrilov
dimension [28].

Graded ample groupoids produce graded Steinberg algebras, and many well-studied classes of Stein-
berg algebras (including Leavitt path algebras, Kumjian-Pask algebras, and partial skew group rings)
receive a graded structure in this way [13, 14, 22]. We prove, in Theorem 3.11, that the Steinberg algebra
AR(G) is strongly graded if and only if the groupoid G is strongly graded. This theorem is useful for ap-
plications, and it enables us to characterise the strong grading property for each of the classes mentioned
above. Moreover, we prove a graded version of Steinberg’s Equivalence Theorem from [34], and use it
to show that Theorems 3.9 and 3.11 are equivalent in the sense that either one can be derived from the
other.

We have a special interest in Leavitt path algebras, not least because they have provoked some of
the most interesting recent developments in graded ring theory. Leavitt path algebras, first introduced
in [2, 7], are Z-graded algebras whose generators and relations are encoded in a directed graph. The
construction is somewhat similar to (and indeed motivated by) the graph C∗-algebra construction. It is
not an exaggeration to say that the Z-graded structure of Leavitt path algebras is what makes it possible
to study them so successfully. For instance, in the very first paper on Leavitt path algebras, Abrams and
Aranda Pino applied a decomposition into homogeneous components to establish a criterion for simplicity
(see [2, Theorem 3.11]). The same authors, in [3], used graded ideals to prove that every Leavitt path
algebra over a field is semiprime and semiprimitive. The graded Grothendieck group is a very important
concept that emerged from the study of these Z-graded algebras, and it is the most promising invariant
in the ongoing classification programme for Leavitt path algebras (see [4, §7.3] and [21]).

Strong grading is especially important for Leavitt path algebras, because the 0-component of every
Leavitt path algebra is ultramatricial (see [7, Theorem 5.3]). Many of the “good” properties of those
ultramatricial 0-components, like von Neumann regularity, are then passed to the other components
via strong grading (when it is present). Strong grading has also been applied to calculate the graded
Grothendieck groups of some Leavitt path algebras [20, §3.9.3]. Strongly graded Leavitt path algebras
have even found an application in noncommutative algebraic geometry, where Paul Smith [29] uses them
to give an expression of the quotient category of graded modules over a path algebra, modulo those that
are the sum of their finite-dimensional submodules.

However, not every Leavitt path algebra is strongly graded, so it is valuable to understand which ones
are. A characterisation of strongly graded Leavitt path algebras was known for graphs with finitely many
edges and vertices: it is necessary and sufficient that every vertex connects to a cycle (see [19, Theorem
3.15]). Our new techniques lead quite easily to a complete characterisation of strongly graded Leavitt
path algebras, for graphs of any size. We are able to prove a much more general result, characterising
the strong grading property for Zk-graded Kumjian-Pask algebras of higher-rank graphs.

The structure of the paper moves from abstract to concrete. In Section 2, we extend some of the
basic concepts in graded ring theory to the setting of graded rings with local units, among them Dade’s
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Theorem (Theorem 2.3). We recall the notion of a graded groupoid G and its associated Steinberg R-
algebraAR(G), which is a graded algebra with local units. We recall the notion of a G-sheaf, in preparation
for introducing the category of graded G-sheaves in Section 3. In Section 3, we prove the groupoid version
of Dade’s Theorem (Theorem 3.9) and then we establish our main theorem that a Steinberg algebraAR(G)
is strongly graded if and only if G is so (Theorem 3.11). We then establish an equivalence between the
category of graded G-sheaves of R-modules and the category of graded modules over the Steinberg R-
algebra associated to G. In Section 4, we apply our results to graph algebras: both to Leavitt path
algebras and to Kumjian-Pask algebras, their higher-rank analogues. We use the groupoid model to
give graphical characterisations of strongly graded graph algebras (Theorem 4.2 and Theorem 4.12). As
emphasised, this demonstrates why it is much easier to check that a groupoid is strongly graded than it is
to check the corresponding criterion for the ring itself. We also apply our results to partial group actions,
showing that the algebra associated to a partial action of a discrete group on a totally disconnected space
is strongly graded if and only if the action is a global action (Proposition 4.14).

2. Preliminaries

A groupoid is a small category in which every morphism has an inverse (see [32, Definition 1.1] for
an alternative definition). If G is a groupoid, we write G(0) for the set of objects (called the unit space)
and we identify objects with their identity morphisms. We denote by d and c the domain and codomain
maps d, c : G → G(0) and write G(2) ⊆ G × G for the set of composable pairs, which are pairs (x, y) with
c(y) = d(x). We also write Gx := d

−1(x) and xG := c
−1(x). A topological groupoid is a groupoid G

equipped with a topology such that inversion i : G → G and composition m : G(2) → G are continuous,
where G(2) has the relative product topology. It is assumed that the unit space G(0) has the relative
topology (as a subspace of G). In case d is a local homeomorphism, we say that G is an étale groupoid.
If G is étale, it follows that c is also a local homeomorphism. If U ⊆ G is open and both d|U and c|U are
injective then they are homeomorphisms onto their images, and U is called an open bisection (or a slice,
or an open G-set in some literature). The topology on an étale groupoid is generated by a basis of open
bisections, and the unit space itself is an open bisection [16, Proposition 3.2].

A topological groupoid G is called ample if it has a basis of compact open bisections and G(0)

is Hausdorff. Equivalently, G is ample if it is étale and G(0) is Hausdorff, locally compact, and to-
tally disconnected [17, Proposition 4.1]. Let Bco(G) = {B ⊆ G | B is a compact open bisection} and
Bco(G(0)) = {U ∈ Bco(G) | U ⊆ G(0)}. In an ample groupoid G, the set Bco(G) is an inverse semigroup,
with products defined as UV =

{
uv | (u, v) ∈ U × V ∩ G(2)

}
and inverses U−1 = {u−1 | u ∈ U}.

2.1. Steinberg algebras. Let R be a unital commutative ring. Following [33], one can construct an
associative R-algebra from an ample groupoid. Let 1B : G → R be the characteristic function of a
compact open bisection B ⊆ G.

Definition 2.1. Let G be an ample groupoid. Define AR(G) as the R-submodule of RG generated by
the set {1B | B ∈ Bco(G)}. The convolution of f, g ∈ AR(G) is defined as

f ∗ g(x) =
∑

y∈G
d(y)=d(x)

f(xy−1)g(y) =
∑

(z,y)∈G(2)

zy=x

f(z)g(y) for all x ∈ G.

The R-module AR(G), with the convolution, is called the Steinberg algebra of G over R.

On the generators, the convolution reduces to the formula 1B ∗ 1C = 1BC for all B,C ∈ Bco(G). In
particular, 1U ∗ 1V = 1U∩V whenever U, V ∈ Bco(G(0)). Note that AR(G) is unital if and only if G(0) is
compact, in which case 1 = 1G(0) (see [33, Propositon 4.11]). If G is Hausdorff, AR(G) equals the set of
locally constant, compactly supported R-valued functions on G.

2.2. Graded rings with graded local units. Let Γ be a group with identity ε. A ring A (possibly
without unit) is called a Γ-graded ring if A =

⊕
γ∈ΓAγ , where each Aγ is an additive subgroup of A and

AγAδ ⊆ Aγδ, for all γ, δ ∈ Γ. By definition, AγAδ is the additive subgroup generated by all terms aγaδ
where aγ ∈ Aγ and aδ ∈ Aδ. The group Aγ is called the γ-homogeneous component of A (or sometimes
just the γ-component). The elements of

⋃
γ∈ΓAγ are called homogeneous, and the nonzero elements of
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Aγ are called homogeneous of degree γ. If a ∈ A, we write a =
∑

γ∈Γ aγ for the unique expression of a
as a sum of homogeneous terms aγ ∈ Aγ . When it is clear from context that the ring A is graded by the
group Γ, we simply say that A is a graded ring. If A is an R-algebra over a commutative unital ring R,
then A is called a graded algebra if it is a graded ring and each Aγ is an R-submodule of A. A graded
homomorphism of Γ-graded rings is a homomorphism f : A→ B such that f(Aγ) ⊆ Bγ for every γ ∈ Γ.
If a Γ-graded ring A =

⊕
γ∈ΓAγ has the property that AγAδ = Aγδ for all γ, δ ∈ Γ, then A is called

strongly Γ-graded, or just strongly graded if Γ is clear from context.

We say that a ring A has local units if there is a set of idempotents E ⊆ A and for every finite subset
F ⊆ A there exists e ∈ E such that exe = x for each x ∈ F . If A is Γ-graded then we say A has graded
local units if E can be chosen as a subset of Aε. (It appears to be unknown whether there exist graded
rings with local units that are not graded rings with graded local units.)

If A is a Γ-graded ring and Ω is a normal subgroup of Γ, then it gives rise to two more graded rings:
AΩ :=

⊕
ω∈ΩAω is an Ω-graded ring (with the subgroup grading), and

A =
⊕

Ωγ∈Γ/Ω

AΩγ , where AΩγ :=
⊕

ω∈Ω

Aωγ for all Ωγ ∈ Γ/Ω, (2.1)

is a Γ/Ω-graded ring (with the quotient grading).

Let M be a right A-module. We say M is unital if M = MA. If A is a Γ-graded ring, M is called
a graded A-module if it has a decomposition M =

⊕
γ∈ΓMγ where each Mγ is an additive subgroup of

M and MγAδ ⊆ Mγδ for all γ, δ ∈ Γ. If A has graded local units and M is a unital graded A-module,
then each Mγ is a unital Aε-module. A graded homomorphism between graded A-modules is an A-
module homomorphism f : M → N such that f(Mγ) ⊆ Nγ for every γ ∈ Γ. We denote by Mod-A
the category of unital right A-modules and by Gr-A the category of unital graded right A-modules with
graded homomorphisms.

For a graded right A-module M , and α ∈ Γ, we define the α-shifted graded right A-module M(α) as

M(α) =
⊕

γ∈Γ

M(α)γ , (2.2)

where M(α)γ =Mαγ . That is, as an ungraded module, M(α) is a copy of M , but the grading is shifted
by α. For α ∈ Γ, the shift functor Tα : Gr-A → Gr-A, M 7→ M(α), is an auto-equivalence with the
property TαTβ = Tαβ for all α, β ∈ Γ, and Tε = idGr-A.

The proof of the following lemma is straightforward.

Lemma 2.2. Let A be a Γ-graded ring with graded local units. The following are equivalent:

(1) A is strongly graded.

(2) AγAγ−1 = Aε for every γ ∈ Γ.

(3) For every γ ∈ Γ, the set of graded local units is contained in AγAγ−1 .

Next, we introduce the functors involved in Dade’s Theorem. Consider the restriction functor, map-
ping a graded A-module M to the Aε-module Mε:

I : Gr-A −→ Mod-Aε (2.3)

M 7−→Mε

ψ 7−→ ψ|Mε
.

Consider the induction functor, mapping an Aε-module N to the graded A-module N ⊗Aε
A:

J : Mod-Aε −→ Gr-A (2.4)

N 7−→ N ⊗Aε
A

φ 7−→ φ⊗ id .

The grading on N ⊗Aε
A is defined by setting (N ⊗Aε

A)γ = N ⊗Aε
Aγ . One can easily check that

IJ ∼= idMod-Aε
with the natural isomorphism:

IJ (N) = I(N ⊗Aε
A) = N ⊗Aε

Aε

∼=
−→ N, (2.5)
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n⊗ a 7−→ na.

On the other hand, there is a natural transformation:

JI(M) = J (Mε) =Mε ⊗Aε
A −→M, (2.6)

m⊗ a 7−→ ma.

The theorem below is Dade’s Theorem in the setting of graded rings with graded local units. The proof
is similar to the case for unital rings, so we leave it to the reader (see [20, §1.5] and [15]).

Theorem 2.3. Let A be a Γ-graded ring with graded local units. Then A is strongly Γ-graded if and only
if the functors I and J (see (2.3), (2.4)) are mutually inverse equivalences of categories.

Note that it is possible to have an equivalence between the categories Gr-A and Mod-Aε, without
A being strongly graded; see [27, Example 3.2.4]. Hence, the functors I and J are an essential part of
Dade’s Theorem.

Applying Dade’s Theorem twice we can prove the following lemma. We give an element-wise proof of
the lemma, as this paves the way for the proof of the groupoid version of it (see Lemma 3.2).

Lemma 2.4. Let A be a Γ-graded ring with graded local units, and let Ω⊳Γ. Then A is strongly Γ-graded
if and only if A is strongly Γ/Ω-graded and AΩ is strongly Ω-graded.

Proof. Suppose A is a strongly Γ-graded ring. By Lemma 2.2, AγAγ−1 = Aε, for every γ ∈ Γ. Restricting
to Ω, we immediately get that AΩ is strongly Ω-graded. Next we show that AΩγAΩγ−1 = AΩ, for every
γ ∈ Γ. The fact AΩγAΩγ−1 ⊆ AΩ follows from the definition of the grading. It is enough to show that
for ω ∈ Ω, Aω ⊆ AΩγAΩγ−1 . But Aω = AωAε = AωAγAγ−1 ⊆ AΩγAΩγ−1 . Applying Lemma 2.2 (for
Γ/Ω-graded ring A) it follows A is strongly Γ/Ω-graded.

For the converse, we only need to show that Aε ⊆ AγAγ−1 , for every γ ∈ Γ. If γ ∈ Ω then Aε =
AγAγ−1 , because AΩ is strongly graded. Suppose γ 6∈ Ω. Since A is strongly Γ/Ω-graded, we have
Aε ⊆ AΩ = AΩγAΩγ−1 . Thus for x ∈ Aε we have x =

∑
aibi, where ai ∈ Aωi1γ

and bi ∈ Aωi2γ
−1 .

Comparing the degrees of both sides we have that deg(ai) = γωi and deg(bi) = ω−1
i γ−1, for ωi ∈ Ω.

Now write ai = aiui, where ui ∈ Aε is a local unit. Since AΩ is strongly Ω-graded, by Lemma 2.2,
ui ∈ Aω−1

i
Aωi

. Writing x =
∑
aibi =

∑
aiuibi and replacing ui from above, we get x ∈ AγAγ−1 . By

Lemma 2.2, this proves that A is strongly Γ-graded. �

2.3. Graded groupoids. Let Γ be a group (with identity ε) and let G be a topological groupoid. The
groupoid G is called Γ-graded if G can be partitioned by clopen subsets indexed by Γ, i.e. G =

⊔
γ∈Γ Gγ ,

such that GγGδ ⊆ Gγδ for every γ, δ ∈ Γ. The set Gγ is called the γ-component of G. We write Gx
γ :=

d
−1(x) ∩ Gγ and xGγ := c

−1(x) ∩ Gγ . We say a subset X ⊆ G is γ-homogeneous if X ⊆ Gγ . Obviously,
the unit space is ε-homogeneous and if X is γ-homogeneous then X−1 is γ−1-homogeneous.

Equivalently, G is Γ-graded if there is a continuous functor κ : G → Γ, where Γ is regarded as a discrete
group. To match the definition of Γ-grading, from the previous paragraph, one defines Gγ = κ−1(γ). We
say that the graded groupoid G is strongly graded if GγGδ = Gγδ for every γ, δ ∈ G. If the grading is
defined by κ : G → Γ, then G is strongly graded if κ−1(γ)κ−1(δ) = κ−1(γδ) for all γ, δ ∈ Γ. Strong
grading implies κ is surjective. Strongly graded groupoids appeared in [6, Definition 5.3.7] where they
are viewed as groupoids with a “strongly surjective” functor κ : G → Γ.

If G is a Γ-graded topological groupoid and Ω ⊳ Γ, then it gives rise to two more graded groupoids.
Firstly, the open subgroupoid GΩ :=

⊔
ω∈Ω Gω is an Ω-graded groupoid (with the subgroup grading).

Secondly, if we view Γ as a discrete group, then the quotient topology on Γ/Ω is also discrete, so G has
a natural Γ/Ω-grading (the quotient grading) defined by

G =
⊔

Ωγ∈Γ/Ω

GΩγ , where GΩγ :=
⊔

ω∈Ω

Gωγ for all Ωγ ∈ Γ/Ω. (2.7)
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2.4. Graded Steinberg algebras. Graded ample groupoids are very important, because the Steinberg
algebra that one gets from such a groupoid is always a graded algebra. This fact is essential for a number
of key results: for instance, in [14] it is used to prove that every Leavitt path algebra is a Steinberg
algebra, and in [22] it is used to prove that Steinberg algebras of certain transformation groupoids are
partial skew group rings.

If an ample groupoid G is Γ-graded then we write Bco
γ (G) for the set of all γ-homogeneous compact open

bisections of G, and note that the set of all homogeneous compact open bisections, Bco
∗ (G) :=

⋃
γ∈ΓB

co
γ (G),

is a basis for the topology on G. Recall that AR(G) is defined in Definition 2.1.

Lemma 2.5. [14, Lemma 3.1] If G is a Γ-graded ample groupoid, then AR(G) =
⊕

γ∈ΓAR(G)γ is a
Γ-graded algebra with homogeneous components:

AR(G)γ = {f ∈ AR(G) | supp(f) ⊆ Gγ} = spanR{1B | B ∈ Bco
γ }.

Naturally, AR(G)ε ∼= AR(Gε) via the isomorphism f 7→ f |Gε
. If G is Γ-graded then AR(G) has graded

local units, which are the characteristic functions of compact open subsets of G(0) (see [10, Lemma 2.6]).
The quotient grading and subgroup grading are preserved by the construction of Steinberg algebras.
Specifically, if G is Γ-graded and Ω ⊳ Γ, the Γ/Ω-graded structure on AR(G) can be obtained in the
following two equivalent ways: either by viewing G as a Γ/Ω-graded groupoid, as in (2.7), and transferring
that grading to AR(G), or by giving AR(G) the usual Γ-graded structure and taking the quotient grading
of AR(G), as in (2.1). This is due to the fact (whose proof is similar to [14, Lemma 3.1]) that

⊕

ω∈Ω

{
f ∈ AR(G) | supp(f) ⊆ Gωγ

}
=

{
f ∈ AR(G) | supp(f) ⊆

⊔

ω∈Ω

Gωγ

}

for all Ωγ ∈ Γ/Ω. Similarly, AR(GΩ) is graded isomorphic to AR(G)Ω, because

AR(GΩ) ∼= {f ∈ AR(G) | supp(f) ⊆ GΩ} =
⊕

ω∈Ω

{f ∈ AR(G) | supp(f) ⊆ Gω} = AR(G)Ω.

2.5. G-sheaves. Let X be a topological space. A sheaf space over X is a pair (E, p) where E is a
topological space and p : E → X is a local homeomorphism. If (E, p) is a sheaf space, the fibre
Ex := p−1(x) is called the stalk of E at x ∈ X . A local section of E is a map s : U → E, where
U ⊆ X is open, such that ps is the identity on U . A global section of E is a section s : X → E. The set
{s(U) | s : U → E is a continuous local section} is a basis that generates the topology on E. A morphism
of sheaf spaces (E, p) and (F, q) over X is a continuous map φ : E → F such that qφ = p. In practice, a
sheaf space (E, p) is often referred to by E when there is no need to draw attention to p. The following
lemma is extremely useful.

Lemma 2.6. [38, §2, Lemma 3.5 (c)] If (E, p) and (F, q) are sheaf spaces over X and φ : E → F satisfies
qφ = p, then the following are equivalent:

(1) φ is continuous;
(2) φ is an open map;
(3) φ is a local homeomorphism.

A sheaf space (E, p) over X is called a sheaf of R-modules (where R is a commutative ring with 1)
provided each stalk Ex is an R-module and the following conditions are satisfied:

(A1) The zero section Z : X → E sending x ∈ X to 0x (the zero of Ex) is continuous;
(A2) Addition E ×G(0) E is continuous (where the fibre product is with respect to p);
(A3) Scalar multiplication R× E → E is continuous (where R has the discrete topology).

One can use Lemma 2.6 to show that addition and scalar multiplication are also open maps. A morphism
of sheaves of R-modules is a morphism of sheaf spaces that restricts to R-homomorphisms on the stalks.
A section s : X → E is called compactly supported if supp(s) = {x ∈ X | s(x) 6= 0x} is compact. If s
is a continuous section, supp(s) = X \ Z−1(s(X)) is closed in X . Condition (A1) is equivalent to the
statement that {0x | x ∈ X} is open in E.

Let C be either the category of sets or the category of R-modules. Let X be a topological space and
OX the poset of open subsets ofX . A presheaf over X is a contravariant functor F : OX → C. In practice,
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it is sufficient to define a presheaf F on a subset O′
X of OX , provided O′

X is a basis for the topology on
X . More precisely, F is a presheaf of sets or a presheaf of R-modules, according to the category C. A
morphism of presheaves F : OX → C and G : OX → C is a natural transformation ν : F → G. Given

any presheaf of sets F , a standard process converts F into a sheaf space (F̃ , pF ) in a functorial way (and
the same process converts a presheaf of R-modules into a sheaf of R-modules). For every U ∈ OX and

every x ∈ U there is a surjective homomorphism F (U) → F̃x usually denoted by s 7→ [s]x. Restricted to

a subcategory of presheaves that satisfy two extra conditions (see [38, p. 14]), the functor F 7→ (F̃ , pF )
is an equivalence of categories. We refer to [38] for the details.

Now let G be an étale groupoid. A (right) G-sheaf consists of a sheaf space (E, p) over G(0) together
with a continuous action E ×G(0) G → E (where the fibre product is with respect to p and c), denoted
(e, g) 7→ eg, satisfying the conditions:

(B1) ep(e) = e for all e ∈ E;
(B2) p(eg) = d(g) whenever e ∈ E, g ∈ G, and p(e) = c(g);
(B3) (eg)h = e(gh) whenever e ∈ E, (g, h) ∈ G(2), and p(e) = d(g).

If E and F are G-sheaves, a morphism of sheaf spaces φ : E → F is called G-equivariant if φ(eg) = φ(e)g
for all (e, g) ∈ E ×G(0) G. A morphism of G-sheaves is a G-equivariant morphism of sheaf spaces. The
category of G-sheaves, denoted BG, is called the classifying topos of G [25, 26].

A G-sheaf (E, p) is called a G-sheaf of R-modules if it is a sheaf of R-modules over G(0) and for each
g ∈ G the map Rg : Ec(g) → Ed(g), given by Rg(e) = eg, is an R-homomorphism. A morphism of
G-sheaves of R-modules is a G-equivariant morphism of sheaves of R-modules. We write Mod-RG for
the category of G-sheaves of R-modules.

2.6. Steinberg’s Equivalence Theorem. The main reason we are interested in G-sheaves of R-modules
is that they are equivalent to representations of Steinberg algebras. In [34, Theorem 3.5], Steinberg proved
that (for ample G) the category of G-sheaves of R-modules is equivalent to the category of right unital
AR(G)-modules. This is a vast generalisation of the fact that the category of representations of a group
G in K-vector spaces is equivalent to the category of KG-modules. Steinberg’s Equivalence Theorem (as
we call it) was used in [35] to study primitive Steinberg algebras, and it leads to a very short proof of the
Primitivity Theorem for Leavitt path algebras (see [37, Theorem 5.5] and [5, Theorem 5.7]). We briefly
describe the theorem and the functors involved in it.

Let M be a right AR(G)-module. Define the following presheaf of R-modules over G(0):

M(U) =M1U , for all U ∈ Bco(G(0)); (2.8)

ρUV :M(U) →M(V ), ρUV (m) = m1V , for all V ⊆ U in Bco(G(0)), m ∈M(U).

Applying the sheaf space functor, one gets a sheaf of R-modules Sh(M) = (M̃, pM ) where:

M̃ =
⋃

x∈G(0)

M̃x, M̃x = lim
−→
x∈U

M(U) = {[m]x | m ∈M};

pM ([m]x) = x for all [m]x ∈ M̃x.

In other words, M̃x is the direct limit of the directed system in (2.8), as U ranges over all the sets
U ∈ Bco(G(0)) that contain x. The notation [m]x is standard: it means the image of m ∈M in the direct

limit M̃x. The topology on M̃ is generated by the basis of open sets:

(U,m) =
{
[m]x | x ∈ U

}
, where U ∈ Bco(G(0)), m ∈M(U). (2.9)

For [m]x ∈ M̃ and g ∈ xGy, we define [m]xg = [m1B]y where B ∈ Bco(G) is an arbitrarily chosen compact

open bisection containing g. This makes M̃ a G-sheaf of R-modules. After defining the effect of Sh on
morphisms and checking some details, this process defines a functor Sh : Mod-AR(G) → Mod-RG.

In the other direction, let (E, p) be a G-sheaf of R-modules. Define Γc(E) as the set of compactly
supported continuous sections s : G(0) → E. Then Γc(E) is an R-module and, moreover, it is a right
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AR(G)-module with:
(
sf

)
(x) =

∑

g∈Gx

f
(
g
)
s
(
c(g)

)
g for all s ∈ Γc(E), f ∈ AR(G), x ∈ G(0). (2.10)

In particular, (2.10) entails:

(
s1B

)
(x) =

{
s
(
c(g)

)
g if g ∈ B, d(g) = x

0x otherwise.
for all s ∈ Γc(E), B ∈ Bco(G), x ∈ G(0).

If U ∈ Bco(G(0)) then
(
s1U

)
(x) = 1U (x)s(x) for all x ∈ G(0). After defining the effect of Γc on morphisms

and checking some details, this defines a functor Γc : Mod-R(G) → Mod-AR(G). Here is the statement
of Steinberg’s Equivalence Theorem:

Theorem 2.7. [34, Theorem 3.5] Let G be an ample groupoid and R a unital commutative ring. The func-
tors Γc : Mod-RG → Mod-AR(G) and Sh : Mod-AR(G) → Mod-RG are mutually inverse equivalences
of categories.

Example 2.8. Consider the right regular representation M := AR(G). The sheaf of R-modules Sh(M) =

(M̃, pM ) has stalks M̃x = lim−→
x∈U

AR(G) ∗ 1U
∼= RGx, where RGx is the free R-module with basis Gx.

The isomorphism
(
lim−→

x∈U
AR(G

)
∗ 1U ) → RGx carries [f ]x to

∑
g∈Gx f(g)g. The induced action of G on

the sheaf
⋃

x∈G(0) RGx is the canonical one where (g, h) 7→ gh for all (g, h) ∈ G(2). Since RGx is a limit of
left AR(G)-modules, and the connecting homomorphisms are AR(G)-homomorphisms, RGx is also a left
AR(G)-module with

f · t =
∑

z∈Gx

f(zt−1)z for all f ∈ AR(G), t ∈ Gx. (2.11)

In particular, if U ∈ Bco(G(0)) then 1U · t = 1U (c(t))t. More details on RGx as a bimodule can be found
in [33, Proposition 7.8].

3. Strongly graded groupoids

First, we prove groupoid versions of Lemmas 2.2 and 2.4. It is the first of several instances where
graded groupoids and graded rings display surprisingly similar results.

Lemma 3.1. Let G be a Γ-graded topological groupoid. The following are equivalent.

(1) G is strongly graded;

(2) GγGγ−1 = Gε, for all γ ∈ Γ;

(3) d(Gγ) = G(0), for all γ ∈ Γ;

(4) c(Gγ) = G(0), for all γ ∈ Γ.

Proof. (1) ⇒ (2) It follows from the definition of strong grading.

(2) ⇒ (3) For any γ ∈ Γ, we have G(0) = d(Gε) = d(GγGγ−1) ⊆ d(Gγ−1) ⊆ G(0).

(3) ⇒ (4) For any γ ∈ Γ, G(0) = d(Gγ−1) = ci(Gγ−1) = c(Gγ).

(4) ⇒ (1) For any x ∈ Gγδ choose y ∈ Gδ−1 with c(y) = d(x). Then x = xyy−1 ∈ GγGδ. �

Lemma 3.2. Let G be a Γ-graded topological groupoid and Ω ⊳ Γ. Then G is strongly Γ-graded if and
only if G is strongly Γ/Ω-graded and GΩ is strongly Ω-graded.

Proof. (⇒) If G is strongly Γ-graded then Lemma 3.1 (2) implies G is strongly Γ/Ω-graded and GΩ is
strongly Ω-graded.

(⇐) By Lemma 3.1 (3), d(Gω) = G(0) for any ω ∈ Ω, since GΩ is strongly Ω-graded. Suppose γ ∈ Γ\Ω.
Since G is strongly Γ/Ω-graded, again by Lemma 3.1 (3) we have d(GΩγ) = G(0). Then for any u ∈ G(0),

there exists ω ∈ Ω and g ∈ Gωγ such that d(g) = u. Now c(g) ∈ G(0) = d(Gω−1) so there exists h ∈ Gω−1

such that d(h) = c(g). Then hg ∈ Gω−1Gωγ ⊆ Gγ with d(hg) = u. Thus u ∈ d(Gγ) and so d(Gγ) = G(0).
By Lemma 3.1, it follows that G is strongly Γ-graded. �
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3.1. The category of graded G-sheaves. To motivate Definition 3.3, let Γ be a group and let X be
a topological space. Let SetΓ be the category whose objects are Γ-graded sets (that is, sets Y equipped
with a function κY : Y → Γ) and whose morphisms are functions f : Y1 → Y2 such that κY2f = κY1 . A
SetΓ-valued presheaf over X is a contravariant functor F : OX → SetΓ. Applying the sheaf space functor

to F , and keeping track of the Γ-grading, one obtains a sheaf space (F̃ , pF ) whose stalks are Γ-graded

sets. If, in addition, G is a Γ-graded étale groupoid and F̃ is a G-sheaf such that the grading on G is

compatible with the grading on F̃ , then we call F̃ a graded G-sheaf of sets.

Definition 3.3. Let G be a Γ-graded étale groupoid, graded by the continuous functor κ : G → Γ. A
G-sheaf E is called a graded G-sheaf of sets if there is a continuous map κ : E → Γ (named again κ) such
that κ(eg) = κ(e)κ(g), whenever p(e) = c(g).

We writeE =
⊔

γ∈ΓEγ , whereEγ := κ−1(γ), and we callEγ the γ-component. A morphism φ : E → F

of G-sheaves is a graded morphism if φ(Eγ) ⊆ Fγ for any γ ∈ Γ. The category of all graded G-sheaves of
sets with graded morphisms is denoted by BgrG. There is a forgetful functor U : BgrG → BG.

To motivate Definition 3.4, let Γ be a group, X a topological space, and R a unital commutative ring.
Consider R as a Γ-graded ring with the trivial grading (i.e., R = Rε). Let F be a presheaf of graded
R-modules; i.e., a contravariant functor from OX to the category of graded R-modules. Applying the

sheaf space functor to F one obtains a sheaf of R-modules (F̃ , pF ) in which each stalk is a Γ-graded

R-module. Suppose, in addition, G is a Γ-graded étale groupoid and F̃ is a G-sheaf of R-modules such
for each g ∈ Gγ the homomorphism Rg : Ec(g) → Ed(g) implemented by g maps

(
Ec(g)

)
α
to

(
Ed(g)

)
αγ

,

for all α ∈ Γ. We call such an object a graded G-sheaf of R-modules.

Definition 3.4. Let G be a Γ-graded étale groupoid and let E be a G-sheaf of R-modules. Then E is
called a graded G-sheaf of R-modules if:

(C1) For any x ∈ G(0), Ex =
⊕

γ∈Γ(Ex)γ , where (Ex)γ are R-submodules of Ex;

(C2) Eγ :=
⋃

x∈G(0)(Ex)γ is open in E for every γ ∈ Γ;
(C3) EγGδ ⊆ Eγδ for every γ, δ ∈ Γ.

We call Eγ the γ-homogeneous component of E, and denote the homogeneous elements of E by
Eh :=

⋃
γ∈ΓEγ . Note that the degree map κ : Eh → Γ, sγ 7→ γ, where sγ ∈ Eγ , is continuous, and

(C3) can be interpreted as κ(eg) = κ(e)κ(g) for every e ∈ Eh and any g ∈ G such that p(e) = c(g). A
morphism φ : E → F of G-sheaves of R-modules is a graded morphism if φ(Eγ) ⊆ Fγ for any γ ∈ Γ. The
category of graded G-sheaves of R-modules with graded morphisms will be denoted Gr-RG.

For a graded G-sheaf of R-modules E, and α ∈ Γ, we define the α-shifted graded G-sheaf of R-modules :

E(α) =
⋃

x∈G(0)

E(α)x =
⋃

x∈G(0)

⊕

γ∈Γ

(E(α)x)γ , where (E(α)x)γ = (Ex)αγ . (3.1)

As an ungraded sheaf, E(α) is identical to E but the grading is shifted by α (compare with (2.2)). The
γ-homogeneous component of E(α) is just the αγ-homogeneous component of E. For α ∈ Γ, the shift
functor Tα : Gr-RG → Gr-RG, E 7→ E(α), is an auto-equivalence.

Lemma 3.5. If G is a Γ-graded étale groupoid and E is a graded G-sheaf of R-modules, then the natural
projection onto the γ-homogeneous component of E (i.e., πγ : E → Eγ , e 7→ eγ) is continuous.

Proof. Let Y ⊆ Eγ be open. Let D = {δ1, . . . , δn} ⊆ Γ \ {γ}. Then the set

T (D) = {eγ + e1 + · · ·+ e
n
| eγ ∈ Y, e1 ∈ Eδ1 , . . . , en ∈ Eδn}

is open in E because n-fold addition E ×G(0) · · · ×G(0) E → E is an open map, and Y ×G(0) Eδ1 ×G(0)

· · · ×G(0) Eδn is an open set in E ×G(0) · · · ×G(0) E. Thus

π−1
γ (Y ) = {e ∈ E | eγ ∈ Y } =

⋃{
T (D) | D is a finite subset of Γ \ {γ}

}

is open, proving that πγ is continuous. �

Applying Lemma 2.6, we can also conclude that πγ : E → Eγ is a local homeomorphism.
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3.2. Dade’s Theorem for G-sheaves of R-modules. Let G be a Γ-graded ample groupoid, and let
(E, p) be a Gε-sheaf of R-modules. Define the graded G-sheaf E ⊗Gε

G as
⋃

x∈G(0) E ⊗ Gx where E ⊗ Gx

is the R-module generated by the symbols {e⊗ g | e ∈ E, g ∈ Gx, p(e) = c(g)} subject to the relations:

e⊗ g + e′ ⊗ g = (e + e′)⊗ g, (re)⊗ g = r(e ⊗ g), eh⊗ g = e⊗ hg,

for all e, e′ ∈ E, g ∈ G, r ∈ R, and h ∈ Gε. Indeed, E⊗Gε
G carries the structure of a G-sheaf of R-modules

as follows. Define p(e) = x if e ∈ E⊗Gx. For e =
∑
ei⊗ gi ∈ E⊗Gε

G and g ∈ G with p(e) = c(g), define
eg =

∑
ei ⊗ gig. The topology on E ⊗Gε

G is generated by the basis of open sets
{
Z(t, U) | U ∈ Bco(G(0)), t ∈ Γc(E)⊗AR(G)ε AR(G)

}
, where (3.2)

Z(s1 ⊗ f1 + · · ·+ sn ⊗ fn, U) :=

{ ∑

g∈Gx

(
f1(g)s1(c(g)) + · · ·+ fn(g)sn(c(g))

)
⊗ g

∣∣∣ x ∈ U

}
.

(The origin of this complicated-looking basis becomes apparent in the upcoming lemma.) Assigning to
each e ⊗ g the degree κ(e ⊗ g) = κ(g), and noting that the relations defining E ⊗ Gx are homogeneous,
we have E ⊗ Gx =

⊕
γ∈ΓE ⊗ Gx

γ . Moreover, (E ⊗Gε
G)γ is open because it is a union of all basic open

sets Z(t, U) for t ∈ Γc(E)⊗AR(G)γ . This makes E ⊗Gε
G a graded G-sheaf of R-modules.

Remark 3.6. In an earlier version of this paper, we gave a different (longer and more difficult) construction
of the sheaf E ⊗Gε

G. Essentially, E ⊗ Gx is a quotient of the free R-module generated by E ×G(0) Gx

and the basis of open sets in E ⊗Gε
G =

⋃
x∈G(0) E ⊗Gx consists of finite sums of subsets {e⊗ g | (e, g) ∈

s(W )×G(0) B} where W is a compact open subset of G(0), s : W → E is a continuous local section, and
B ⊆ G is a compact open bisection.

Alternatively, to build a G-sheaf of R-modules from the Gε-sheaf of R-modules (E, p), we can apply
the following sequence of functors:

Mod-RGε
Γc // Mod-AR(Gε)

J // Mod-AR(G)
Sh // Mod-RG

(E, p) ✤ // Γc(E) ✤ // Γc(E)
⊗

AR(G)ε
AR(G)

✤ // Sh
(
Γc(E)

⊗
AR(G)ε

AR(G)
)
.

(3.3)

Lemma 3.7. Let (E, p) be a Gε-sheaf of R-modules, where G is a Γ-graded ample groupoid. Then E
⊗

Gε
G

and Sh
(
Γc(E)

⊗
AR(G)ε

AR(G)
)
are isomorphic G-sheaves of R-modules.

Proof. Let M = Γc(E) and N =M
⊗

AR(G)ε
AR(G). By definition, Sh(N) = Ñ =

⋃
x∈G(0) Ñx where

Ñx = lim
−→
x∈U

N1U = lim
−→
x∈U

(
M

⊗

AR(G)ε

AR(G) ∗ 1U

)
=M

⊗

AR(G)ε

(
lim
−→
x∈U

AR(G) ∗ 1U

)
∼=M

⊗

AR(G)ε

RGx.

For a justification of the isomorphism in the last step, see Example 2.8. Define

πx :M
⊗

AR(G)ε

RGx → E ⊗ Gx, s⊗ g 7→ s(c(g))⊗ g, for all s ∈M, g ∈ Gx; (3.4)

σx : E ⊗ Gx →M
⊗

AR(G)ε

RGx,
∑

i

ei ⊗ gi 7→
∑

i

si ⊗ gi, where si ∈M, ei = si(c(gi)), gi ∈ Gx. (3.5)

To show that σx is unambiguously defined, suppose e⊗g ∈ E⊗Gx and s, t ∈M have s(c(g)) = t(c(g)) = e.
Pick some neighbourhood U of c(g) in G(0). Since s(c(g)) ∈ s(U) ∩ t(U) and s(U) and t(U) are open in
E, there exists some open set A ⊆ s(U)∩ t(U) with s(c(g)) ∈ A, and s and t agree on W := p(A). Thus,
applying (2.10) and (2.11), we have

s⊗ g = s⊗ 1W g = s1W ⊗ g = t1W ⊗ g = t⊗ 1W g = t⊗ g.

We omit some details that are not difficult to check: σx respects the relations on E ⊗ Gx, and πxσx and

σxπx are the identity homomorphisms. Since E ⊗Gε
G =

⋃
x∈G(0) E ⊗ Gx and Sh(N) =

⋃
x∈G(0) Ñx, the

functions (3.4) and (3.5) extend to functions π : Sh(N) → E ⊗Gε
G and σ : E ⊗Gε

G → Sh(N) which are
inverse to each other. One can check that σ and π are G-equivariant, and that the topology transferred
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from Sh(N) to E ⊗Gε
G is the one generated by the basis in (3.2). Conclude that π and σ = π−1 are

isomorphisms of G-sheaves of R-modules. �

Define the induction functor, mapping a Gε-sheaf of R-modules to a graded G-sheaf of R-modules:

J : Mod-RGε −→ Gr-RG, (3.6)

E 7−→ E ⊗Gε
G.

If E,F are Gε-sheaves of R-modules and φ : E → F is a morphism, then we define

J (φ) = φ⊗ id : E ⊗Gε
G −→ F ⊗Gε

G
∑

ei ⊗ gi 7−→
∑

φ(ei)⊗ gi.

One can check that J (φ) is continuous, G-equivariant, and restricts to graded homomorphisms on the
stalks. That is, J (φ) is a morphism of graded G-sheaves of R-modules.

On the other hand, if E is a graded G-sheaf of R-modules, it is easy to see that Eε :=
⋃

x∈G(0)(Ex)ε is
a Gε-sheaf of R-modules. Moreover, a graded morphism φ : E → F restricts to a morphism φε : Eε → Fε.
This gives rise to a restriction functor, mapping a graded G-sheaf of R-modules to a Gε-sheaf ofR-modules:

I : Gr-RG −→ Mod-RGε, (3.7)

E 7−→ Eε,

φ 7−→ φε.

Recall that for E, a Gε-sheaf of R-modules, we have (E ⊗Gε
G)ε =

⋃
x∈G(0) E⊗Gx

ε . For every x ∈ G(0)

there is an isomorphism E⊗Gx
ε → Ex, sending e⊗g 7→ eg, with inverse sending e 7→ e⊗p(e). This yields

map:

η : IJ (E) = I(E ⊗Gε
G) = (E ⊗Gε

G)ε
∼=
−→ E (3.8)

η :
∑

ei ⊗ gi 7−→
∑

eigi.

In a moment we shall prove that η is an isomorphism of Gε-sheaves of R-modules and, indeed, η is a
natural transformation from IJ to the identity, so we have an isomorphism of functors IJ ∼= idGr-RG .

On the other hand, there is a natural transformation JI → idMod-RG . Namely, for a graded G-sheaf
E, and x ∈ G(0), there is a homomorphism Eε ⊗Gε

Gx → Ex sending e⊗ g 7→ eg. This yields a map:

θ : J I(E) = J (Eε) = Eε ⊗Gε
G −→ E (3.9)

θ :
∑

ei ⊗ gi 7−→
∑

eigi.

The following lemma formalises an important part of the preceding discussion.

Lemma 3.8.

(1) If (E, p) is a Gε-sheaf of R-modules, η from (3.8) is an isomorphism of Gε-sheaves of R-modules.
(2) If (E, p) is a graded G-sheaf, θ from (3.9) is a graded morphism of G-sheaves of R-modules.

Proof. It is clear that η is invertible, Gε-equivariant, and restricts to R-module isomorphisms on the
stalks. To show that η is continuous, take a basic open set s(U) ⊆ E where U ∈ Bco(G(0)) and s : U → E
is a continuous local section. Then η−1(s(U)) = Z(s⊗ 1U , U) (see (3.2)) is open in (E ⊗Gε

G)ε.

Clearly, θ restricts to homomorphisms on the stalks, and it is graded and G-equivariant. Suppose
Z(t, U) is a basic open set in Eε⊗Gε

G, where t =
∑
si⊗fi ∈ Γc(Eε)

⊗
AR(G)ε

AR(G), and U ∈ Bco(G(0)).

A short calculation reveals that θ (Z (t, U)) =
(∑

sifi
)
(U), so it is open in E because

∑
sifi ∈ Γc(E)

(see (2.10)). Thus θ is an open map, and by Lemma 2.6, θ is continuous. �

We are in a position to prove a groupoid version of Dade’s Theorem (see Theorem 2.3, [15, Theorem
2.8], and [20, §1.5]).

Theorem 3.9. Let G be a Γ-graded ample groupoid. Then G is strongly graded if and only if the functors
I and J (see (3.6),(3.7)) are mutually inverse equivalences of categories.
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Proof. (⇒) Recall that IJ ∼= idMod-RG holds for any G. So, we need to prove that G is strongly graded
implies J I ∼= idGr-RGε

. For a graded G-sheaf E, we have J I(E) = Eε ⊗Gε
G. Assuming that G is

strongly graded, we show that the natural transformation θ : Eε⊗Gε
G → E (see (3.9)) is an isomorphism

of graded G-sheaves. Since G is strongly graded, using Lemma 3.1 (2), it follows that for γ, δ ∈ Γ,
⋃

x∈G(0)

(Ex)γδ =
⋃

x∈G(0)

(Ex)γδGε =
⋃

x∈G(0)

(Ex)γδGδ−1Gδ ⊆
⋃

x∈G(0)

(Ex)γGδ ⊆
⋃

x∈G(0)

(Ex)γδ. (3.10)

Thus EγGδ =
⋃

x∈G(0)(Ex)γGδ =
⋃

x∈G(0)(Ex)γδ = Eγδ. Therefore, θ(Eε ⊗Gε
Gγ) = EεGγ = Eγ , which

shows that θ is surjective.

For the injectivity of θ : Eε⊗Gε
G → E, it is enough to show that the restriction θ|x : Eε⊗Gε

Gx → Ex

is injective for any x ∈ G(0). In turn, it is enough to show that the restriction (θ|x)γ : Eε ⊗Gε
Gx
γ → (Ex)γ

is injective for any γ ∈ Γ. Lemma 3.1 (2) yields Gε = Gγ−1Gγ , so we can fix an h ∈ Gγ such that x = h−1h.
Define an R-homomorphism (ψ|x)γ : (Ex)γ → Eε ⊗Gε

Gx
γ by e 7→ eh−1 ⊗ h. Now, if e ∈ (Ex)γ ,

(θ|x)γ(ψ|x)γ(e) = (θ|x)γ(eh
−1 ⊗ h) = eh−1h = ex = e.

On the other hand, if
∑
ei ⊗ gi ∈ Eε ⊗Gε

Gx
γ ,

(ψ|x)γ(θ|x)γ
(∑

ei ⊗ gi

)
= (ψ|x)γ

(∑
eigi

)

=
∑

eigih
−1 ⊗ h =

∑
ei ⊗ gih

−1hi =
∑

ei ⊗ gix =
∑

ei ⊗ gi.

The maps (ψ|x)γ and (θ|x)γ are inverses, which implies that θ is injective. Thus J I(E) = Eε⊗Gε
G ∼= E.

Since the morphisms η and θ are natural, this shows that JI ∼= idGr-RG .

(⇐) Assume I and J are mutually inverse equivalences (under (3.8) and (3.9)). Since θ is an isomor-
phism it follows that for any graded G-sheaf of R-modules E, and any γ ∈ Γ, y ∈ G(0), we have

EεG
y
γ = (Ey)γ . (3.11)

We consider the graded G-sheaf of R-modules RG constructed as follows: RG :=
⋃

x∈G(0) RGx, where
RGx =

⊕
γ∈ΓRG

x
γ is a free R-module with basis Gx (see Example 2.8). Let β, γ ∈ Γ, and consider the

β-shifted graded G-sheaf E := RG(β) where (Ex)γ = RGx
βγ ; see (3.1). From (3.11) we get

EεG
y
γ =

( ⋃

x∈G(0)

(Ex)ε

)
Gy
γ = (Ey)γ ,

which is to say ( ⋃

x∈G(0)

RGx
β

)
Gy
γ = RGy

βγ

for every x ∈ G(0). In particular if g ∈ Gy
βγ , then the above equation implies that g ∈ GβGγ . Thus

Gβγ ⊆ GβGγ . This shows that G is strongly graded. �

Remark 3.10. A version of Theorem 3.9 can also be written for G-sheaves of sets, and then it is only
necessary to assume G is étale. That is, the categories BgrG and BGε are equivalent (under similar functors
I and J ) if and only if G is a strongly graded groupoid. An interesting question is whether Theorem 3.9
could be generalised for étale groupoids.

In the following theorem, we find that the property of being strongly graded is transferred from an
ample groupoid to its Steinberg algebra.

Theorem 3.11. Let G be a Γ-graded ample groupoid. Then G is strongly graded if and only if AR(G) is
strongly graded.

Proof. (⇒) Assume G is strongly Γ-graded. Fix γ, δ ∈ Γ, and suppose U ∈ Bco
γδ(G). We claim it is

possible to write 1U =
∑

j rj(fj ∗ gj), where rj ∈ R, fj ∈ AR(G)γ , and gj ∈ AR(G)δ for all j. Fix some
y ∈ U . Since G is strongly Γ-graded, there exist morphisms p ∈ Gγ and q ∈ Gδ such that y = pq. From
the continuity of groupoid multiplication, there are compact open bisections Vy ∈ Bco

γ (G), containing p,
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and Wy ∈ Bco
δ (G), containing q, such that y = pq ∈ VyWy ⊆ U . Therefore, U =

⋃
y∈U VyWy and it can

reduce to a finite union U =
⋃N

i=1 ViWi because U is compact. The principle of inclusion-exclusion yields

1U =

N∑

j=1

(−1)j−1
∑

I⊆{1,...,N}
|I|=j

1∩i∈IViWi
.

Examining the terms,

1∩i∈IViWi
= 1Vi1Wi1∩···∩Vij

Wij
= 1(Vi1Wi1∩···∩Vij

Wij
)W−1

i1
Wi1

= 1(Vi1Wi1∩···∩Vij
Wij

)W−1
i1

∗ 1Wi1
∈ AR(G)γ ∗AR(G)δ.

The above calculation uses the fact that Wi1 is a bisection, which implies W−1
i1
Wi1 = d(Wi1). Therefore,

1U ∈ AR(G)γ ∗AR(G)δ as claimed. Since the functions {1U | U ∈ Bco
γδ(G)} span AR(G)γδ, it follows that

AR(G)γδ ⊆ AR(G)γ ∗AR(G)δ and therefore AR(G) is strongly graded.

(⇐) Suppose G is not strongly graded. Then there exists a pair γ, δ ∈ Γ and some g ∈ Gγδ such
that g /∈ GγGδ. Let W ∈ Bco

γδ(G) be a neighbourhood of g, so 1W ∈ AR(G)γδ and 1W (g) = 1. It is
straightforward to check that

AR(G)γ ∗AR(G)δ = spanR{1U ∗1V | U ∈ Bco
γ (G), V ∈ Bco

δ (G)}.

If it were true that 1W ∈ AR(G)γ ∗AR(G)δ then it would be possible to write

1W =
n∑

j=1

rj(1Uj
∗1Vj

) =
n∑

j=1

rj1UjVj
,

where each Uj ⊆ Gγ and Vj ⊆ Gδ. In particular, this would require for at least one j that 1UjVj
(g) 6= 0,

which would require g ∈ UjVj ⊆ GγGδ. This is a contradiction. Therefore, AR(G) is not strongly
Γ-graded. �

In fact, using a diagram of functors, Theorem 3.11 can be derived from Theorem 3.9 and vice versa.
To this end, we prove a graded version of Steinberg’s Equivalence Theorem from [34].

Lemma 3.12. If G is a Γ-graded ample groupoid and M is a graded right AR(G)-module, then Sh(M)
is a graded G-sheaf of R-modules. Moreover, Sh : Gr-AR(G) → Gr-RG is a functor.

Proof. Since M is a graded right AR(G)-module, it is also a graded R-module (where R = Rε has
the trivial grading) and the presheaf M defined in (2.8) takes values in the category of graded R-
modules. Concretely, M(U) =

⊕
γ∈ΓM(U)γ =

⊕
γ∈ΓMγ1U , for all U ∈ Bco(G(0)). The connecting

homomorphisms ρUV : M(U) → M(V ), m 7→ m1V , are graded homomorphisms. The direct limit M̃x =

lim−→
x∈U

M(U) is therefore a graded R-module, for every x ∈ G(0), so Sh(M) = M̃ =
⋃

x∈G(0) M̃x is a

sheaf of graded R-modules over G(0). Moreover, for g ∈ yGx
δ we can pick B ∈ Bco

δ (G) containing g and

conclude that [m]y ∈ (M̃y)γ implies [m]yg = [m1B]x ∈ (M̃x)γδ. This shows M̃γGδ ⊆ M̃γδ. Finally,

M̃γ =
⋃

x∈G(0)(M̃x)γ is open: for [m]x ∈ (M̃x)γ we can assume m ∈M(U)γ for some U containing x, and

thus the open set (U,m) (see (2.9)) has [m]x ∈ (U,m) ⊆ M̃γ . If f :M → N is a graded homomorphism of
AR(G)-modules, then clearly Sh(f) : [m]x 7→ [f(m)]x is a graded morphism of G-sheaves. This establishes
the functoriality. �

Lemma 3.13. If G is a Γ-graded ample groupoid and (E, p) is a graded G-sheaf of R-modules, then Γc(E)
is a graded AR(G)-module. Moreover, Γc : Gr-RG → Gr-AR(G) is a functor.

Proof. Let N := Γc(E) = {s : G(0) → E | s is a compactly supported continuous section}. Define
Nα := {s ∈ N | s(G(0)) ⊆ Eα} for all α ∈ Γ. We first show that N ⊆

∑
α∈ΓNα. Define sα : G(0) → E by

sα(x) = s(x)α for all x ∈ G(0). We claim that only finitely many of the sα are nonzero. Since addition
is an open map, for any finite subset {α1, . . . , αn} ⊆ Γ, the set Eα1 + · · · + Eαn

is open in E. The
collection of all such sets is an open cover of E. The nonzero image of s, in other words s(supp(s)),
is compact because s is continuous and compactly supported. Therefore, reducing to a finite subcover
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yields a finite subset {α1, . . . , αn} ⊆ Γ such that s(supp(s)) ⊆ Eα1 + · · · + Eαn
. This proves that only

finitely many of the sα are nonzero. Next, we claim that each sαi
∈ Nαi

. Indeed sαi
is continuous

because it is just s composed with the projection onto the αi-homogeneous component (see Lemma 3.5).
The support of sαi

is compact because it is closed and contained in the support of s. This proves that
N ⊆

∑
α∈ΓNα and clearly Nα ∩Nβ = 0 if α 6= β, so N =

⊕
α∈ΓNα. From the definition (see (2.10)) it

is clear NαAR(G)β ⊆ Nαβ for all α, β ∈ Γ. To finish, note that when φ : E → F is a graded morphism of
G-sheaves of R-modules, Γc(φ) : s 7→ φ ◦ s is a graded homomorphism. �

Proposition 3.14. Let G be a Γ-graded ample groupoid, and R a commutative unital ring. Then Γc :
Gr-RG → Gr-AR(G) and Sh : Gr-AR(G) → Gr-RG are mutually inverse equivalences of categories, and
the equivalences commute with the shift functors Tα : Gr-AR(G) → Gr-AR(G) and Tα : Gr-RG → Gr-RG.

Proof. With the help of Lemmas 3.12 and 3.13, it follows from [34, Theorem 3.5] that Γc◦Sh ∼= idGr-AR(G)

and Sh ◦Γc
∼= idGr-R(G), since the natural transformations involved in that theorem are indeed graded

isomorphisms. If E is a graded G-sheaf and α ∈ Γ, it is immediate that Γc(E(α)) = Γc(E)(α). Similarly,
if M is a graded AR(G)-module then Sh(M(α)) = Sh(M)(α). �

From this result, we can prove Theorem 3.9 using Theorem 3.11 or the other way around (so the
theorems are equivalent, and only one of the proofs is really necessary). The key lies in the following
commutative diagram:

Gr-RG
I //

Γc

��

Mod-RGε

Γc

��

J // Gr-RG

Γc

��
Gr-AR(G)

I //

Sh

OO

Mod-AR(G)ε

Sh

OO

J // Gr-AR(G).

Sh

OO (3.12)

Lemma 3.7 proves that the square on the right commutes (since the isomorphism from J to Sh ◦J ◦ Γc

is natural and graded). It is easy to prove that the square on the left commutes.

Proof of Theorem 3.11 using Theorem 3.9. If G is a strongly graded groupoid, by Theorem 3.9, IJ ∼=
idMod-RGε

and JI ∼= idGr-RG (on the top row). Since the vertical arrows are equivalences, this implies
that IJ ∼= idMod-AR(Gε) and J I ∼= idGr-AR(G) (on the bottom row). Now by Theorem 2.3, AR(G) is a
strongly graded ring. The converse is similar. �

Proof of Theorem 3.9 using Theorem 3.11. If G is a strongly graded groupoid, then by Theorem 3.11,
AR(G) is a strongly graded algebra. By Theorem 2.3, IJ ∼= idMod-AR(G)ε and J I ∼= idGr-AR(G). Using
the diagram (3.12), this implies IJ ∼= idMod-RGε

and JI ∼= idGr-RG on the top row. Conversely, if
IJ ∼= idMod-RGε

and J I ∼= idGr-RG , then IJ ∼= idMod-AR(G)ε and J I ∼= idGr-AR(G), and Theorem 2.3
implies AR(G) is strongly graded. Thus G is strongly graded, by Theorem 3.11. �

Corollary 3.15. Let G be a Γ-graded ample groupoid. The following are equivalent:

(1) G is strongly graded;
(2) AR(G) is strongly graded;
(3) All the arrows in (3.12) are equivalences.

4. Applications

In this section, we use the previous results (in fact, we only use Lemma 3.1 and Theorem 3.11) to
characterise strongly Z-graded and Z/nZ-graded Leavitt path algebras, and strongly Z

k-graded Kumjian-
Pask algebras. At the end, we briefly discuss strongly graded transformation groupoids.

4.1. Leavitt path algebras. Leavitt path algebras are Z-graded R-algebras presented by generators
and relations that are determined by a directed graph. For every graph E, there is a Z-graded ample
groupoid GE such that AR(GE) is graded isomorphic to the Leavitt path algebra of E with coefficients
in R (see [14, Example 3.2]).
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4.1.1. Preliminaries. We refer to [4, Definitions 1.2.2] for the standard terminology used to describe a
directed graph E = (E0, E1, r, s). A vertex is a sink if it emits no edges. A vertex is an infinite emitter
if it emits infinitely many edges, and graph is row-finite if it has no infinite emitters. Sinks and infinite
emitters are collectively called singular vertices. A vertex that neither receives nor emits any edges is
called isolated. In this section, we adopt the convention from [4] that a path is a sequence of edges
α = α1 . . . αn where the range of αi coincides with the source of αi+1, i.e., r(αi) = s(αi+1), for all
1 ≤ i ≤ n − 1. We write |α| = n ∈ N ∪ {∞} for the length of the path. We use the notation E⋆ for
the set of finite paths, and E∞ for the set of infinite paths. We define the set of boundary paths as
∂E := E∞ ∪ {α ∈ E⋆ | r(α) is singular}. If α ∈ E⋆, p ∈ E⋆ ∪ E∞, and p = αq for some q ∈ E⋆ ∪ E∞,
then we say that α is an initial subpath of p. In this section, we make no restrictions on the cardinality
of E0 or E1.

Let E be a graph and let A be a ring. A subset {v, e, e∗ | v ∈ E0, e ∈ E1} ⊆ A is called a Leavitt
E-family if the elements of {v | v ∈ E0} are pairwise orthogonal idempotents and the following conditions
are satisfied:

(E1) s(e)e = er(e) = e for all e ∈ E1,

(E2) e∗s(e) = r(e)e∗ = e∗ for all e ∈ E1,

(CK1) e∗f = δe,fr(e) for all e, f ∈ E1, and

(CK2) v =
∑

e∈s−1(v) ee
∗ for every regular vertex v ∈ E0.

As usual, let R be a commutative ring with unit. The Leavitt path algebra with coefficients in R,
which we denote by LR(E), is the universal R-algebra generated by a Leavitt E-family. Leavitt path
algebras have a canonical Z-graded structure with homogeneous components

LR(E)n = {αβ∗ | r(α) = r(β), n = |α| − |β|}.

We now describe the boundary path groupoid, which was introduced in [24]. Let E be a graph, and
define the one-sided shift map σ : ∂E \ E0 → ∂E as follows:

σ(p) :=





r(p) if p ∈ E⋆ ∩ ∂E and |p| = 1

p2 . . . p|p| if p ∈ E⋆ ∩ ∂E and |p| ≥ 2

p2p3 . . . if p ∈ E∞

The n-fold composition σn is defined on paths of length ≥ n and we understand that σ0 : ∂E → ∂E is
the identity map. The boundary path groupoid is the groupoid

GE : =
{
(x, k, y) ∈ ∂E × Z× ∂E | σn(x) = σn−k(y) for some n ≥ max{0, k}

}

= {(αx, |α| − |β|, βx) | α, β ∈ E⋆, x ∈ ∂E, r(α) = r(β) = s(x)} ,

with domain, codomain, multiplication, and inversion maps:

d(x, k, y) = y, c(x, k, y) = x, (x, k, y)(y, l, z) = (x, k + l, z), (x, k, y)−1 = (y,−k, x).

The unit space is G
(0)
E = {(x, 0, x) | x ∈ ∂E}, which we identify with ∂E. The groupoid GE comes with

a canonical Z-grading given by the functor ϕ : (p, k, q) 7→ k. Since we do not need to work with the
topology on GE , it suffices to say that there is a topology with respect to which GE is a Z-graded ample
groupoid. There is a graded isomorphism πE : LR(E) → AR(GE), but we do not need to use it explicitly,
so we refer the reader to [14, Example 3.2].

4.1.2. Strongly graded Leavitt path algebras.

Definition 4.1. A graph E satisfies Condition (Y) if for every k ∈ N and every infinite path p, there
exists an initial subpath α of p and a finite path β such that r(β) = r(α) and |β| − |α| = k.

If E is a graph such that every infinite path contains a vertex that is the base of a cycle, then E
satisfies Condition (Y). On the other hand, there exist infinite acyclic graphs that satisfy Condition (Y).

Theorem 4.2. Let E be a graph, and R a unital commutative ring. The Leavitt path algebra LR(E) is
strongly Z-graded if and only if E is row-finite, has no sinks, and satisfies Condition (Y).
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Proof. We prove the statement for AR(GE), since it is graded isomorphic to LR(E).

(⇒) Firstly, suppose E has a singular vertex. Then there is a finite path µ ∈ ∂E. The mor-

phism (µ, 0, µ) ∈ G
(0)
E cannot be factored in the form (µ, |µ| + 1, x)(x,−(|µ| + 1), µ), where x ∈ ∂E, so

(µ, 0, µ) /∈ (GE)|µ|+1(GE)−(|µ|+1). Therefore, GE is not strongly Z-graded, so neither is AR(GE), according

to Theorem 3.11. Secondly, suppose E has no singular vertices, but fails to satisfy Condition (Y). This
means there is some k ∈ N, and some infinite path p ∈ E∞, such that for every initial subpath α of p,
there does not exist a finite path β ∈ E⋆ having r(β) = r(α) and |β| − |α| = k. Therefore, the morphism

(p, 0, p) ∈ G
(0)
E does not admit a factoring of the form (p, 0, p) = (αp′,−k, βp′)(βp′, k, αp′). This implies

(p, 0, p) /∈ (GE)−k(GE)k, so GE is not strongly graded, and consequently AR(GE) is not strongly graded.

(⇐) Suppose E is row-finite, has no sinks, and satisfies Condition (Y). Let p ∈ ∂E be arbitrary. There
are no singular vertices in E, so p is an infinite path. For n ≥ 0, we have (p, n, σn(p)) ∈ (GE)n. For
n < 0, Condition (Y) implies that there exists some initial subpath α of p, and a finite path β ∈ E⋆ with
r(β) = r(α) and |β| − |α| = −n. Then (p, n, βσ|α|(p)) ∈ (GE)n. Therefore, p ∈ c((GE)n) for every n ∈ Z.
By Lemma 3.1 (4), GE is strongly graded. By Theorem 3.11, AR(GE) is strongly Z-graded. �

It is also possible to equip LR(E) with a non-canonical graded structure. One way to do this is to
take the quotient grading by a subgroup nZ⊳ Z. To simplify notation for cosets, let [k] := k + nZ.

Proposition 4.3. Let E be a graph. Then LR(E) is strongly Z/nZ-graded if and only if every singular
vertex receives a path of length n− 1.

Proof. (⇐) Let G = GE and take x ∈ ∂E. If x is infinite, or if |x| ≥ n−1, then for 0 ≤ k ≤ n−1, we have
(x, k, σk(x)) ∈ G[k] so x ∈ c(G[k]) for any [k] ∈ Z/nZ. Otherwise 0 ≤ |x| < n − 1 and r(x) is a singular
vertex. By assumption, there exists µ ∈ E⋆ of length n− 1, such that r(µ) = r(x). For all 0 ≤ k ≤ n− 1
we have

(x, 0, x) =
(
x, |x| − k, σn−1−k(µ)

)(
σn−1−k(µ), k − |x|, x

)
,

so x ∈ c(G[|x|−k]). Therefore x ∈ c(G[k]) for every [k] ∈ Z/nZ, so GE is strongly Z/nZ-graded, by Lemma
3.1 (4). Conclude that AR(GE) ∼= LR(E) is strongly Z/nZ-graded.

(⇒) If v ∈ E0 is a singular vertex that does not receive a path of length n − 1, then v ∈ ∂E but
v /∈ d(G[n−1]). By Lemma 3.1 (3), G is not strongly Z/nZ-graded, so LR(E) is not strongly Z/nZ-
graded. �

We now can easily recover one of the main theorems of [19], namely [19, Theorem 3.15], and identify
a large collection of strongly graded algebras.

Corollary 4.4. Let E be a row-finite graph.

(1) LR(E) is a strongly Z/2Z-graded ring if and only if E has no isolated vertex.
(2) LR(E) is a strongly Z/nZ-graded ring if E has no sink.

If E0 is finite:

(3) LR(E) is a strongly Z-graded ring if and only if E has no sink.

4.2. Kumjian-Pask algebras of higher-rank graphs.

4.2.1. Preliminaries on k-graphs. We view the additive semigroup N
k as a category with one object

0 := (0, . . . , 0) and equip it with the coordinate-wise partial order

m ≤ n ⇐⇒ mi ≤ ni for 1 ≤ i ≤ k.

With this partial order, Nk is a lattice, and we use the notation ∨ for the supremum (coordinatewise
maximum) and ∧ for the infimum (coordinatewise minimum). We denote the usual generators in N

k by
{ei | 1 ≤ i ≤ k}. The partial order ≤ also extends to the abelian group Z

k.

Definition 4.5. A higher-rank graph of rank k, or k-graph for short, is a countable small category
Λ = (Λ0,Λ, r, s), together with a functor d : Λ → N

k, called the degree map, satisfying the factorisation
property: for every λ ∈ Λ and m,n ∈ N

k with d(λ) = m+ n, there are unique morphisms µ, ν ∈ Λ with
d(µ) = m, d(ν) = n, and λ = µν.
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We write λ = λ(0,m)λ(m,m+ n), where λ(0,m) and λ(m,m+ n) are the unique composable factors
of λ with degreesm and n respectively. The set Λ0 is the set of objects, which we may think of as vertices,
and we identify each object v ∈ Λ0 with the identity morphism at v, which according to the factorisation
property is the only morphism v → v in Λ. The maps r, s : Λ → Λ0 are the range and source maps
respectively. For n ∈ N

k, we define Λn := d−1(n), and call the elements of Λn paths of degree n. Note
that 1-graphs are the same as ordinary directed graphs, although the notation differs and the roles of r
and s are swapped (see [23, Example 1.3]). For a vertex v ∈ Λ0, we use the notation,

vΛ := {λ ∈ Λ | r(λ) = v},

vΛn := {λ ∈ Λn | r(λ) = v}.

We say that Λ is row-finite if vΛn is finite for every v ∈ Λ0 and n ∈ N
k. A source is a vertex v ∈ Λ0

such that vΛei = ∅ for some 1 ≤ i ≤ k. The k-graph Λ has no sources if and only if vΛn is non-empty
for every v ∈ Λ0 and n ∈ N

k.

We follow [13] in saying that τ is a minimal common extension of λ, µ ∈ Λ if d(τ) = d(λ) ∨ d(µ),
τ(0, d(λ)) = λ, and τ(0, d(µ)) = µ. Not every pair of paths has a common extension and, if k ≥ 2, a pair
of paths may have more than one minimal common extension. Let MCE(λ, µ) be the set of all minimal
common extensions of λ and µ, and

Λmin(λ, µ) : = {(ρ, τ) ∈ Λ× Λ | λρ = µτ ∈ MCE(λ, µ)}

= {(ρ, τ) ∈ Λ× Λ | λρ = µτ and d(λρ) = d(λ) ∨ d(µ)}.

We say that the k-graph Λ is finitely aligned if Λmin(λ, µ) is finite for every λ, µ ∈ Λ or, equivalently, if
MCE(λ, µ) is finite for every λ, µ ∈ Λ. Every row-finite k-graph is finitely aligned, but there exist finitely
aligned k-graphs which are not row-finite [13]. From here on, we assume Λ is a finitely aligned k-graph.

A subset E ⊆ vΛ is said to be exhaustive if for every λ ∈ vΛ, there exists µ ∈ E such that
Λmin(λ, µ) 6= ∅. As in [13], we define

v FE(Λ) := {E ⊆ vΛ \ {v} | E is finite and exhaustive},

FE(λ) :=
⋃

v∈Λ0

v FE(Λ).

If v ∈ Λ0, λ ∈ vΛ, and E ∈ v FE(Λ), the set

Ext(λ,E) :=
⋃

µ∈E

{
ρ ∈ Λ | (ρ, τ) ∈ Λmin(λ, µ) for some τ ∈ Λ

}

is a finite exhaustive subset of s(λ)Λ, according to [31, Lemma C.5], and the set

I(E) :=
k⋃

i=1

{λ(0, ei) | λ ∈ E, d(λ)i > 0} (4.1)

is a finite exhaustive subset of vΛ [31, Lemma C.6] whose elements can be viewed as edges (of various
colours).

We refer to [18, Example 3.2] for the definition of the row-finite k-graphs Ωk,m, for m ∈ (N ∪ {∞})k.
Briefly:

Ω0
k,m : = {p ∈ N

k | p ≤ m}, Ωk,m : = {(p, q) ∈ Ω0
k,m × Ωk,m | p ≤ q},

r(p, q) = p, s(p, q) = q, d(p, q) = q − p.

Definition 4.6. [18, Definitions 5.1 and 5.10] Let Λ be a k-graph. A boundary path in Λ is a degree-
preserving functor x : Ωk,m → Λ with the property: for all n ∈ N

k with n ≤ m, and all E ∈ x(n) FE(Λ),
there exists some λ ∈ E such that x(n, n + d(λ)) = λ. We write ∂Λ for the set of all boundary paths in
Λ, and say that the degree of x ∈ ∂Λ is d(x) := m.

We also have the notion of an infinite path [8], which is a degree-preserving functor x : Ωk,(∞,...,∞) → Λ.
In [39, Proposition 2.12], we see that every infinite path is a boundary path. We denote the set of infinite
paths by Λ∞, and write r(x) := x(0) for the range of an infinite path. For v ∈ Λ0, we also write

vΛ∞ := {x ∈ Λ∞ | r(x) = v}.
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We recall some facts about infinite paths from [8, Lemma 2.5].

• Finite paths and infinite paths can be composed: if λ ∈ Λ and x ∈ s(λ)Λ∞ then there is a unique
y ∈ Λ∞ such that y(0, n) = λx(0, n− d(λ)) for all n ≥ d(λ). In this case we write λx := y.

• Infinite paths have a factorisation property: if x ∈ Λ∞ then there exist unique x(0, n) ∈ Λn and
x(n,∞) ∈ Λ∞ such that x = x(0, n)x(n,∞). Moreover, s(x(0, n)) = x(n) = r(x(n,∞)).

If Λ is row-finite and has no sources, then the boundary path space is considerably easier to work
with, because ∂Λ = Λ∞ (see [39, Proposition 2.12]).

4.2.2. Strongly graded Kumjian-Pask algebras.

Lemma 4.7. Let Λ be a finitely aligned k-graph with no sources. Suppose Λ is not row-finite. Then there
exists x ∈ ∂Λ and i ∈ {1, ..., k} such that d(x)i <∞.

Proof. Let k ≥ 2, since the statement for 1-graphs is trivial. We consider two cases. First, suppose there
exists v ∈ Λ0 such that v FE(Λ) = ∅. Then v ∈ ∂Λ and we are done. For the second case, suppose that
v FE(Λ) 6= ∅ for every v ∈ Λ0. Since Λ is not row-finite, there exists v ∈ Λ0 and i ∈ {1, ..., k} such that
|vΛei | = ∞.

Since there exists E ∈ v FE(Λ), there also exists a finite exhaustive set I(E) ∈ v FE(Λ), consisting
entirely of edges (see (4.1)). So we can find an edge λ1 ∈ I(E) such that Λmin(µ, λ1) 6= ∅ for infinitely
many distinct µ ∈ vΛei . It follows that d(λ1)i = 0 and |s(λ1)Λei | = ∞. Similarly, for n > 1 we can find
λn ∈ s(λn−1)Λ such that

d(λn)i = 0 and |s(λn)Λ
ei | = ∞. (4.2)

As n increases, we pick λn so that the degree of x := λ1...λn... is as large as possible in each component.
We do this by cycling through each of the components j ∈ {1, ..., k} as n increases. For example, when
n = 1, we start with j = 1 and look for an edge λ1 with the desired property (4.2) and with degree e1. If
there is no such edge (for example, if i = 1), we try j = 2 and look for an edge of degree e2 so on. Then
for n = 2, we start with j = j1 + 1, where j1 is such that d(λ1)j1 = 1. Note that,

(1) d(x)i = 0; and

(2) If d(x)j <∞ for some j then there exists N such that d(λN ) = ej and

d(λ1...λN )j = d(x)j .

(3) We claim that for every n > N we have |x(n)Λej | = ∞ (where N and j are from (2)). For
otherwise, there exists some n > N such that En := x(n)Λej ∈ x(n) FE(Λ). But then for every
m > 0 we have a finite exhaustive set

Ext(λn+m, En) ⊆ s(λn+m)Λej .

Since our choice of x makes the degree in each component as large as possible, we eventually will
choose a λm with degree ej , for example in some I(Ext(λn+m, En)), which is a contradiction.
This verifies the claim.

We show x ∈ ∂Λ using an approach similar to [39, Proposition 2.12]. Fix n ≤ d(x) and E ∈
x(n) FE(Λ). Define t ∈ N

k such that for j ∈ {1, ..., k},

tj :=

{
d(x)j if d(x)j <∞

max
λ∈E

{d(λ)j} if d(x)j = ∞.

Then n+ t < d(x) and we can consider x(n, n+ t) ∈ x(n)Λ. Define

Ft := {j ∈ {1, ..., k} | x(n+ t)Λej is infinite}.

Then, since Λ has no sources, there exist an infinite number of paths

δ ∈ x(n+ t)Λ
∑

j∈Ft
ej ,
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which we label δ1, δ2, . . . . Since E is finite exhaustive, there exists a single ν ∈ E which has common
extensions with infinitely many x(n, n+t)δq. For each q ∈ N (by passing to a subsequence and relabelling),
there exists (αq, βq) ∈ Λmin(x(n, n+ t)δq, ν) whereby,

x(n, n+ t)δqαq = νβq. (4.3)

We claim that d(ν) ≤ t. If j is such that d(x)j = ∞, then d(ν)j < tj by construction. Otherwise, suppose
j is such that tj := d(x)j <∞. Then we have j ∈ Ft by item (3) above. By way of contradiction, suppose
d(ν)j > tj . Write ν = bν′, where d(b) = tj + ej . So for each q ∈ N we have from (4.3)

(x(n, n+ t)δqαq) (0, t+ ej) = x(n, n+ t)(δq(0, ej)) = bν′βq(0, t+ ej).

But then |Λmin(x(n, n + t), b)| = ∞, which contradicts that Λ is finitely aligned. Thus d(ν)i ≤ dj . Now
(4.3) gives x(n+ d(ν)) = ν, so x ∈ ∂Λ. �

Lemma 4.8. Let Λ be a finitely aligned k-graph and suppose that v ∈ Λ0 is a source. Then there exists
x ∈ ∂Λ and i ∈ {1, ..., k} such that d(x)i <∞.

Proof. By the definition of a source, there exists i ∈ {1, ..., k} such that vΛei = ∅. By [18, Lemma 5.15]
v∂Λ 6= ∅ so we can chose x ∈ v∂Λ. Then d(x)i = 0. �

We now introduce the boundary path groupoid GΛ which was first studied by Yeend in [40]. The
boundary path groupoid is a Hausdorff ample groupoid, with unit space ∂Λ, that generalises the boundary
path groupoid of an ordinary directed graph (or 1-graph). We shall use the notation

Λ ∗s Λ := {(λ, µ) ∈ Λ× Λ | s(λ) = s(µ)}.

The morphisms in GΛ are triples (λz, d(λ) − d(µ), µz) ∈ ∂Λ × Z
k × ∂Λ, where (λ, µ) ∈ Λ ∗s Λ

and z ∈ s(λ)∂Λ. The unit space of GΛ is the set of morphisms {(x, 0, x) | x ∈ ∂E} and we identify

(x, 0, x) ∈ G
(0)
Λ with x ∈ ∂Λ. The domain, codomain, and inversion, and composition maps are given by

the following formulae.

d(x,m, y) = y, c(x,m, y) = x, (x,m, y)−1 = (y,−m,x), (x,m, y)(y, l, z) = (x,m+ l, z).

To equip GΛ with a suitable topology, we define the following open sets for any pair (λ, µ) ∈ Λ ∗s Λ and
finite non-exhaustive subset F ⊆ s(λ)Λ,

Z(λ ∗s µ) := {(λz, d(λ)− d(µ), µz) | z ∈ s(λ)∂Λ},

Z(λ ∗s µ \ F ) := Z(λ ∗s µ) \
⋃

φ∈F

Z(λφ ∗s µφ).

The collection of sets Z(λ ∗s µ \F ) forms a basis of compact open bisections for a Hausdorff topology on
GΛ, making it an ample groupoid. The continuous functor ϕ : GΛ → Z

k sending (x,m, y) 7→ m makes
GΛ a Z

k-graded groupoid (and hence its Steinberg algebra is Zk-graded).

We refer to [13, Definition 3.1, Theorem 3.7] for a fully algebraic definition of the Kumjian-Pask
algebra KPR(Λ) of a finitely aligned higher-rank graph Λ, with coefficients in a unital commutative ring
R. For our purposes it suffices to say that KPR(Λ) is a Z

k-graded R-algebra that is graded isomorphic
to AR(GΛ). We refer to [13, Theorem 5.4] for the details on that isomorphism.

Proposition 4.9. Let Λ be a finitely aligned k-graph.

(1) If GΛ is strongly Z
k-graded, then Λ has no sources.

(2) If GΛ is strongly Z
k-graded, then Λ is row finite.

Proof. For (1), we prove the contrapositive. Suppose v ∈ Λ is a source. Then we apply Lemma 4.8 to
get x ∈ ∂Λ such that d(x)i <∞ for some i ∈ {1, . . . , k}. Fix m > d(x)i. In the groupoid GΛ we have

d
−1(x) ∩ (GΛ)m = ∅

and hence GΛ is not strongly graded.

For (2) first apply part (1) and assume Λ has no sources. By way of contradiction, assume Λ is not row-
finite. Let x be as in Lemma 4.7. Then in the groupoid d

−1(x)∩ (GΛ)i = ∅ which is a contradiction. �
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To characterise strong grading on Kumjian-Pask algebras, we define a condition that generalises
Condition (Y) from Definition 4.1.

Definition 4.10. Let Λ be a k-graph. We say that Λ satisfies Condition (Y) if for every m ∈ N
k and

every infinite path x ∈ Λ∞, there exists some n ∈ N
k and some path β ∈ Λ such that s(β) = x(n) and

d(β) − n = m.

Example 4.11. [30, Examples 2.2] Consider the 2-graph Λ with 1-skeleton

u•f
'' e )) v• hff

g
ii

where blue edges (e and g) have degree e1 = (1, 0) and red edges (f and h) have degree e2 = (0, 1). The
only infinite path x with r(x) = u is the following.

�� �� �� ��
u•

f

��

v•

h

��

g
oo

u•

f

��

e
oo

v•

h

��

g
oo oo

u•

f

��

v•

h

��

g
oo

u•

f

��

e
oo

v•

h

��

g
oo oo

u• v•g
oo

u•e
oo

v•g
oo oo

The only infinite path y with r(y) = v is just y = x(e1,∞) = gx, which can be visualised by removing the
first column in the diagram above. One can see that Λ is row-finite without sources, and that it satisfies
Condition (Y). For example, if m ∈ N

k and m1 is even, then s(x(0,m)) = x(0) = u and d(x(0,m)) = m.
If m1 is odd, then s(x(e1,m + 2e1)) = s(x(e1)) = v, and d(x(e1,m + 2e1)) − e1 = m. A similar check
works for the other infinite path y.

There are already hints that the boundary path groupoid GΛ, whose unit space is ∂Λ = {x, y}, is
strongly graded. For example, if m = (−1, 1), to prove that (x, 0, x) ∈ (GΛ)m(GΛ)−m, we can write

(x, 0, x) = (fx, (−1, 1), gx)(gx, (1,−1), fx).

This idea is generalised and made precise in the following theorem.

Theorem 4.12. Let Λ be a k-graph, and R a unital commutative ring. The Kumjian-Pask algebra
KPR(Λ) is strongly Z

k-graded if and only if Λ is row-finite, has no sources, and satisfies Condition (Y).

Proof. We prove that GΛ is strongly graded if and only if Λ satisfies the hypotheses. Assume that GΛ is
strongly Z-graded. By Proposition 4.9, Λ is row-finite and has no sources, so ∂Λ = Λ∞. Now let m ∈ N

k,
and x ∈ Λ∞. Then we can factor x in GΛ as x = (x, 0, x) = (x,−m, y)(y,m, x) for some y ∈ Λ∞.
This implies that for some n ∈ N

k, we have x(n,∞) = y(n +m,∞). Letting β = y(0, n+m), we have
s(β) = x(n) and d(β) − n = m. Therefore Λ satisfies Condition (Y).

Now suppose that Λ is row-finite and has no sources (so ∂Λ = Λ∞), and satisfies Condition (Y). Let
x ∈ Λ∞. For arbitrary m ∈ Z

k, we aim to write

(x, 0, x) = (x,m, y)(y,−m,x),

where (x,m, y), (y,−m,x) ∈ GΛ. Ifm ≥ 0 then this is easy: let y = x(m,∞). Ifm ≤ 0 then Condition (Y)
implies there is a path β ∈ Λ with s(β) = x(n) and d(β) − n = −m, so we let y = βx(n,∞). There is
a third case, where some mi are positive and others are negative. Let d ∈ N

k, di := max
1≤j≤k

{mj}, which

ensures −m+ d ∈ N
k. Then x′ = x(d,∞) ∈ Λ∞, so we can apply the hypothesis to −m+ d and x′. This

provides some n ∈ N
k and β ∈ Λ with s(β) = x′(n) = x(d+ n) and d(β)− n = −m+ d. It follows that

(x, 0, x) =
(
x,m, βx(d + n,∞)

)(
βx(d+ n,∞),−m,x

)
.

Therefore, GΛ is strongly graded. �
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Remark 4.13. We can recover our Leavitt path algebra Theorem 4.2 as a special case of Theorem 4.12.
Strictly speaking, however, we have assumed that the higher-rank graphs in Section 4.2 are countable,
and have made no such restrictions on the graphs in Section 4.1.

4.3. The Steinberg algebra of a transformation groupoid. Here, we discuss the groupoid associated
to a partial action of a discrete group on a topological space. This groupoid was defined by Abadie in
[1], and it has been studied recently in the context of partial skew group rings [9, 22]. We show that the
Steinberg algebra of this groupoid is strongly Γ-graded if and only if the partial action is a global action.

Let Γ be a discrete group with identity ε, and X a topological space. A partial action of Γ on X , is
a pair θ = ({Xγ}γ∈Γ, {θγ}γ∈Γ), where:

(P1) Each Xγ is open in X , and each θγ : Xγ−1 → Xγ is a homeomorphism;

(P2) Xε = X and θγδ is an extension of θγθδ for every γ, δ ∈ Γ.

We say that the partial action is a global action if Xγ = X for every γ ∈ Γ; this corresponds with the
usual definition of a discrete group acting continuously on a space.

The transformation groupoid Γ ⋊θ X of the partial action θ is a Γ-graded groupoid which has X as
its unit space. We define the transformation groupoid as follows:

Γ⋊θ X := {(x, γ, y) | y ∈ Xγ−1 , x = θγ(y)},

d(x, γ, y) = y, c(x, γ, y) = x, (x, γ, y)(y, δ, z) = (x, γδ, z), (x, γ, y)−1 = (y, γ−1, x).

The unit space is {(x, ε, x) | x ∈ X}; we identify it with X and give it the same topology as X . If
X is locally compact, Hausdorff, and totally disconnected, the transformation groupoid is ample. On
Γ ⋊θ X we take the topology inherited from X × Γ × X . There is some redundancy in our notation,
since in the expression (x, γ, y) the element x is uniquely determined by γ and y, but this notation makes
composition and inversion easy to visualise and causes no inconsistencies (see [1, p. 1042] for further
details). There is a natural Γ-grading on Γ ⋊θ X specified by the continuous functor Γ ⋊θ X → Γ,
(x, γ, y) 7→ γ. Transformation groupoids have the property that the ε-component is equal to the unit
space.

Proposition 4.14. Let θ be a partial group action of a discrete group Γ on a totally disconnected, locally
compact Hausdorff space. Then the following are equivalent:

(1) θ is a global action;

(2) Γ⋊θ X is strongly graded;

(3) AR(Γ⋊θ X) is strongly graded.

Proof. (1) ⇒ (2) If θ is a global action, then for every γ ∈ Γ and x ∈ X we have (θγ(x), γ, x) ∈ Γ⋊θ X ,
so x ∈ d((Γ⋊θ X)γ). By Lemma 3.1 (3), Γ⋊θ X is strongly graded.

(2) ⇒ (1) Suppose Γ ⋊θ X is strongly graded. By Lemma 3.1 (3), for all γ ∈ Γ and x ∈ X we have
x ∈ d((Γ⋊θ X)γ). This implies x ∈ Xγ−1 for all x ∈ X and γ ∈ Γ. Therefore θ is a global action.

(2) ⇔ (3) This is Theorem 3.11. �
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