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Abstract
Westudy the group of type-preserving automorphisms of a right-angled building, in particular
when the building is locally finite. Our aim is to characterize the proper open subgroups as
the finite index closed subgroups of the stabilizers of proper residues. One of the main tools
is the new notion of firm elements in a right-angled Coxeter group, which are those elements
for which the final letter in each reduced representation is the same. We also introduce the
related notions of firmness for arbitrary elements of such a Coxeter group and n-flexibility of
chambers in a right-angled building. These notions and their properties are used to determine
the set of chambers fixed by the fixator of a ball. Our main result is obtained by combining
these facts with ideas by Pierre-Emmanuel Caprace and Timothée Marquis in the context of
Kac–Moody groups over finite fields, where we had to replace the notion of root groups by
a new notion of root wing groups.

Keywords Right-angled buildings · Right-angled Coxeter groups · Totally disconnected
locally compact groups · open subgroups

Mathematics Subject Classification 51E24 · 22D05 · 20F65

1 Introduction

A Coxeter group is right-angled if the entries of its Coxeter matrix are all equal to 1, 2 or ∞
(see Definition 2.1 below for more details). A right-angled building is a building for which
the underlying Coxeter group is right-angled. The most prominent examples of right-angled
buildings are trees. To some extent, the combinatorics of right-angled Coxeter groups and
right-angled buildings behave like the combinatorics of trees, but in a more complicated and
therefore in many aspects more interesting fashion.
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Right-angled buildings have received attention fromvery different perspectives.One of the
earlier motivations for their studywas the connectionwith lattices, startingwith the important
contributions of Burger andMozes [2] on lattices in products of trees; see, for instance [8,12,
16,17,19].On the other hand, the automorphismgroups of locally finite right-angled buildings
are totally disconnected locally compact (t.d.l.c.) groups, and their full automorphism group
was shown to be an abstractly simple group by Pierre-Emmanuel Caprace [5], making these
groups valuable in the study of t.d.l.c. groups. Caprace’s work also highlighted important
combinatorial aspects of right-angled buildings; in particular, his study of parallel residues
and his notion of wings (see Definition 3.10 below) are fundamental tools. From this point
of view, we have, in a joint work with Koen Struyve, introduced and investigated universal
groups for right-angled buildings; see [10]. Another interesting aspect is their connection
with spaces of non-positive curvature, beginning with the work of Bourdon [4] and including
the profound result of Mike Davis that buildings (with the appropriate metric realization) are
always CAT(0) [9]. More recently, Andreas Baudisch, Amador Martin-Pizarro and Martin
Ziegler have studied right-angled buildings from a model-theoretic point of view; see [3].

In this paper, we continue the study of right-angled buildings in a combinatorial and
topological fashion. In particular,we introduce somenew tools in right-angledCoxeter groups
and we study the (full) automorphism group of right-angled buildings. Our main goal is to
characterize the proper open subgroups of the automorphism group of a locally finite semi-
regular right-angled building as the closed finite index subgroups of the stabilizer of a proper
residue. We prove our result in Theorem 4.28 below.

Main Theorem Let � be a thick irreducible semi-regular locally finite right-angled building
of rank at least 2. Then any proper open subgroup of Aut(�) is contained with finite index
in the stabilizer in Aut(�) of a proper residue.

The first tool we introduce is the notion of firm elements in a right-angled Coxeter group:
these are the elements with the property that every possible reduced representation of that
element ends with the same letter (see Definition 2.10 below), i.e., the last letter cannot be
moved away by elementary operations. If an element of the Coxeter group is not firm, then
we define its firmness as the maximal length of a firm prefix.

This notion will be used to define the concepts of firm chambers in a right-angled building
and of n-flexibility of chambers with respect to another chamber; this then leads to the notion
of the n-flex of a given chamber. See Definition 3.13 below.

A second new tool is the concept of a root wing group, which we define in Definition 4.6.
Strictly speaking, this is not a new definition since the root wing groups are defined as wing
fixators, and as such they already appear in the work of Caprace [5]. However, we associate
such a group to each root (i.e., a half-apartment) of the building, and we explore the fact
that they behave very much like root subgroups in groups of a more algebraic nature, such
as automorphism groups of Moufang spherical buildings or Kac–Moody groups.

Outline of the paper In Sect. 2, we provide the necessary tools for right-angled Coxeter
groups. In Sect. 2.1, we recall the notion of a poset ≺w that we can associate to any word
w in the generators, introduced in [10]. Section 2.2 introduces the concepts of firm elements
and the firmness of elements in a right-angled Coxeter group. Our main result in that section
is the fact that long elements cannot have a very low firmness; see Theorem 2.18.

Section 3 collects combinatorial facts about right-angled buildings. After recalling the
important notions of parallel residues and wings, due to Caprace [5], in Sect. 3.1, we proceed
in Sect. 3.2 to introduce the notion of chambers that are n-flexible with respect to another
chamber and the notion of the square closure of a set of chambers (which is based on results
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from [10]); seeDefinitions 3.13 and 3.16. Ourmain result in Sect. 3 is Theorem 3.17, showing
that the square closure of a ball of radius n around a chamber c0 is precisely the set of chambers
that are n-flexible with respect to c0.

In Sect. 4, we study the automorphism group of a semi-regular right-angled building. We
begin with a short Sect. 4.1 that uses the results of the previous sections to show that the set
of chambers fixed by a ball fixator is bounded; see Theorem 4.4. In Sect. 4.2, we associate a
root wing groupUα to each root (Definition 4.6), we show thatUα acts transitively on the set
of apartments through α (Proposition 4.7) and we adopt some facts from [6] to the setting of
root wing groups.

We then continue towards our characterization of the open subgroups of the full auto-
morphism group of a semi-regular locally finite right-angled building. Our final result is
Theorem 4.28 showing that every proper open subgroup is a finite index subgroup of the
stabilizer of a proper residue. We follow, to a very large extent, the strategy taken by
Pierre-Emmanuel Caprace and Timothée Marquis [6] in their study of open subgroups of
Kac–Moody groups over finite fields. In particular, we show that an open subgroup of Aut(�)

contains sufficiently many root wing groups, and much of the subtleties of the proof go into
determining precisely the types of the root groups contained in the open subgroup; this will,
in turn, pin down the residue, the stabilizer of which contains the given open subgroup as a
finite index subgroup.

In the final Sect. 5, we mention two applications of our main theorem. The first is a rather
immediate corollary, namely the fact that the automorphism group of a semi-regular locally
finite right-angled building is aNoetherian group; see Proposition 5.3. The second application
shows that every open subgroup of the automorphismgroup is the reduced envelope of a cyclic
subgroup; see Proposition 5.6.

2 Right-angled Coxeter groups

We begin by recalling some basic definitions and facts about Coxeter groups.

Definition 2.1 (i) A Coxeter group is a group W with generating set S = {s1, . . . , sn} and
with presentation

W = 〈s ∈ S | (st)mst = 1〉
wheremss = 1 for all s ∈ S andmst = mts ≥ 2 for all i �= j . It is allowed thatmst = ∞,
in which case the relation involving st is omitted. The pair (W , S) is called a Coxeter
system of rank n. The matrix M = (msi s j ) is called the Coxeter matrix of (W , S). The
Coxeter matrix is often conveniently encoded by its Coxeter diagram, which is a labeled
graph with vertex set S where two vertices are joined by an edge labeled mst if and only
if mst ≥ 3.

(ii) A Coxeter system (W , S) is called right-angled if all entries of the Coxeter matrix are
1, 2 or ∞. In this case, we call the Coxeter diagram � of W a right-angled Coxeter
diagram; all its edges have label ∞.

Definition 2.2 Let (W , S) be a Coxeter system and let J ⊆ S.

(i) We define WJ := 〈s | s ∈ J 〉 ≤ W and we call this a standard parabolic subgroup
of W . It is itself a Coxeter group, with Coxeter system (WJ , J ). Any conjugate of a
standard parabolic subgroup WJ is called a parabolic subgroup of W .
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(ii) The subset J ⊆ S is called a spherical subset ifWJ is finite.When (W, S) is right-angled,
J is spherical if and only if |st | ≤ 2 for all s, t ∈ J .

(iii) The subset J ⊆ S is called essential if each irreducible component of J is non-spherical.
In general, the union J0 of all irreducible non-spherical components of J is called the
essential component of J .

If P is a parabolic subgroup of W conjugate to some WJ , then the essential component
P0 of P is the corresponding conjugate of WJ0 , where J0 is the essential component of
J . Observe that P0 has finite index in P .

(iv) Let E ⊆ W . We define the parabolic closure of E , denoted by Pc(E), as the smallest
parabolic subgroup of W containing E .

Lemma 2.3 ([6, Lemma 2.4]) Let H1 ≤ H2 be subgroups of W. If H1 has finite index in H2,
then Pc(H1) has finite index in Pc(H2).

2.1 A poset of reduced words

Let � = (W , S) be a right-angled Coxeter system and let MS be the free monoid over S,
the elements of which we refer to as words. Notice that there is an obvious map MS → W
denoted by w �→ w; if w ∈ MS is a word, then its image w under this map is called the
element represented by w, and the wordw is called a representation of w. Forw1, w2 ∈ MS ,
we write w1 ∼ w2 when w1 = w2. By some slight abuse of notation, we also say that w2 is
a representation of w1 (rather than a representation of w1).

Definition 2.4 A �-elementary operation on a word w ∈ MS is an operation of one of the
following two types:

(1) Delete a subword of the form ss, with s ∈ S.
(2) Replace a subword st by ts if mst = 2.

A wordw ∈ MS is called reduced (with respect to�) if it cannot be shortened by a sequence
of �-elementary operations.

Clearly, applying elementary operations on a word w does not alter its value in W . Con-
versely, if w1 ∼ w2 for two words w1, w2 ∈ MS , then w1 can be transformed into w2 by a
sequence of �-elementary operations. The number of letters in a reduced representation of
w ∈ W is called the length of w and is denoted by l(w). Tits proved in [18] (for arbitrary
Coxeter systems) that two reduced words represent the same element ofW if and only if one
can be obtained from the other by a sequence of elementary operations of type (2) (or rather
its generalization to all values for mst ).

Definition 2.5 Let w = s1s2 · · · s� ∈ MS . If σ ∈ Sym(�), then we let σ.w be the word
obtained by permuting the letters in w according to the permutation σ , i.e.,

σ.w := sσ(1)sσ(2) · · · sσ(�).

In particular, if w′ is obtained from w by applying an elementary operation of type (2)
replacing si si+1 by si+1si , then σ.w = w′ for σ = (i i + 1) ∈ Sym(�). In this case, si and
si+1 commute and we call σ = (i i + 1) a w-elementary transposition.

In this way, we can associate an elementary transposition to each �-elementary operation
of type (2). It follows that two reduced words w and w′ represent the same element of W if
and only if
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w′ = (σk · · · σ1).w, where each σi is a

(σi−1 · · · σ1).w-elementary transposition,

i.e., if w′ is obtained from w by a sequence of elementary transpositions.

Definition 2.6 If w ∈ MS is a reduced word of length �, then we define

Rep(w) := {σ ∈ Sym(�) | σ = σk · · · σ1, where each σi is a

(σi−1 · · · σ1).w-elementary transposition}.
In other words, the set Rep(w) consists of the permutations of � letters which give rise to
reduced representations of w.

We now define a partial order ≺w on the letters of a reduced word w in MS with respect
to �.

Definition 2.7 ([10, Definition 2.6]) Let w = s1 · · · s� be a reduced word of length � in MS

and let Iw = {1, . . . , �}. We define a partial order “≺w” on Iw as follows:

i �w j ⇐⇒ σ(i) < σ( j) for all σ ∈ Rep(w).

Note that i �w j implies that i < j . As a mnemonic, one can regard i �w j as “i → j”,
i.e., the generator s j comes always after the generator si regardless of the reduced represen-
tation of w.

We point out a couple of basic but enlightening consequences of the definition of this
partial order.

Observation 2.8 Let w = s1 · · · si · · · s j · · · s� be a reduced word in MS with respect to a
right-angled Coxeter diagram �.

(i) If |si s j | = ∞, then i �w j .

The converse is not true. Indeed, suppose there is i < k < j such that |si sk | = ∞ and
|sks j | = ∞. Then i �w j , independently of whether |si s j | = 2 or ∞.

(ii) If i �w j , then by (i), it follows that |si s j | = 2 and, moreover, for each k ∈ {i +
1, . . . , j − 1}, either |si sk | = 2 or |sks j | = 2 (or both).

(iii) On the other hand, if s j and s j+1 are consecutive letters in w, then |s j s j+1| = ∞ if and
only if j �w j + 1.

Lemma 2.9 ([10, Lemma 2.8]) Letw = w1 ·si · · · s j ·w2 ∈ MS be a reduced word. If i �w j ,
then there exist two reduced representations of w of the form

w1 · · · si s j · · · w2 and w1 · · · s j si · · · w2,

i.e., the positions of si and s j can be exchanged using only elementary operations on the
generators {si , si+1, . . . , s j−1, s j }, without changing the prefix w1 and the suffix w2.

2.2 Firm elements of right-angled Coxeter groups

In this sectionwedefinefirmelements in a right-angledCoxeter groupW andwe introduce the
concept of firmness tomeasure “howfirm” an arbitrary elements ofW is. This concept will be
used over and over throughout the paper. See, in particular, Definition 3.13, Theorems 3.17,
4.4 and Proposition 4.7. Our main result in this section is Theorem 2.18, showing that the
firmness of elements cannot drop below a certain value once they become sufficiently long.
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Definition 2.10 Let w ∈ W be represented by some reduced word w = s1 · · · s� ∈ MS .

(i) We say that w is firm if i �w � for all i ∈ {1, . . . , � − 1}. In other words, w is firm
if its final letter s� is in the final position in each possible reduced representation of w.
Equivalently, w is firm if and only if there is a unique r ∈ S such that l(wr) < l(w).

(ii) Let F#(w) be the largest k such that w can be represented by a reduced word in the
form

s1 · · · sk tk+1 · · · t�, with s1 · · · sk firm.

We call F#(w) the firmness of w. We will also use the notation F#(w) := F#(w).

Lemma 2.11 Let w = s1 · · · sk tk+1 · · · t� be a reduced word such that s1 · · · sk is firm and
F#(w) = k. Then

(i) |sk ti | = 2 for all i ∈ {k + 1, . . . , �}.
(ii) i �w k for all i ∈ {1, . . . , k − 1}.
(iii) Let r ∈ S. If l(wr) > l(w), then F#(wr) ≥ F#(w).

Proof (i) Assume the contrary and let j be minimal such that |sk t j | = ∞. Using elementary
operations to swap t j to the left in w as much as possible, we rewrite

w ∼ s1 · · · sk t ′1 · · · t ′pt j · · ·
as a word with s1 · · · sk t ′1 · · · t ′pt j firm, which is a contradiction to the maximality of k.

(ii) The fact that the prefix p = s1 · · · sk is firm tells us that i �p k for all i ∈ {1, . . . , k−1}.
By Lemma 2.9, this implies that also i �w k for all i ∈ {1, . . . , k − 1}.

(iii) Since l(wr) > l(w), firm prefixes of w are also firm prefixes of wr , hence the result.
��

The following definition will be a useful tool to identify which letters of the word appear
in a firm subword.

Definition 2.12 Let w = s1 · · · s� ∈ MS be a reduced word and consider the poset (Iw,≺w)

as in Definition 2.7. For any i ∈ {1, . . . , �}, we define
Iw(i) = {

j ∈ {1, . . . , �} | j �w i
}
.

In words, Iw(i) is the set of indices j such that s j comes at the left of si in any reduced
representation of the element w ∈ W .

Observation 2.13 Let w = s1 · · · s� ∈ MS be a reduced word.

(i) Let i ∈ {1, . . . , �} and write Iw(i) = { j1, . . . , jk} with jp < jp+1 for all p. Then we can
perform elementary operations on w so that

w ∼ s j1 · · · s jk si t1 · · · tq
and the word s j1 · · · s jk si is firm.

In particular, if Iw(i) = ∅, then we can rewrite w as siw1.
(ii) If i �w j , then Iw(i) � Iw( j).
(iii) It follows from (i) that F#(w) = maxi∈{1,...,�} |Iw(i)| + 1.

Remark 2.14 If the Coxeter system (W , S) is spherical, then F#(w) = 1 for all w ∈ W .
Indeed, as each pair of distinct generators commute, we always have Iw(i) = ∅.
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The next definition will allow us to deal with possibly infinite words.

Definition 2.15 (i) A (finite or infinite) sequence (r1, r2, . . . ) of letters in S will be called a
reduced increasing sequence if l(r1 · · · ri ) < l(r1 · · · ri ri+1) for all i ≥ 1.

(ii) Let w ∈ MS . A sequence (r1, r2, . . . ) of letters in S will be called a reduced increasing
w-sequence if l(wr1 · · · ri ) < l(wr1 · · · ri ri+1) for all i ≥ 0.

Lemma 2.16 Let α = (r1, r2, . . . ) be a reduced increasing sequence in S. Assume that each
subsequence of α of the form

(ra1 , ra2 , . . .) with |rai rai+1 | = ∞ for all i

has ≤ b elements. Then there is some positive integer f (b) depending only on b and on the
Coxeter system (W , S), such that α has ≤ f (b) elements.

Proof We will prove this result by induction on |S|; the case |S| = 1 is trivial.
Suppose now that |S| ≥ 2. If (W , S) is a spherical Coxeter group, then the result is obvious

since the length of any reduced increasing sequence is bounded by the length of the longest
element of W . We may thus assume that there is some s ∈ S that does not commute with
some other generator in S\{s}.

Since the sequence α is a reduced increasing sequence, we know that between any two
s’s, there must be some ti such that |sti | = ∞. Consider the subsequence of α given by

(s, t1, s, t2, . . . ).

This subsequence has ≤ b elements by assumption, and between any two generators s in the
original sequence α, we only use letters in S\{s}. The result now follows from the induction
hypothesis. ��
Lemma 2.17 Let w ∈ W. Then there is some k(w) ∈ N, depending only on w, such that for
every reduced increasing w-sequence (r1, r2, . . . ) in S, we have

F#(wr1 · · · rk(w)) > F#(w).

Proof Assume that there is a reduced increasingw-sequence α = (r1, r2, . . . ) in S such that

F#(wr1 · · · ri ) = F#(w) for all i . (∗)

Let w0 = w, wi = wi−1ri and denote Ii = Iwi (l(w) + i) for all i . Let b = F#(w). By
assumption (∗) and Observation 2.13(iii), we have |Ii | ≤ b − 1 for all i . Moreover, if i < j
with |ri r j | = ∞, then Ii � I j by Observations 2.8(i) and 2.13(ii); it follows that each
subsequence of α of the form

(ra1 , ra2 , . . .) with |rai rai+1 | = ∞ for all i

has at most b elements. By Lemma 2.16, this implies that the sequence α has at most f (b)
elements. We conclude that every reduced increasing w-sequence (r1, r2, . . . , rk(w)) in S
with k(w) := f (F#(w)) + 1 must have strictly increasing firmness. ��
Theorem 2.18 Let (W, S) be a right-angled Coxeter system. For all n ≥ 0, there is some
d(n) ∈ N depending only on n, such that F#(w) > n for all w ∈ W with l(w) > d(n).

Proof This follows by induction on n from Lemma 2.17 since there are only finitely many
elements in W of any given length. ��
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3 Right-angled buildings

We will start by recalling the procedure of “closing squares” in right-angled buildings
from [10] and we define the square closure of a set of chambers. Our goal in this section is
to describe the square closure of a ball in the building and to show that this is a bounded set,
i.e., it has finite diameter; see Theorem 3.17.

3.1 Preliminaries

We regard buildings as chamber systems, following the notation in [20]. We briefly recall
the basic notions and refer the reader to loc. cit. for more details. Recall the notation from
Sect. 2.1.

Definition 3.1 (i) Let � be an edge-colored graph with color set S. Let J ⊆ S. A J -residue
of � is a connected component of the subgraph of � obtained from � by discarding all
the edges whose color is not in J . A residue of � is a J -residue for some J ⊆ S. If s ∈ S
then an {s}-residue is called an s-panel.

(ii) A chamber system is an edge-colored graph � with color set S such that for each s ∈ S,
all s-panels of � are complete graphs with at least two vertices. We will refer to the
vertices of � as chambers and we will denote the vertex set by Ch(�). The cardinality
of S is called the rank of �.

(iii) Two chambers c1, c2 are called s-adjacent if they are connected by an edge with color

s, and we denote this by c1
s∼ c2.

(iv) A chamber system is thin if every panel contains exactly two chambers and is thick if
every panel contains at least three chambers.

(v) A gallery in a chamber system � is a sequence (v0, v1, . . . , vk) of chambers such that
vi−1 is adjacent to vi for all i . We then call this a gallery from v0 to vk ; the number
k is the length of the gallery. If for each i , vi−1 is si -adjacent to vi , then the word
w = s1s2 · · · sk ∈ MS is called the type of the gallery.

Definition 3.2 Let (W , S) be a Coxeter system. A building of type (W , S) is a pair (�, δ),
where � is a chamber system with index set S and δ is a map

δ : Ch(�) × Ch(�) → W

such that for each reduced word w ∈ MS and for each pair of chambers c1, c2 ∈ Ch(�), we
have

δ(c1, c2) = w ⇐⇒ there is a gallery in � of type w from c1 to c2.

We call the group W the Weyl group and the map δ the Weyl distance.

Remark 3.3 Notice that with our combinatorial setup, the basic objects are chambers, and
panels contain chambers. There exist various other realizations of buildings (that are never-
theless equivalent) in which the containment is the other way around. We refer, for instance,
to the introduction of [1] for a good overview.

Definition 3.4 Let � = (W , S) be a Coxeter system.

(i) We define a thin building �� of type (W , S) by taking Ch(��) = W as the set of

chambers, declaring x
s∼ y for s ∈ S if and only if x−1y = s, and defining a Weyl

distance δ(x, y) := for all x, y ∈ Ch(��).
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(ii) Let � be an arbitrary building of type (W , S). An apartment in � is a subbuilding of
� that is δ-isometric to �� .

(iii) Let �� be as in (i). A reflection of �� is a non-trivial element r ∈ W fixing an edge
(i.e., a panel) of �� ; such an element r is always an involution of W . The set of edges
fixed by r is called the wall of r .

To each reflection r , we can associate a partition of the chamber set into two parts, as
follows. Let {x, y}be a panel in thewall of r . Then each chamber of�� is either nearer to
x than to y or nearer to y than to x , so we get two parts {c ∈ W | dist(c, x) < dist(c, y)}
and its complement {c ∈ W | dist(c, y) < dist(c, x)}. These two parts are called the
roots associated to r and they are interchanged by r . (They are independent of the choice
of {x, y} in the wall of r . See [20, Proposition 3.11].) In particular, if α is a root, then
its complement is again a root and is denoted by −α.

(iv) Let � be an arbitrary building of type (W , S). A root of � is then defined to be a root
in one of its apartments. (Roots are also sometimes referred to as half-apartments.)

From now on, let (W , S) be a right-angled Coxeter system with Coxeter diagram � and
let � be a right-angled building of type (W , S).

Definition 3.5 (i) Let δ : � × � → W be the Weyl distance of the building �. The gallery
distance between the chambers c1 and c2 is defined as

dW (c1, c2) := l(δ(c1, c2)),

i.e., the length of a minimal gallery between the chambers c1 and c2.
(ii) For a fixed chamber c0 ∈ Ch(�) we define the spheres at a fixed gallery distance from

c0 as

S(c0, n) := {c ∈ Ch(�) | dW (c0, c) = n}
and the balls as

B(c0, n) := {c ∈ Ch(�) | dW (c0, c) ≤ n}.
Definition 3.6 (i) Let c be a chamber in � and R be a residue in �. The projection of c on

R is the unique chamber in R that is closest to c and it is denoted by projR(c).
(ii) If R1 and R2 are two residues, then the set of chambers

projR1
(R2) := {projR1

(c) | c ∈ Ch(R2)}
is again a residue and the rank of projR1

(R2) is bounded above by the ranks of both
R1 and R2; see [5, Section 2].

(iii) The residuesR1 andR2 are called parallel if projR1
(R2) = R1 and projR2

(R1) = R2.

In particular, if P1 and P2 are two parallel panels, then the chamber sets of P1 and P2 are
mutually in bijection under the respective projection maps (see again [5, Section 2]).

Definition 3.7 Let J ⊆ S. We define the set

J⊥ = {t ∈ S \ J | ts = st for all s ∈ J }.
If J = {s}, then we write the set J⊥ as s⊥.

Proposition 3.8 ([5, Proposition 2.8]) Let � be a right-angled building of type (W , S).
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(i) Any two parallel residues have the same type.
(ii) Let J ⊆ S. Given a residue R of type J , a residue R′ is parallel to R if and only if R′

is of type J , and R and R′ are both contained in a common residue of type J ∪ J⊥.

Proposition 3.9 ([5, Corollary 2.9]) Let� be a right-angled building. Parallelism of residues
of � is an equivalence relation.

Another very important notion in right-angled buildings is that of wings, introduced in [5,
Section 3]. For our purposes, it will be sufficient to consider wings with respect to panels.

Definition 3.10 Let c ∈ Ch(�) and s ∈ S. Denote the unique s-panel containing c by Ps,c.
Then the set of chambers

Xs(c) = {x ∈ Ch(�) | projPs,c
(x) = c}

is called the s-wing of c.

Notice that if P is any s-panel, then the set of s-wings of each of the different chambers
of P forms a partition of Ch(�) into equally many combinatorially convex subsets (see [5,
Proposition 3.2]).

3.2 Sets of chambers closed under squares

We start by presenting two results proved in [10, Lemmas 2.9 and 2.10] that can be used in
right-angled buildings to modify minimal galleries using the commutation relations of the
Coxeter group. We will refer to these results as the “Closing Squares Lemmas” (see also
Fig. 1 below).

Lemma 3.11 (Closing squares 1) Let c0 be a fixed chamber in �. Let c1, c2 ∈ S(c0, n) and
c3 ∈ S(c0, n + 1) such that

c1
t∼ c3 and c2

s∼ c3

for some s �= t . Then |st | = 2 in � and there exists c4 ∈ S(c0, n − 1) such that

c1
s∼ c4 and c2

t∼ c4.

Lemma 3.12 (Closing Squares 2) Let c0 be a fixed chamber in �. Let c1, c2 ∈ S(c0, n) and
c3 ∈ S(c0, n − 1) such that

c1
s∼ c2 and c2

t∼ c3

for some s �= t . Then |st | = 2 in � and there exists c4 ∈ S(c0, n − 1) such that

c1
t∼ c4 and c3

s∼ c4.

Definition 3.13 Let c0 be a fixed chamber of � and let n ∈ N.

(i) Let c ∈ Ch(�). Then we call c firm with respect to c0 if and only if δ(c0, c) ∈ W is firm
(as in Definition 2.10(i)).
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(a) (b)

Fig. 1 Closing squares lemmas

(a) (b)

Fig. 2 Partition of S(c0, n)

(ii) We will create a partition of the sphere S(c0, n) by defining

A1(n) = {c ∈ S(c0, n) | c is firm},
A2(n) = {c ∈ S(c0, n) | c is not firm},

as in Fig. 2. Notice that this is equivalent to the definition given in [10, Definition 4.3].
(iii) Let c ∈ S(c0, k) for some k > n. We say that c is n-flexible with respect to c0 if for each

minimal gallery γ = (c0, c1, . . . , cn+1, . . . , ck = c) from c0 to c, none of the chambers
cn+1, . . . , ck is firm. By convention, all chambers of B(c0, n) are also n-flexible with
respect to c0.
Observe that a chamber c is n-flexible with respect to c0 if and only if F#(δ(c0, c)) ≤ n.
In particular, if c is n-flexible, then so is any chamber on any minimal gallery between
c0 and c.

(iv) We define the n-flex of c0, denoted by Flex(c0, n), to be the set of all chambers of �

that are n-flexible with respect to c0.
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We also record the following result, which we rephrased in terms of firm chambers; its
Corollary 3.15 will be used several times in Sect. 4.

Lemma 3.14 ([10, Lemma 2.15]) Let c0 be a fixed chamber of � and let s ∈ S. Let d ∈
S(c0, n) and e ∈ B(c0, n + 1) \ Ch(Ps,d). If c := projPs,d

(e) ∈ S(c0, n + 1), then c is not
firm with respect to c0.

Corollary 3.15 Let c0 ∈ Ch(�) and c ∈ S(c0, n + 1) such that c is firm with respect to
c0. Let d be the unique chamber of S(c0, n) adjacent to c and let s = δ(d, c) ∈ S. Then
B(c0, n) ⊂ Xs(d).

Proof Let e ∈ B(c0, n). If e = d , then of course e ∈ Xs(d), so assume e �= d; then
e ∈ B(c0, n + 1)\Ch(Ps,d). Notice that all chambers of Ps,d\{d} have the same Weyl
distance from c0 as c and hence are firm. By Lemma 3.14, this implies that the projection of
e on Ps,d must be equal to d , so by definition of the s-wing Xs(d), we get e ∈ Xs(d). ��

We now come to the concept of the square closure of a set of chambers of �.

Definition 3.16 (i) We say that a subset T ⊆ W is closed under squares if the following
holds:

If wsi and ws j are contained in T for some w ∈ T with |si s j | = 2, si �= s j
and l(wsi ) = l(ws j ) = l(w)+1, then alsowsi s j = ws j si is an element of T .

(ii) Let c0 be a fixed chamber of �. A set of chambers C ⊆ Ch(�) is closed under squares
with respect to c0 if for each n ∈ N, the following holds (see Fig. 1a):

If c1, c2 ∈ C ∩S(c0, n) and c4 ∈ C ∩S(c0, n−1) such that c4
si∼ c1 and c4

s j∼ c2
for some |si s j | = 2 with si �= s j , then the unique chamber c3 ∈ S(c0, n + 1)

such that c3
s j∼ c1 and c3

si∼ c2 is also in C .

In particular, ifC is closed under squareswith respect to c0, then the set ofWeyl distances
{δ(c0, c) | c ∈ C } ⊆ W is closed under squares.

(iii) Let c0 ∈ Ch(�) and let C ⊆ Ch(�). We define the square closure of C with respect
to c0 to be the smallest subset of Ch(�) containing C and closed under squares with
respect to c0.

Theorem 3.17 Let c0 ∈ Ch(�) and let n ∈ N. The square closure of B(c0, n) with respect to
c0 is Flex(c0, n). Moreover, the set Flex(c0, n) is bounded.

Proof We will first show that Flex(c0, n) is indeed closed under squares. Let c be a chamber
in Flex(c0, n) at Weyl distance w from c0 and let c1 and c2 be chambers in Flex(c0, n)

adjacent to c, at Weyl distance wsi and ws j from c0, respectively, such that |si s j | = 2 and
l(wsi ) = l(ws j ) = l(w) + 1. Let c3 be the unique chamber at Weyl distance wsi s j from c0
that is s j -adjacent to c1 and si -adjacent to c2.
Our aim is to show that also c3 is an element of Flex(c0, n). If l(wsi s j ) ≤ n, then this is
obvious, so we may assume that l(wsi s j ) > n.

Let γ = (c0 = v0, . . . , vn+1, . . . , vk = c3) be an arbitrary minimal gallery between c0
and c3, as in Fig. 3 (so k = l(w) + 2 > n). We have to show that none of the chambers
vn+1, . . . , vk is firm with respect to c0. This is clear for vk = c3.
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Fig. 3 Proof of Theorem 3.17

If k = n + 1, then there is nothing left to show, so assume k ≥ n + 2. If vk−1 ∈ {c1, c2},
then vk−1 is n-flexible by assumption, and since k − 1 > n it is not firm. (In fact, this shows
immediately that in this case, none of the chambers vn+1, . . . , vk−1 is firm). So assume
that vk−1 is distinct from c1 and c2; then vk−1 is sk-adjacent to c3 for some sk different
from si and s j . Then by closing squares (Lemma 3.11), we have |s j sk | = 2 and there is a

chamber d1 ∈ S(c0, l(w)) such that d1
s j∼ vk−1 and d1

sk∼ c1. Similarly, there is a chamber

d2 ∈ S(c0, l(w)) such that d2
si∼ vk−1 and d2

sk∼ c2. Hence vk−1 is not firm with respect to c0.
Continuing this argument inductively (see Fig. 3), we conclude that none of the chambers

vn+1, . . . , vk is firm with respect to c0. Hence c3 is n-flexible; we conclude that Flex(c0, n)

is closed under squares with respect to c0.
Conversely, let C be a set of chambers closed under squares that contains B(c0, n); we

have to prove that Flex(c0, n) ⊆ C . So let c ∈ Flex(c0, n) be arbitrary; we will show by
induction on k := dW (c0, c) that c ∈ C . This is obvious for k ≤ n, so assume k > n. Then

c is not firm, hence there exist c1, c2 ∈ S(c0, k − 1) such that c1
s1∼ c and c2

s2∼ c for some
s1 �= s2 ∈ S. By Lemma 3.11 we have |s1s2| = 2 and there is d ∈ S(c0, k − 2) such that

d
s2∼ c1 and d

s1∼ c2.
Since c is n-flexible and c1, c2 and d all lie on some minimal gallery between c0 and c, it

follows that also c1, c2 and d are n-flexible. By the induction hypothesis, all three elements
are contained in C . Since C is assumed to be closed under squares, however, we immediately
deduce that also c ∈ C .

We conclude that Flex(c0, n) is the square closure of B(c0, n) with respect to c0.
We finally show that Flex(c0, n) is a bounded set. Recall that a chamber c is contained in

Flex(c0, n) if and only if F#(δ(c0, c)) ≤ n. By Theorem 2.18, there is a constant d(n) such
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that F#(w) > n for all w ∈ W with l(w) > d(n). This shows that Flex(c0, n) ⊆ B(c0, d(n))

is indeed bounded. ��
Remark 3.18 In fact, the square closure of B(c0, n) with respect to c0 is precisely the convex
hull of B(c0, n). Indeed, the square closure is clearly contained in the convex hull. For the
reverse inclusion, the crucial fact is that for any two chambers c1, c2 in B(c0, n), there always
exists a minimal gallery from c1 to c2 completely contained in B(c0, n), and any two minimal
galleries can be transformed into each other by a sequence of closing square operations; see
[10, Lemma 2.11] and its proof.

4 The automorphism group of a right-angled building

In this section, we study the groupAut(�) of type-preserving automorphisms of a thick semi-
regular right-angled building �. We will first study the action of a ball fixator and introduce
root wing groups. Then, when the building is locally finite, we will show that any proper
open subgroup of Aut(�) is a finite index subgroup of the stabilizer of a proper residue; see
Theorem 4.28.

Definition 4.1 Let� be a right-angled building of type (W , S). Then� is called semi-regular
if for each s, all s-panels of � have the same cardinality qs of chambers. In this case, the
building is said to have prescribed thickness (qs)s∈S in its panels.

By [11, Proposition 1.2], there is a unique right-angled building of type (W , S) of pre-
scribed thickness (qs)s∈S for any choice of cardinal numbers qs ≥ 1.

Theorem 4.2 ([12, Theorem B], [5, Theorem 1.1]) Let � be a thick semi-regular building
of right-angled type (W , S). Assume that (W , S) is irreducible and non-spherical. Then the
group Aut(�) of type-preserving automorphisms of � is abstractly simple and acts strongly
transitively on �.

Recall that a group G acts strongly transitively on a building � if it acts transitively on the
pairs (A, c) of an apartment A and a chamber c contained in A. The strong transitivity has
first been shown by Kubena and Thomas [12] and has been reproved by Pierre-Emmanuel
Caprace in the same paper where he proved the simplicity [5]. In our proof of Proposition 4.7
below, we will adapt Caprace’s proof of the strong transitivity to a more specific setting.

The following extension result is very powerful and will be used in the proof of Theo-
rem 4.4 below.

Proposition 4.3 ([5, Proposition 4.2]) Let� be a semi-regular right-angled building. Let s ∈
S and P be an s-panel. Given any permutation θ ∈ Sym(Ch(P)), there is some g ∈ Aut(�)

stabilizing P satisfying the following two conditions:

(a) g|Ch(P) = θ ;
(b) g fixes all chambers of � whose projection on P is fixed by θ .

4.1 The action of the fixator of a ball in1

In this section we study the action of the fixator K in Aut(�) of a ball B(c0, n) of radius n
around a chamber c0. Our goal will be to prove that the fixed point set �K coincides with
the square closure of the ball B(c0, n) with respect to c0, which is Flex(c0, n), and which we
know is bounded by Theorem 3.17.
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Theorem 4.4 Let � be a thick semi-regular right-angled building. Let c0 be a fixed chamber
of � and let n ∈ N. Consider the pointwise stabilizer K = FixAut(�)(B(c0, n)) in Aut(�) of
the ball B(c0, n).

Then the fixed-point set �K is equal to the bounded set Flex(c0, n).

Proof Recall from Theorem 3.17 that Flex(c0, n) is precisely the square closure of B(c0, n)

with respect to c0. First, notice that the fixed point set of any automorphism fixing c0 is
square closed with respect to c0 because the chamber “closing the square” is unique [see
Definition 3.16(ii)]. It immediately follows that Flex(c0, n) ⊆ �K .

We will now show that if c is a chamber not in Flex(c0, n), then there exists a g ∈ K not
fixing c. Since c is not n-flexible, there exists a chamber d on some minimal gallery between
c0 and c with k := dW (c0, d) > n such that d is firm. Notice that any automorphism fixing
c0 and c fixes every chamber on any minimal gallery between c0 and c, so it suffices to show
that there exists a g ∈ K not fixing d .

Since d is firm, there is a unique chamber e ∈ S(c0, k−1) such that e
s∼ d for some s ∈ S.

By Corollary 3.15, B(c0, n) ⊆ Xs(e), where Xs(e) is the s-wing of � corresponding to e.
Now take any permutation θ of Ps,e fixing e and mapping d to some third chamber d ′′

different from d and e (which exists because � is thick). By Proposition 4.3, there is an
element g ∈ Aut(�) fixing Xs(e) and mapping d to d ′′. In particular, g belongs to K and
does not fix d , as required.

We conclude that �K = Flex(c0, n). The fact that this set is bounded was shown in
Theorem 3.17. ��

4.2 Root wing groups

In this section we define groups that resemble root groups, using the partition of the chambers
of a right-angled building by wings; we call these groups root wing groups.

We show that a root wing group acts transitively on the set of apartments of � containing
the given root. We also prove that the root wing groups corresponding to roots disjoint from
a ball B(c0, n) are contained in the fixator of that ball in the automorphism group.

Wefirst fix some notation for the rest of this section. Recall the notions fromDefinition 3.4.

Notation 4.5 (i) Fix a chamber c0 ∈ Ch(�) and an apartment A0 containing c0 (which can
be considered as the fundamental chamber and the fundamental apartment). Let
 denote
the set of roots of A0. For each α ∈ 
, we write −α for the root opposite α in A0.

(ii) We will write A0 for the set of all apartments containing c0. For any A ∈ A0, we will
denote its set of roots by 
A.

(iii) For any k ∈ N, we write Kr := FixAut(�)(B(c0, r)).

Definition 4.6 (i) When α ∈ 
A is a root in an apartment A, its wall ∂α consists of the
panels of � having chambers in both α and −α. Since the building is right-angled, these
panels all have the same type s ∈ S, which we refer to as the type of α and write as
type(α) = s. Notice that the s-wings of A are precisely the roots of A of type s.

(ii) Let α ∈ 
A of type s and let c ∈ α be such that Ps,c ∈ ∂α. Then we define the root wing
group Uα as

Uα := Us(c) := FixAut(�)(Xs(c)).

Observe thatUα does not depend of the choice of the chamber c as all panels in the wall
∂α are parallel [see Definition 3.6(iii)] and hence determine the same s-wings in �.
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The fact that these groups behave, to some extent, like root groups in Moufang spherical
buildings or Moufang twin buildings, is illustrated by the following fact.

Proposition 4.7 Let α ∈ 
A be a root. The root wing group Uα acts transitively on the set
of apartments of � containing α.

Proof We carefully adapt the proof of the strong transitivity of Aut(�) from [5, Proposi-
tion 6.1]. Let c be a chamber of α on the boundary and let A and A′ be two apartments of �

containing α. The strategy in loc. cit. (where A and A′ are arbitrary apartments containing c)
is to construct an infinite sequence of automorphisms g0, g1, g2, . . . such that

(a) each gn fixes the ball B(c, n − 1) pointwise;
(b) let An := gngn−1 · · · g0(A); then An ∩ A′ ⊇ B(c, n) ∩ A′.
We will show that the elements gi constructed in loc. cit. are all contained in Uα; the result
then follows because Uα is a closed subgroup of Aut(�).

To construct the element gn+1, we consider the set E of chambers in B(c, n+ 1)∩ A′ that
are not contained in An (as in loc. cit. ). The crucial observation now is that by Theorem 4.4,
the chambers of E are firm with respect to c. Hence, for each x ∈ E , there is a unique
chamber y ∈ S(c, n) that is s-adjacent to x (for some s ∈ S). The element gn+1 constructed
in loc. cit. is then contained in the group generated by the subgroups Us(y) for such pairs
(y, s) corresponding to the various elements of E . However, because the elements of E are
firm, the root α is contained in each root corresponding to a pair (y, s) in A′; [5, Lemma
3.4(b)] now implies that each such group Us(y) is contained in Uα . ��
Remark 4.8 ThegroupUα doesnot, in general, act sharply transitively on the set of apartments
containing α. This is clear already in the case of trees: an automorphism fixing a half-tree
and an apartment need not be trivial.

Corollary 4.9 Let α ∈ 
A be a root of type s and let c, c′ be two s-adjacent chambers of
A with c ∈ α and c′ ∈ −α. Then there exists an element in 〈Uα,U−α〉 stabilizing A and
interchanging c and c′.

Proof Let A′ be an apartment different from A containing α (which exists because� is thick)
and let β be the root opposite α in A′. By Proposition 4.7, there is some g ∈ Uα mapping
−α to β. Similarly, there is some h ∈ U−α mapping β to α. Let γ := h.α; then there exists
a third automorphism g′ ∈ Uα mapping γ to −α. The composition g′hg ∈ UαU−αUα is the
required automorphism. ��

Next we present a property similar to the FPRS (“Fixed Points of Root Subgroups”)
property introduced in [7] for groups with a twin root datum. It is the analogous statement
of [6, Lemma 3.8], but in the case of right-angled buildings, we can be more explicit.

Lemma 4.10 For every root α ∈ 
 with dist(c0, α) > r , the group U−α is contained in
Kr = FixAut(�)(B(c0, r)).

Proof Let α be a root at distance n > r from c0 and let s be the type of α. Let c be a
chamber of α at distance n from c0 and let c′ be the other chamber in Ps,c ∩ A0; notice that
c′ ∈ S(c0, n − 1). We will show that B(c0, r) ⊆ Xs(c′), which will then of course imply that
U−α = Us(c′) ⊆ Kr .

The chamber c is firmwith respect to c0 because if cwould be t-adjacent to some chamber
at distance n − 1 from c0 for some t �= s, then ∂α would contain panels of type s and of
type t , which is impossible. Corollary 3.15 now implies that B(c0, n − 1) ⊆ Xs(c′), so in
particular B(c0, r) ⊆ Xs(c′). ��
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Following the idea of [6, Lemmas 3.9 and 3.10], we present two variations on the previous
lemma that allow us to transfer the results to other apartments containing the chamber c0.

Lemma 4.11 Let g ∈ Aut(�) and let A ∈ A0 containing the chamber d = gc0. Let b ∈
StabAut(�)(c0) such that A = bA0, and let α = bα0 be a root of A with α0 ∈ 
.

If dist(d,−α) > r , then bUα0b
−1 ⊆ gKr g−1.

Proof Analogous to the proof of [6, Lemma 3.9]. ��

Definition 4.12 ([6, Section 2.4]) Let w ∈ W .

(i) A root α ∈ 
 is called w-essential if there is an n ∈ Z such that wnα � α.
(ii) A wall is called w-essential if it is the wall ∂α of some w-essential root α.

Lemma 4.13 Let A ∈ A0 and let b ∈ StabAut(�)(c0) such that A = bA0. Also, let α = bα0

(with α0 ∈ 
) be a w-essential root for some w ∈ StabAut(�)(A)/FixAut(�)(A). Let g ∈
StabAut(�)(A) be a representative of w.

Then there exists some n ∈ Z such that

Uα0 ⊆ b−1gnKr g
−nb and

U−α0 ⊆ b−1g−nKr g
nb.

Proof The proof can be copied ad verbum from [6, Lemma 3.10]. ��

4.3 Open subgroups of Aut(1)

We now focus on the description of open subgroups of the automorphism group of �. The
main result of this section will be that any proper open subgroup of the automorphism group
of a locally finite thick semi-regular right-angled building � is contained with finite index in
the setwise stabilizer in Aut(�) of a proper residue of � (see Theorem 4.28 below).

We will split the proof in the cases where the open subgroup is compact and non-compact.
The compact case is easy:

Proposition 4.14 Let H be an open subgroup of Aut(�). Then H is compact if and only if it
is a finite index subgroup of the stabilizer of a spherical residue of �.

Proof This follows immediately from the fact that the maximal compact open subgroups of
Aut(�) are precisely the stabilizers of a maximal spherical residue of �; see, for instance,
[10, Proposition 4.2]. ��

From now on, we assume that H is a non-compact open subgroup
of Aut(�).

Definition 4.15 We continue to use the conventions from Notation 4.5 and we will identify
the apartment A0 with W .

(i) Given a rootα ∈ 
, let rα denote the unique reflection ofW setwise stabilizing the panels
in ∂α and let Uα be the root wing group introduced in Definition 4.6. By Corollary 4.9,
the reflection rα ∈ W lifts to an automorphism nα ∈ 〈Uα,U−α〉 ≤ Aut(�) stabilizing
A0.
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(ii) For each c ∈ Ch(�) and each subset J ⊆ S, we write RJ ,c for the residue of � of
type J containing c. We use the shorter notationRJ := RJ ,c0 when c = c0. Moreover,
we write PJ := StabAut(�)(RJ ), and we call this a standard parabolic subgroup of
Aut(�). Any conjugate of PJ , i.e., any stabilizer of an arbitrary residue, is then called
a parabolic subgroup.

(iii) Let J ⊆ S be minimal such that there is a g ∈ Aut(�) such that H ∩ g−1PJ g has finite
index in H . In particular, J is essential [see Definition 2.2(iii)]. See also [6, Lemma 3.4].

For such a g, we set H1 = gHg−1∩PJ . Thus H1 stabilizesRJ and it is an open subgroup
of Aut(�) contained in gHg−1 with finite index; since H is non-compact, so is H1.
Hence we may assume without loss of generality that g = 1 and hence H1 = H ∩ PJ

has finite index in H .
(iv) Let A0 be the set of apartments of � containing c0. For A ∈ A0 we let

NA := StabH1(A) and WA := NA/FixH1(A),

whichwe identifywith a subgroup ofW . For h ∈ NA, let h denote its image inWA ≤ W .

The idea will be to prove that H1 contains a hyperbolic element h such that the chamber c0
achieves the minimal displacement of h. Moreover, we can find the element h in the stabilizer
in H1 of an apartment A1 containing c0. Thus we can identify it with an element h of W and
consider its parabolic closure [see Definition 2.2(iv)]. The key point will be to prove that the
type of Pc(h) is J , which will be achieved in Lemma 4.23.

We will also show that H1 acts transitively on the chambers of RJ ; this will allow us
to conclude that any open subgroup of Aut(�) containing H1 as a finite index subgroup is
contained in the stabilizer of RJ∪J ′ for some spherical subset J ′ of J⊥ (Proposition 4.25).

This strategy is analogous (and, of course, inspired by) [6, Section 3]. As the arguments
of loc. cit. are of a geometric nature, we will be able to adapt them to our setting. The root
groups associated with the Kac–Moody group in that paper can be replaced by the root wing
groups defined in Sect. 4.2. It should not come as a surprise that many of our proofs will
simply consist of appropriate references to arguments in [6].

Lemma 4.16 For all A ∈ A0, there exists a hyperbolic automorphism h ∈ NA such that

Pc(h) = 〈rα | α is an h-essential root of 
〉
and is of finite index in Pc(WA).

Proof Using the fact that the reflections rα lift to elements nα ∈ 〈Uα,U−α〉 [see
Definition 4.15(i)], the proof is the same as for [6, Lemma 3.5]. Notice that by [6,
Lemma 2.7], the type of the parabolic subgroup Pc(h) is always essential [in the sense of
Definition 2.2(iii)]. ��
Lemma 4.17 There exists an apartment A ∈ A0 such that the orbit NA.c0 is unbounded. In
particular, the parabolic closure in W of WA is non-spherical.

Proof The proofs of [6, Lemmas 3.6 and 3.7] continue to holdwithout a single change. Notice
that this depends crucially on the fact that H1 is non-compact. ��
Definition 4.18 (i) Let A1 ∈ A0 be an apartment such that the essential component of

Pc(WA1) is non-empty andmaximal with respect to this property [see Definition 2.2(iii)];
such an apartment exists by Lemma 4.17. Choose h1 ∈ NA1 as in Lemma 4.16. In
particular, h1 is a hyperbolic element of H1.
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(ii) Up to conjugating H1 by an element of StabAut(�)(RJ ), we can assume without loss
of generality that Pc(h1) is a standard parabolic subgroup that is non-spherical and has
essential type I (�= ∅).Moreover, the type I ismaximal in the following sense: if A ∈ A0

is such that Pc(WA) contains a parabolic subgroup of essential type IA with I ⊆ IA,
then I = IA.

Definition 4.19 Recall that 
 is the set of roots of the apartment A0. For each T ⊆ S, let


T := {α ∈ 
 | RT contains at least one panel of ∂α}
and

L+
T := 〈Uα | α ∈ 
T 〉,

where Uα is the root wing group introduced in Definition 4.6.

Our next goal is to prove that H1 contains L
+
J , where J is as in Definition 4.15(iii); as we

will see in Lemma 4.21 below, this fact is equivalent to H1 being transitive on the chambers
of RJ .

We will need the results in Sect. 4.2 regarding fixators of balls and root wing groups.

Notation 4.20 Since H1 is open, we fix, for the rest of the section, some r ∈ N such that
FixAut(�)(B(c0, r)) ⊆ H1.

The next lemma corresponds to [6, Lemma 3.11], but some care is needed because of our
different definition of the groups Uα .

Lemma 4.21 Let T ⊆ S be essential and let A ∈ A0. Then the following are equivalent:

(a) H1 contains L
+
T ;

(b) H1 is transitive on RT ;
(c) NA is transitive on RT ∩ A;
(d) WA contains the standard parabolic subgroup WT of W.

Proof It is clear that (c) and (d) are equivalent.
We first show that (a) implies (c). It suffices to show that for each chamber c1 of A that

is s-adjacent to c0 for some s ∈ T , there is an element of NA mapping c0 to c1. Let α be
the root of A0 containing c0 but not the chamber c2 in A0 that is s-adjacent to c0; notice that
Uα and U−α are contained in L+

T . By Proposition 4.7, there is some g ∈ Uα fixing c0 and
mapping c1 to c2. Now the element nα ∈ 〈Uα,U−α〉 stabilizes A0 and interchanges c0 and
c2; it follows that the conjugate g−1nαg stabilizes A and interchanges c0 and c1, as required.

The proofs of the implications (d) ⇒ (b) ⇒ (a) are exactly as in [6, Lemma 3.11]. ��
The next statement is the analogue of [6, Lemma 3.12].

Lemma 4.22 Let A ∈ A0. There exists IA ⊆ S such that WA contains a parabolic subgroup
PIA of W of type IA as a finite index subgroup.

Proof The proof can be copied ad verbum from [6, Lemma 3.12]. ��
For each A ∈ A0, we fix such an IA ⊆ S; without loss of generality, we may assume

that IA is essential. We also consider the corresponding parabolic subgroup PIA contained
in WA. Observe that PIA1 has finite index in Pc(WA1) by Lemma 2.3, where A1 is as in
Definition 4.18(i). Therefore I = IA1 .

The next task in the process of showing that H1 contains L
+
J is to prove that J = I , which

is achieved by the following sequence of steps, each of which follows from the previous ones
and which are analogues of results in [6].
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Lemma 4.23 Let A ∈ A0 and let I and J beas inDefinition4.18(ii)and4.15(iii), respectively.
Then:

(i) H1 contains L
+
I ;

(ii) IA ⊂ I ;
(iii) WA contains WI as a subgroup of finite index;
(iv) I = J .

Proof (i) This follows from the fact that I = IA1 and PI = WI ; the conclusion follows
from Lemma 4.21.

(ii) See [6, Lemma 3.14].
(iii) See [6, Lemma 3.15].
(iv) See [6, Lemma 3.16]. ��
Corollary 4.24 The group H1 acts transitively on the chambers of RJ .

Proof This follows by combining Lemmas 4.21 and 4.23. ��
Weare approaching ourmain result; the following proposition already shows, in particular,

that H is contained in the stabilizer of a residue, and it will only require slightly more effort
to show that it is a finite index subgroup of such a stabilizer.

Proposition 4.25 Every subgroup of Aut(�) containing H1 as a subgroup of finite index is
contained in a stabilizer StabAut(�)(RJ∪J ′), where J ′ is a spherical subset of J⊥.

Proof The proof is exactly the same as in [6, Lemma 3.19]. ��
Notice that since � is irreducible, the index set J ∪ J ′ is only equal to S if already J = S.

Lemma 4.26 The group H1 is a finite index subgroup of StabAut(�)(RJ ).

Proof Let G := StabAut(�)(RJ ). We already know that H1 stabilizes RJ [see Defini-
tion 4.15(iii)] and acts transitively on the set of chambers ofRJ (see Corollary 4.24). Notice
that the stabilizer in G of a chamber of RJ is compact, hence H1 is a cocompact subgroup
of G. Since H1 is also open in G, we conclude that H1 is a finite index subgroup of G. ��
Lemma 4.27 For every spherical J ′ ⊆ J⊥, the index ofStabAut(�)(RJ ) inStabAut(�)(RJ∪J ′)
is finite.

Proof By [5, Lemma 2.2], we have Ch(RJ∪J ′) = Ch(RJ ) × Ch(RJ ′). As J ′ is spherical,
the chamber set Ch(RJ ′) is finite; the result follows. ��

We are now ready to prove our main theorem.

Theorem 4.28 Let � be a thick irreducible semi-regular locally finite right-angled building
of rank at least 2. Then any proper open subgroup of Aut(�) is contained with finite index
in the stabilizer in Aut(�) of a proper residue.

Proof Let H be a proper open subgroup of Aut(�). If H is compact, then the result follows
from Proposition 4.14.

So assume that H is not compact. By Definition 4.15(iii), we may assume that H contains
a finite index subgroup H1 which, by Corollary 4.24, acts transitively on the chambers of
some residue RJ . By Proposition 4.25, H is a subgroup of G := StabAut(�)(RJ∪J ′) for
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some spherical J ′ ⊆ J⊥. On the other hand, Lemmas 4.26 and 4.27 imply that H1 is a finite
index subgroup of G; since H1 is a finite index subgroup of H , it follows that also H has
finite index in G.

It only remains to show thatRJ∪J ′ is a proper residue. If not, then G = Aut(�), but since
G is simple (Theorem 4.2) and infinite, it has no proper finite index subgroups. Since H is a
proper open subgroup of G, the result follows. ��

5 Two applications of themain theorem

In this last section we present two consequences of Theorem 4.28, both of which were
suggested to us by Pierre-Emmanuel Caprace. The first states that the automorphism group of
a locally finite thick semi-regular right-angled building � is Noetherian (see Definition 5.1);
the second deals with reduced envelopes in Aut(�).

Definition 5.1 We call a topological group Noetherian if it satisfies the ascending chain
condition on open subgroups.

We will prove that the group Aut(�) is Noetherian by making use of the following
characterization.

Lemma 5.2 ([6, Lemma 3.22]) Let G be a locally compact group. Then G is Noetherian if
and only if every open subgroup of G is compactly generated.

Proposition 5.3 Let � be a locally finite thick semi-regular right-angled building. Then the
group Aut(�) is Noetherian.

Proof By Lemma 5.2, we have to show that every open subgroup of Aut(�) is compactly
generated. By Theorem 4.28, every open subgroup of Aut(�) is contained with finite index
in the stabilizer of a residue of �.

Stabilizers of residues are compactly generated, since they are generated by the sta-
bilizer of a chamber c0 (which is a compact open subgroup) together with a choice of
elements mapping c0 to each of its (finitely many) neighbors. Since a closed cocompact
subgroup of a compactly generated group is itself compactly generated (see [13]), we con-
clude that indeed every open subgroup ofAut(�) is compactly generated and henceAut(�) is
Noetherian. ��

Our next application deals with reduced envelopes, a notion introduced by Colin Reid
[15] in the context of arbitrary totally disconnected locally compact (t.d.l.c.) groups.

Definition 5.4 (i) Two subgroups H1 and H2 of a group G are called commensurable if
H1 ∩ H2 has finite index in both H1 and H2.

(ii) Let G be a totally disconnected locally compact (t.d.l.c.) group and let H ≤ G be a
subgroup. An envelope of H in G is an open subgroup of G containing H . An envelope
E of H is called reduced if for any open subgroup E2 with [H : H ∩ E2] < ∞ we have
[E : E ∩ E2] < ∞.

Not every subgroup of G has a reduced envelope, but clearly any two reduced envelopes of
a given group are commensurable.

Theorem 5.5 ([14, Theorem B]) Let G be a t.d.l.c. group and let H be a (not necessarily
closed) compactly generated subgroup of G. Then there exists a reduced envelope for H in
G.
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We will apply Reid’s result to show the following.

Proposition 5.6 Every open subgroupofAut(�) is commensurablewith the reduced envelope
of a cyclic subgroup.

Proof Let H be an open subgroup of Aut(�) and assume without loss of generality that
J ⊆ S and H1 = H ∩StabAut(�)(RJ ) are as in Definition 4.15(iii). Let h1 be the hyperbolic
element of H1 as in Definition 4.18, so that Pc(h1) = WJ .

By Theorem 5.5, the group 〈h1〉 has a reduced envelope E in Aut(�). In particular,
[E : E ∩ H1] is finite.

On the other hand, H2 := E ∩StabAut(�)(RJ ) is an open subgroup of G containing 〈h1〉,
hence Lemma 4.26 applied on H2 shows that H2 is a finite index subgroup of StabAut(�)(RJ )

for the same subset J ⊆ S, i.e.,

[StabAut(�)(RJ ) : StabAut(�)(RJ ) ∩ E] < ∞.

Since also H1 has finite index in StabAut(�)(RJ ) by Lemma 4.26 again, it follows that also
[H1 : H1 ∩ E] is finite. We conclude that H1, and hence also H , is commensurable with E ,
which is the reduced envelope of a cyclic subgroup. ��
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