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Applications of LST data to advanced research on UHI phenomena and its intensity 

are still relatively low in Thailand. The main objectives of this study are (1) to 

extract and predict LST data associated with urban and non-urban areas from 

Landsat imageries and (2) to quantify the intensity of UHI phenomena and its 

changes over BMV between 2006 and 2026.  The research methodology was 

conducted systematically to extract and predict the LST associated with the urban 

and non-urban areas in order to assess the intensity of UHI phenomena. The results 

show that WAI as UHI intensity is extremely critical between 2006 and 2022 and 

becomes critically severe during 2024 and 2026. The result also show that URI as a 

degree of UHI development has increased from 2010 to 2016, however, it will 

suddenly decrease in 2018 and continuously increase between 2020 and 2026.  In 

addition, TGCI analysis indicates that a decreasing temperature trend is dominant 

in the existing urban areas while an increasing temperature trend shows remarkably 

in urban expansion areas.  These findings confirm the impacts of urbanization and 

urban development state on UHI intensity.  In conclusion, the approaches and 

results of this study can be applied to master the urban planning properly, 

especially the mitigation of UHI phenomena in the future. 
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1. INTRODUCTION 

Urban Heat Island (UHI)  is a phenomenon 

whereby urban regions experience warmer 

temperatures than their rural, undeveloped 

surroundings (Roth, 2013). This situation is more 

pronounced in crowded mega cities and has become a 

key factor in deteriorating the urban ecological 

environment in these current days.  In principle, the 

level of the UHI intensity is influenced by several 

associated factors, for examples, local and synoptic 

weather, season, time of day, city size and its 

geographical location, urban morphology, and 

anthropogenic heat (Chang, 2016). To identify UHI 

strength, near-ground air temperature data at the 

preferred urban and rural reference sites are needed 

for the analysis.  These data are conventionally 

accumulated from a set-up network of ground 

measurements or from remote observation by 

satellite-based instruments.  Among which, the most 

effective ones are the advanced thermal infrared 

sensors onboard NASA’ s Landsat satellites that has 

routinely operated since 1972 (Landsat 1 to 8). Their 

continuous measurements can provide comprehensive 

spatio-temporal characteristics of land surface 

temperature (LST) over a specific location worldwide 

at monthly temporal scale (Mendelsohn et al., 2007). 

These LST data can be applied as input data for 

determining the near-ground air temperature data 

needed for the UHI mapping and intensity analysis 

(Tran et al., 2006; Sukthong, 2008; Dan et al., 2010; 

Dontree, 2010; Srivanit et al., 2012; Qiao et al., 2014; 

Fang, 2015; Kikon et al., 2016; Singh et al., 2017; 

Suwanprasit, 2017; Estoque et al., 2017) including for 

some other aspects like air quality assessment (Weng 

and Yang, 2006; Lim et al., 2009; Zheng et al., 

2017) or detection/ mapping of active forest fire 

hotspots (Potapov et al. , 2008; Chowdhury and 

Hassan, 2015; Ongsomwang and Ruthamnong, 2017). 

In Thailand, UHI occurrences and their impacts 

are major concerns, especially on some metropolitan 

cities like Bangkok (the capital)  and Chiang Mai. 

Considering the prior works on these issues, these 

mainly rely on the ground-based measurement data 

whereas applications of satellite-based data for these 

issues are still rare and limited in scope in these 

investigations. Also, the intensification of the UHI 

problem for those cities in the near future has never 

been systematically quantified and reported so far. 
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This study aims to provide an overall 

comprehension of the development and intensity of 

the UHI phenomena with the prominent indices (e.g., 

Weighted Average Heat Island Intensity (WAI), 

Urban Heat Island Ratio Index (URI) and Brightness 

Temperature Grade Change Index (TGCI) over 

Bangkok metropolitan and its vicinity over 20 years, 

from 2006 to 2026.  The objectives of this study are 

(1)  to extract and predict LST data associated with 

urban and non-urban areas from Landsat imageries 

and (2) to quantify the intensity of UHI phenomena 

and its change. 
 

2. METHODOLOGY 

2.1 Study area 

The study area is Bangkok metropolitan and 

its vicinity (BMV)  which consists of Bangkok, 

Nakhon Pathom, Nonthaburi, Pathum Thani,    

Sumut Prakan, and Samut Sakhon provinces with 

total land area of 7,762 km2 (Figure 1). Basic 

statistics on land utilization and socio-economic  

data of BMV is summarized in Table 1. In 2015, 

Bangkok Metropolitan as the Capital of Thailand  

has the highest urban and built-up land, number of 

population, population density, and gross provincial 

product compared to other provinces. Additionally, 

Bangkok, Nonthaburi, and Samut Prakan are more 

urbanized than others and many environmental 

problems exist in these areas such as air, noise and 

water pollution and traffic congestion. 
 

 
 

Figure 1. Study area map 

 

Table 1. Basic statistics on land utilization and socio-economic data of Bangkok and its vicinity 

 

Administrative area Area1 Urban and built-

up land in 20152 

Population1  Population 

density1 

Gross provincial 

product2 (billion 

baht) 

(km2) (km2) (%) In 1995 In 2015 In 2015 In 1995 In 2015 

Bangkok metropolitan 1,568.74 1,054.30 67.21 6,347,250 8,643,230 5,510 1,583.68 4,437.41 

Nakhon Pathom 2,168.30 507.46 23.40 740,980 1,039,477 479 81.83 300.22 

Nonthaburi 622.3 278.64 44.78 708,853 1,487,317 2,390 60.24 287.69 

Pathum Thani 1,525.90 441.38 28.93 547,037 1,447,485 949 168.80 341.82 

Samut Prakan 1,004.50 408.37 40.65 931,318 2,016,023 2,007 199.56 685.39 

Samut Sakhon 872.3 195.80 22.45 400,058 945,654 1,084 119.38 344.55 

BMC 7,762.04 2,885.96 37.18 9,675,496 15,579,186 2,007 2,213.50 6,397.07 
1Office of the National Economic and Social Development Board (2016) 
2Land Development Department (2016) 
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2.2 Research methodology 

Research methodology was conducted to 

assess the UHI phenomena, which derives from three 

main components, (1) LST extraction and prediction, 

(2)  Urban and non-urban extraction and prediction 

and (3)  Intensity of UHI phenomena assessment 

(Figure 2).  

 

2.2.1 LST extraction and prediction 

The thermal infrared Band 6 of Landsat 5 and 

7, and Band 10 of Landsat 8 between 2006 and 2016 

were used to extract LST data using Single-Channel 

method.  Considering the result from a study of 

Wang et al.  (2016) , it is clearly shown that the 

Single-channel method provides a high precision 

which is able to develop an LST product from 

Landsat series data. In this study, Landsat imageries 

with cloud cover less than 10%  were first selected 

and downloaded from the USGS website.  Then, 

digital numbers (DN) from the thermal infrared band 

of Landsat was converted to LST data under the 

Model Builder module of ESRI ArcGIS software 

with the following three steps: 

1)  Conversion to top of atmosphere ( TOA) 

radiance 

The DN data of thermal band were converted 

to spectral radiance at top of atmosphere (TOA) 

using the radiance scaling factors provided in the 

metadata file (USGS, 2016) as: 

 

Lλ= MLQ
cal

+AL    (1) 

 

where, L is TOA spectral radiance (watts/m2 

srad μm) , ML is band specific multiplicative 

rescaling factor from the metadata, AL is band 

specific additive rescaling factor from the metadata 

and Qcal is quantized and calibrated standard product 

DNs. 

 

2) Conversion to at-satellite BT 

The obtained spectral radiance data at TOA 

were further converted to brightness temperature 

(BT)  based on uniform emissivity ()  assumption 

using Equation. 2 (USGS, 2016). 

 

BT= 
K2

ln(
K1
Lλ

+1)
     (2) 

 

where, BT is at-satellite BT in Kelvin (K) , L  is 

TOA spectral radiance (watts/m2 ster μm), K1 and K2 

is band specific thermal conversion from the 

metadata file (Table 2). 

3) Correction for spectral emissivity 

The BT values obtained above were 

referenced to a black body with  of 1.  Therefore, 

correction of land surface emissivity (ε)  was 

necessary according to the nature of land cover. 

Thus, the LST data with emissivity correction were 

estimated using Equation 3 as suggested by Artis and 

Carnahan (1982). 

 

LST=
BT

1+(λ∙BT/ρ)lnε
     (3) 

 

Here, λ is wavelength of emitted radiance, ρ is 

the formulated constant (1. 438x10-2 m K)  and ε is 

land surface emissivity that was estimated using 

NDVI Thresholds method as suggested by Sobrino 

et al. (2004) and Jeevalakshmi et al. (2017). 

After that, the extracted LST data between 

2002 and 2016 were further refined using simple 

linear analysis based on their relationships with in 

situ mean temperature of eight Thai Meteorological 

Department (TMD)  stations as suggested by Jensen 

(2007). The refined LST data were then further used 

to extrapolate LST data between 2018 and 2026 by 

Trend function of MS Excel spreadsheet and Image 

conversion function of ERDAS Imagine software.

 

Table 2. Thermal constant of K1, K2 value 

 

Thermal constant Landsat 8 Landsat 7 Landsat 5 

Band 10 Band 11 Band 4 Band 6 

K1 774.89 480.89 666.09 607.76 

K2 1,321.08 1,201.14 1,282.71 1,260.56 
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Figure 2. Workflow of research methodology 
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2. 2. 2 Urban and non-urban area extraction 

and prediction 

The refined LST data between 2006 and 2016 

were used to calculate NDBI and NDVI and their 

results were then applied to calculate built-up index 

( BUI)  using Equation 4 as suggested by Zha et al. 

(2003). 
 

Built-up index (BUI)=NDBI-NDVI   (4) 
 

where, NDBI is Normalized Difference Built-up 

Index [( SWIR-NIR) / ( SWIR+ NIR)] and NDVI is 

Normalized Difference Vegetation Index [(NIR-

RED) / (NIR+RED)].  

In this study, urban areas (city, town, 

commercial, village, institutional, transportation, 

communication and utilities, industrial land and bare 

land)  and non-urban areas (agricultural land, forest 

land and parks, and water bodies)  were classified 

using BUI differencing and binary recoding (Table 

3). He et al. (2010) stated that the BUI had improved 

universality and provided lower commission error 

for urban and non-urban areas extraction compared 

with original method (NDBI and NDVI). 

 

Table 3. Pixel value of representative land covers after differencing and binary recoding 

 

Indices Urban areas Non-urban areas 

Agriculture land Forest land and parks Water bodies 

NDVI 0 1 1 0 

NDBI 1 1 or 0 1 or 0 0 

NDBI-NDVI 1 0 or 1 0 or 1 0 

 

In addition, accuracy assessment of the 

derived urban and non-urban maps was also 

determined using reference data from very high 

spatial resolution imageries of Google Earth website. 

In this case, 426 sample points were applied based 

on binomial probability theory (Fitzpatrick-Lins, 

1980)  with the expected accuracy of 80%  and the 

acceptable error of sampling of 5%  and stratified 

random sampling. 

The derived urban and non-urban areas 

between 2006 and 2016 were further applied to 

predict urban and non-urban areas between 2018 and 

2026 using CA-Markov model.  In principle, the 

model uses Markov chain matrix to determine the 

quantity of change and cellular automata (CA)  to 

spatially allocate land use and land cover (LULC) 

changes (Paegelow and Olmedo, 2005). CA-Markov 

model has been frequently applied to predict LULC 

change and urban growth such as Kamusoko et al. 

(2009), Ongsomwang and Saravisutra ( 2011) , Sang 

et al. (2011), and Adhikari and Southworth (2012). 
 

2.2.3 Intensity of UHI phenomena assessment 

1) Urban brightness temperature grade classi-

fication 

Before temperature grade classification, the 

extracted and predicted LST data between 2006 and 

2026 were normalized (0 to 1)  to eliminate the 

impact of the imaging time and make the UHI effect 

more comparable (Fang, 2015) as: 

 

N=  
Ti-TMin

TMax-TMin
   (5) 

 

where, N is the result value after normalizing, Ti is 

the original BT value, Tmin is the minimum value of 

BT, and Tmax is the maximum value of BT. 

These normalized LST data in urban areas 

were further classified into 5 classes of the defined 

brightness temperature grade (BTG) based on Mean 

(μ)  and Standard deviation (σ)  values as suggested 

by Xu et al. (2011) as follows: 

(1) Low temperature area: LST<μ-σ 

(2) Secondary low temperature area: 

 μ-σ≤LST<μ-0.5σ 

(3) Medium temperature area: 

 μ-0.5σ≤LST<μ+0.5σ 

(4) Secondary high temperature area: 

μ+0.5σ≤LST≤μ+σ 
(5) High temperature area: LST>μ+σ 

 

2) UHI intensity assessment 

To quantify intensity of UHI phenomena over 

BMV between 2006 and 2026, three different UHI 

indices included WAI, URI and TGCI were selected 

for the analysis. 
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The WAI describes UHI intensity by sum of 

products between the different five grade 

temperatures in built-up areas with average 

temperature in outskirt areas and percent of 

temperature grade areas (Dan et al., 2010) as: 
 

WAI= ∑ (Tiavg-Toavg) × Ai
5
i=1   (6) 

 

where, Tiavg represents average temperature of 

different BTG from high to low respectively, Toavg is 

the average temperature in outskirt area, and Ai 

represents the percentage of different BTG from 

high to low.  

Meanwhile, the URI, which is used to depict 

development degree of heat island, was also extracted 

using Equation 7 as suggested by Xu and Chen 

(2004). 
 

URI=
1

100m
∑ wi∙pi

n
i=1    (7) 

 

where, m is the number of BTG, i represents BTG 

that in urban region is higher than in suburbs, n is the 

number of BTG that in urban region is higher than in 

suburbs, w is weighted value, it takes the value of 

BTG as result, and p is area percentage. 

In addition, the TGCI that reflects the overall 

change in either decreasing or increasing 

temperature was extracted based on transition matrix 

of BTG between two dates as detailed in Equation 8 

(Xu et al., 2011) as: 

 

TGCI= ∑ wi
n
i=1 ×GBi   (8) 

 

where, n is the number of BTG change types that has 

twenty-five types in theory, GB is grade change 

series of temperature brightness and w is the area 

percentage. If the grade change becomes decreasing, 

the GB will be negative.  In contrast, if the grade 

change becomes increasing, the GB will be positive. 

 

3. RESULTS AND DISCUSSION 

3.1 LST extraction between 2006 and 2016 

Table 4 presents simple linear regressions 

analysis for LST data refinement based on in situ 

mean temperature of TMD data.  These results 

indicate notably high positive correlation with the 

coefficient (R)  varying between 0. 8424 (in 2012) 

and 0.9357 (in 2006). 

 

Table 4. List of simple linear equations for refinement of LST data 

 

No Equation R R2 Landsat series and date 

1 Y = 0.9022X +3.1222 0.9357 0.8756 Landsat 5, 1 January 2006 

2 Y = 0.8454X +4.1313 0.9308 0.8663 Landsat 7, 9 January 2008 

3 Y = 0.9567X +1.5897 0.9230 0.8520 Landsat 7, 14 November 2010 

4 Y = 0.4383X +16.74 0.8424 0.7096 Landsat 7, 21 February 2012 

5 Y = 0.6643X +9.9818 0.9078 0.8241 Landsat 8, 17 November 2014 

6 Y = 0.6643X +11.017 0.9239 0.8535 Landsat 8, 12 April 2016 

X is mean temperature of TMD (independent variable) and Y is extracted LST (dependent variable). 

 

These discovered equations were then used to 

modify LST data as statistical results shown in Table 

5.  It is obvious that LST in 2016, acquired on 12th 

April 2016, shows the highest average LST, while 

LST in 2010, acquired on 14th November 2010, 

shows the lowest average LST.  As expected, the 

highest average LST occurring in April is related to 

the hottest month of summer season, yet mid-

October to mid-February is winter season (TMD, 

2015) .  This confirms the impact of season changes 

on temperature accurately. 

In addition, Figure 3 shows an example of the 

refined LST data distribution in 2014 (winter 

season). It is found that the highest temperature class 

(29.86 - 36.45C) mostly appears in central business 

district (CBD) of BMV, particularly Bangkok while 

the lowest temperature class (17.14 - 25.39C) 

distributes in agricultural areas of Nakhon Pathom 

and Samut Sakhon. 
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Table 5. Basic statistical data of modified LST data between 2006 and 2016 

 

Month Year LST (°C) 

Minimum Maximum Mean Standard deviation 

January 2006 21.00 39.48 27.56 2.12 

January 2008 21.01 40.74 26.51 1.70 

November 2010 19.01 31.81 23.24 1.57 

February 2012 21.02 38.23 27.16 2.09 

November 2014 17.14 36.46 27.08 1.83 

April 2016 21.23 42.33 32.35 2.06 

 

 
 

Figure 3. Distribution of refined LST data in 2014 

 

3.2 LST prediction between 2018 and 2026 

The basic statistical data of the predicted LST 

data between 2018 and 2026 from the extrapolation 

with Trend Analysis technique is presented in Table 

6.  From the results, the maximum predicted LST 

continuously increases from year to year, however 

the minimum predicted LST continuously decreases 

in these periods. According to the Trend function of 

MS Excel, it calculates the linear trend line (either 

negative or positive relationship) through a given set 

of LST array. Nevertheless, the mean LST prediction 

over BMV tends to increase in the future.  The 

predicted mean temperatures seem to rise slowly 

from around 27.81C (in 2018) to 29.96C (in 2026) 

which is not greatly different from those observed in 

the past (as seen in Table 5). 
 

Table 6. Basic statistical data of predicted LST data between 2018 and 2026 

 

Year LST (°C) 

Minimum Maximum Mean Standard deviation 

2018 17.63 40.13 27.81 1.79 

2020 15.38 42.95 28.35 1.94 

2022 12.90 45.77 28.88 2.11 

2024 10.41 48.58 29.42 2.30 

2026 7.92 51.40 29.96 2.50 
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3.3 Urban and non-urban area extraction 

between 2006 and 2016 

Area and percentage of urban and non-urban 

areas extraction between 2006 and 2016 using BUI 

differencing and binary recoding (see Table 3) are 

summarized in Table 7. The results show the 

continuous increase of urban area from 1,735.64 km2 

(22.68%) in 2006 to 2,895.61 km2 (37.83%) in 2016, 

with annually increasing rate of 116 km2. In terms of 

the credibility, these classified maps were achieved 

by considering the relatively high overall accuracy 

of 81.46% (2006), 85.21% (2008), 87.56% (2010), 

87.79% (2012), 88.97% (2014), and 91.08% (2016), 

respectively.  The discovered accuracy levels of this 

study are corresponding with a previous work of Zha 

et al.  (2003), who applied BUI for urban and non-

urban area extraction in Nan Jing, China with the 

overall accuracy of 92.60%. 

Figure 4 demonstrates urban and non-urban 

distribution in 2014 for the BMV where the highest 

proportion of the classified urban areas (about 52%) 

appear in Bangkok as expected, while Samut Sakhon 

contains the lowest urban percentage (about 33%). 

 

Table 7. Area and percentage of urban and non-urban area between 2006 and 2016 

 

Year Area in km2 Area in percent 

Urban Non-urban Total Urban Non-urban Total 

2006 1,735.64 5,918.65 7,654.29 22.68 77.32 100 

2008 2,038.75 5,615.54 7,654.29 26.64 73.36 100 

2010 2,209.45 5,444.84 7,654.29 28.87 71.13 100 

2012 2,379.52 5,274.77 7,654.29 31.09 68.91 100 

2014 2,638.47 5,015.82 7,654.29 34.47 65.53 100 

2016 2,895.61 4,758.68 7,654.29 37.83 62.17 100 

 

 
 

Figure 4. Distribution of urban and non-urban in BMV in 2014 

 

3.4 Urban and non-urban area prediction 

between 2018 and 2026 

Considering the results of urban and non-

urban area prediction between 2018 and 2026 in 

Table 8, they also esimate that the urban area will 

expand from 3,139. 58 km2 (41. 02%) in 2018 to 

3,828. 25 km2 (50. 01%) in 2026, with an annual 

increase of 116. 58 km2. In theory, the size of the 

urban portion can influence UHI intensity outcome 

(Chang, 2016), therefore overall intensity of the UHI 

phenomena over the BMV in the near future should 

be more pronounced in general. 
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Table 8. Area and percentage of urban and non-urban area between 2006 and 2026 

 

Year Area in km2 Area in percent 

Urban Non-urban Total Urban Non-urban Total 

2018 3,139.58 4,514.71 7,654.29 41.02 58.98 100 

2020 3,361.20 4,293.09 7,654.29 43.91 56.09 100 

2022 3,495.29 4,159.00 7,654.29 45.66 54.34 100 

2024 3,621.76 4,032.53 7,654.29 47.32 52.68 100 

2026 3,828.25 3,826.04 7,654.29 50.01 49.99 100 

 

3.5. Spatial analysis between LST and urban and 

non-urban areas 

Regarding the result from zonal operation 

technique in spatial analysis of LST data associated 

with urban/non-urban areas between 2006 and 2026, 

it appears that the mean temperature in urban areas 

are higher than those of non-urban areas by 1-2C 

(Table 9)  in all years.  Figure 5 illustrates two 

transect-temperature profiles of BMV along both N-

S and W-E directions showing variation of LST data 

in relation to the corresponding land cover type in 

2014. These temperature profiles are compared with 

forest land at Bang Krachao of Samut Prakan, used 

as a reference area. Similar to the previous finding, it 

is confirmed that average temperature in urban areas 

are noticeably higher than those of the non-urban 

ones, such as rivers, lakes, forests, parks, and 

agriculture. In addition, UHI phenomena along 

Transect No. 1 appears at distances of 2,500 to 8,750 

m, 12,500 to 20,000 m and 28,750 to 32,500 m by a 

notable increase of the urban temperature compared 

with the surrounding temperature (Figure 5 (c)). 

Likewise, UHI phenomena occur at distance of 0 to 

24,000 m and 28,000 to 31,300 m along Transect 

No. 2 (Figure 5 (d)). 

 

Table 9. LST data of urban and non-urban area between 2006 and 2026 

 

Year LST in urban area (°C) LST in non-urban area (°C) 

Minimum Maximum Mean Minimum Maximum Mean 

2006 21.00 39.48 29.66 21.01 39.41 26.94 

2008 21.01 36.57 27.88 21.08 40.74 26.00 

2010 19.02 31.81 24.24 19.25 31.51 22.83 

2012 21.02 38.16 28.49 21.02 38.23 26.55 

2014 17.14 36.46 27.97 18.19 35.88 26.61 

2016 22.85 42.33 33.10 21.23 42.08 31.89 

2018 17.63 40.13 28.59 20.76 35.17 27.26 

2020 15.38 42.95 29.12 20.30 36.95 27.73 

2022 12.90 45.77 29.64 19.65 38.74 28.24 

2024 10.41 48.58 30.19 19.00 40.61 28.72 

2026 7.92 51.40 30.74 18.82 42.31 29.17 

 

3. 6 Brightness temperature grade classification 

and UHI phenomena evaluation 

Results of BTG classification in urban areas 

between 2006 and 2026 are displayed in Figure 6 

which clearly shows that distributing pattern of the 

classified BTG varies from year to year due to the 

changes on mean and standard deviation values of 

LST. For example, BTG class in CBD of Bangkok in 

2014 measures as a high temperature class, however 

it becomes a medium temperature class in 2016. (See 

Figure 6 (e) and 6 (f)). In addition, it should be noted 

that the limitation of valid Landsat data due to   

cloud cover shall directly affect LST derivation as 

well as the BTG classification. Ideally, Landsat 

imagery for BTG classification should be acquired 

on anniversary dates to ensure seasonal agreement of 

temperature conditions among multi-dates data 

implementation (Jensen, 2007). 

 



38                         Ongsomwang S et al. / Environment and Natural Resources Journal 2018; 16(2): 29-44 

  
  

 
  

 
 

Figure 5. Temperature profiles along transect lines in (a) N-S direction (b) W-E direction with urban and non-areas in 2014 
 

   
  

Figure 6. Distribution spatio-temporal patterns of BTG classification: (a) 2006, (b) 2008, (c) 2010, (d) 2012, (e) 2014, (f) 

2016, (g) 2018, (h) 2020, (i) 2022, (j) 2024, and (k) 2026. 

 

(a) (b) 

(a) (b) 

(c) 

(d) 
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Figure 6. Distribution spatio-temporal patterns of BTG classification: (a) 2006, (b) 2008, (c) 2010, (d) 2012, (e) 2014, (f) 

2016, (g) 2018, (h) 2020, (i) 2022, (j) 2024, and (k) 2026. (cont.) 

 

(c) (d) 

(e) 
(f) 

(g) (h) 

(i) (j) 
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Figure 6. Distribution spatio-temporal patterns of BTG classification: (a) 2006, (b) 2008, (c) 2010, (d) 2012, (e) 2014, (f) 

2016, (g) 2018, (h) 2020, (i) 2022, (j) 2024, and (k) 2026. (cont.) 

 

3.7 UHI intensity and its severity 

The UHI intensity analysis using WAI index 

shows that WAI values continuously decrease from 

2006 to 2016 except in 2010 and 2016 and gradually 

decrease from 2018 to 2026 (Figure 7) .  Regarding 

the UHI intensity classification given by Dan et al. 

(2010) , the result of this study shows the extremely 

critical severity of UHI intensity (WAI > 3C) 

between 2006 and 2022. Also, the UHI intensity is 

predicted to be critically severe from 2024 to 2026 

(2C < WAI  3C) .  However, it should be noted 

that since WAI is calculated based on the average   

of five grade temperature classes in urban areas,    

the average temperature of outskirt areas, and 

proportional areas of five grade temperature classes 

in urban areas (see detail in Equation 6), the trend of 

the observed WAI in the future will decrease the 

same as the outskirt areas, whereas urban areas will 

increase. This observation can be confirmed by using 

simple linear regression analysis (Figure 8) showing 

a  highly negative relationship between WAI and 

total urban area (R2 = 0.9509). 

 

 
 

Figure 7. Dynamic change of WAI and URI between 2006 and 2026 
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Figure 8. Relationship between urban area and WAI 

 

In the meantime, more fluctuations can be 

seen in URI data profile with a downward trend from 

2006 to 2014 followed by a rapid rise to the highest 

temperature in 2016 and sudden drop in 2018.  The 

rising trend is eventually observed to continue from 

2018 onward.  This finding shows the increment of 

UHI development in the future. A larger URI 

indicates a stronger UHI effect. 

Qiao et al. (2014)  mentioned  that URI was in  

high correlation with the urban land area since 

proportional area of five grade temperature classes in 

urban area was applied for URI calculation (see 

detail in Equation 7) .  However, the relationship 

between urban areas and URI values in this current 

study shows low positive correlation with R2 as 

0.3795 (Figure 9). The possible reason might be the 

negative influence of several outliers inherent in URI 

data.
 

 
Figure 9. Relationship between urban area and URI 

 

3.8 Overall change in temperature 

The TGCI values for overall BTG changes in 

existing urban and urban expansion areas from 2006 

to 2026 are presented in Table 10.  As seen in the 

results, decreasing trends of TGCI in the “existing 

urban areas” are found in most years, except from 

2010 to 2012 and 2016 to 2018.  As for a reason, 

these two periods demonstrate the slightly increasing 

UHI intensity. On contrary, increasing trends of 

TGCI in the “urban expansion areas” are dominant 

in most years, except from 2020 to 2022.  The 

increasing trend in these urban expansion areas may 

imply that UHI intensity shall increase due to the 

process of urbanization which gradually expands 

from the city center to the outskirt area. 
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Table 10. TGCI of overall change in temperature in old 

urban and urban expansion areas 

 

Period TGCI value change in 

Old urban areas Expansion urban areas 

2006-2008 -0.159 0.586 

2008-2010 -0.272 0.607 

2010-2012 0.043 0.648 

2012-2014 -0.158 0.591 

2014-2016 -0.076 1.572 

2016-2018 0.051 0.196 

2018-2020 -0.023 0.038 

2020-2022 -0.027 -0.016 

2022-2024 -0.030 0.023 

2024-2026 0.000 0.015 

 

4. CONCLUSIONS  

Spatio-temporal UHI phenomena assessment 

and its intensity over BMV from 2006 to 2026 is 

successfully implemented using three key indices 

(WAI, URI and TGCI)  based on the extracted and 

predicted LST data associated with urban and non-

urban areas.  It can be concluded that the average 

temperature varies from around 23C in 2010 to 

around 32C in 2016. In the meantime, urban area is 

predicted to continuously increase from 1,735. 64 

km2 in 2006 to 3,828.25 km2 in 2026.  

It can be concluded that the trend of the 

observed WAI will decrease corresponding with the 

outskirt area whereas the urban area will increase in 

contrary regarding the highly negative relationship 

between WAI and total urban area from simple 

linear regression analysis. In the meantime, more 

fluctuations are seen in URI data profiles which 

indicate the increment of UHI development in the 

future, however, the relationship between urban 

areas and URI shows a low positive correlation. The 

TGCI analysis indicates a decreasing trend is 

dominant in the existing urban areas while an 

increasing trend is prominent in most years within 

the urban expansion areas.  These findings show the 

influence of urbanization and urban development on 

UHI intensity.  

Eventually, it can be suggested that the results 

of this research can be applied to either assist or 

master the urban planning mission in order to 

mitigate the effect of UHI phenomena in the future. 

Particularly, areas with increased WAI class and 

high URI may require more practical plans to reduce 

UHI intensity such as urban green space and green 

architecture design. 
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