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The Notch signaling pathway regulates important cellular processes involved in stem cell 
maintenance, proliferation, development, survival, and inflammation. These responses to 
Notch signaling involving both canonical and non-canonical pathways can be spatially 
and temporally variable and are highly cell-type dependent. Notch signaling can elicit 
opposite effects in regulating tumorigenicity (tumor-promoting versus tumor-suppress-
ing function) as well as controlling immune cell responses. In various cancer types, 
Notch signaling elicits a “cancer stem cell (CSC)” phenotype that results in decreased 
proliferation, but resistance to various therapies, hence potentially contributing to cell 
dormancy and relapse. CSCs can reshape their niche by releasing paracrine factors and 
inflammatory cytokines, and the niche in return can support their quiescence and resis-
tance to therapies as well as the immune response. Moreover, Notch signaling is one of 
the key regulators of hematopoiesis, immune cell differentiation, and inflammation and 
is implicated in various autoimmune diseases, carcinogenesis (leukemia), and tumor- 
induced immunosuppression. Notch can control the fate of various T cell types, including 
Th1, Th2, and the regulatory T cells (Tregs), and myeloid cells including macrophages, 
dendritic cells, and myeloid-derived suppressor cells (MDSCs). Both MDSCs and Tregs 
play an important role in supporting tumor cells (and CSCs) and in evading the immune 
response. In this review, we will discuss how Notch signaling regulates multiple aspects 
of the tumor-promoting environment by elucidating its role in CSCs, hematopoiesis, nor-
mal immune cell differentiation, and subsequently in tumor-supporting immunogenicity.

Keywords: Notch, cancer stem cell, immune response, immune-suppressive microenvironment, Notch therapy

iNTRODUCTiON

The Notch pathway is regulated by short-range cell–cell signaling activated by interaction of one 
of the Notch receptors (Notch1–4) with different types of “canonical” ligands (Jagged1, Jagged2, 
DLL1, DLL3, or DLL4) [reviewed in Ref. (1)] or non-canonically through activation of other 
pathways such as NFκB, Wnt, TGF-β, and STAT3 [reviewed in detail elsewhere (2–4)]. The canoni-
cal Notch pathway is activated by a sequence of proteolytic events following binding of the ligand 
to the Notch receptor. First, the Notch receptor is cleaved by ADAM metalloproteases at the S2 
site, generating a membrane-anchored Notch extracellular truncation fragment, which is further 
cleaved by the γ-secretase complex at S3 and S4 sites (1). Following γ-secretase cleavage, the Notch 
intracellular domain (NICD) releases and translocates to the nucleus where it associates with 
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FigURe 1 | The Notch pathway is regulated by short-range cell–cell signaling. Notch is activated by interaction of one of the Notch receptors with its ligands and 
induces a sequence of proteolytic event leading to production of the Notch intracellular domain (NICD). NICD translocates to the nucleus, binds to the RBPJ 
complex, and recruits other transcriptional co-activators to initiate the transcription of target genes. Notch also regulates other target genes controlled by the  
TGF-β, NFκB, mTORC2, and HIF1α pathways.
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CSL—the transcriptional repressor CBF1/suppressor of hairless/
Lag-1—(or the human homolog RBPJ—recombining binding 
protein suppressor of hairless). This is accompanied by recruit-
ment of many transcriptional co-activators such as mastermind 
like (MAML1–3) to initiate the transcription of target genes 
(1). Because of lack of a DNA-binding motif, Notch binds to its 
canonical CSL (RBPJ) complex, or other pathway co-activators/
repressors. Thus, Notch can regulate other target genes controlled 
by the TGF-β, NFκB, mTORC2, PI3K, and HIF1α pathways in 
the cytoplasm and/or nucleus. Although target gene expression 
is cell-type and context dependent, Hes and Hey families are 
the most characterized target genes of Notch signaling pathway 
(Figure 1) (5, 6).

This review is focused on the role of Notch signaling as a 
regulator of the tumor immune response. We will first describe 
the role of Notch during normal immune cell homeostasis and 
activation of effector cells, and then discuss the interplay between 
tumor cells [cancer stem cells (CSCs)] and immune cells in the 
tumor microenvironment. This information will need to be taken 
into consideration when designing new therapeutic strategies for 
Notch inhibition.

NOTCH iN NORMAL iMMUNe CeLL 
HOMeOSTASiS

Notch signaling is one of the key regulators of hematopoiesis, 
immune cell differentiation, and inflammation and is implicated 
in various autoimmune diseases and tumor-induced immuno-
suppression. Notch can control the differentiation and function 
of both innate and adaptive immunity including dendritic cells 

(DCs), natural killer (NK) cells, and various T cell types [Th1, 
Th2, and the regulatory T cells (Tregs)].

Normal immune Cell Differentiation
Numerous studies have investigated the role of Notch during 
embryonic and adult hematopoiesis. Various Notch ligands 
promote self-renewal of hematopoietic stem cells (HSCs) and 
suppress differentiation. Notch1 expression has been identified 
in bone marrow progenitor cells. In addition, while Jagged-1 
expression in osteoblasts correlates with increased numbers of 
HSCs, canonical Notch signaling seems to be dispensable for 
adult hematopoiesis in bone marrow (7–9). More importantly, 
Notch signaling plays an essential role during T  cell lineage 
commitment. Notch acts as a checkpoint to ensure T cell lineage 
differentiation by opposing the commitment to other cell line-
ages, such as B cells, myeloid cells, and DCs. The role of Notch 
signaling during each stage of immune cell development has been 
reviewed in detail elsewhere (10).

Notch1 regulates T cell lineage commitment from the common 
lymphoid progenitor cells and suppresses B cell development in 
the bone marrow (11, 12). Notch1 knockdown completely blocks 
T  cell development and increases the accumulation of ectopic 
B  cells in the thymus (12, 13). Moreover, Notch1 [and maybe 
also Notch 2 (14)] regulates the early phases of T cell differen-
tiation in the thymus (through DLL4), but its expression needs 
to be decreased before T cells can fully differentiate (15). Upon 
migration of immature B cells from bone marrow to spleen, an 
increased level of Notch2 expression regulates the maturation of 
a subset of B cells that reside in the marginal zone, MZB cells. 
However, Notch2 does not control other mature B cells including 
follicular B cells and plasma cells (16). Moreover, in vitro studies 
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have shown that Notch signaling enhances T- and NK cell differ-
entiation from human hematopoietic progenitor cells (CD34+), 
while inhibiting B  cell differentiation (14, 17). Notch also has 
opposing roles in controlling cell fate decisions between two dif-
ferent types of NK cells, i.e., conventional NK cells versus innate 
lymphoid cell (ILC)-derived natural cytotoxicity receptor (NCR) 
NKp44+ group (NCR+ILC3)—at different maturational stages of 
progenitor cells. This is dependent on the type of the progenitor 
cells. Notch can augment the differentiation of one type of these 
NK cells while suppressing the other types (14).

Notch also regulates the differentiation of myeloid cells. Notch 
signaling (transient activity) has been shown to mediate myeloid 
differentiation by increasing mRNA levels of the myeloid-specific 
transcription factor PU.1 (18). Notch1 and Notch2 are highly 
expressed in monocytes and in combination with GM-CSF and 
TNFα skew cell fate decision of DCs over macrophages (19). DLL 
and Jagged ligands appear to elicit opposite effects in myeloid 
cells, where fibroblasts expressing DLL1 promote differentiation 
of DCs and activation of Notch, although Jagged-1 promotes 
immature myeloid cells (20). In the spleen, Notch2 (probably 
through DLL1, as expressed in the marginal zone) controls the 
survival of DCs (also identified as Cx3cr1low Esamhigh DC subset), 
which is required for efficient T  cell priming (21). Altogether, 
these studies have demonstrated spatiotemporally regulated roles 
of Notch in immune cell differentiation.

effector T Cell Differentiation
During the immune response, antigen-presenting cells (APCs) 
activate naïve T  cells and trigger their clonal cell expansion 
into various T helper cells dictated by different sets of signaling 
pathways and cytokines. Notch signaling controls many aspects 
of effector T cell differentiation including CD4+ T helper cells—
Th1, Th2, Th9, and Th17—Tregs, and CD8+ T cells [reviewed in 
Ref. (22)]. Functionally, Th1  cells are required for clearance of 
intracellular pathogens and viruses and mediating autoimmune 
diseases. Th2 cells mediate immunity against helminth parasites 
and allergic reactions. Th17  cells are critical for controlling 
extracellular bacterial and fungal infections and mediating 
autoimmunity (22, 23). Tregs are involved in the regulation of 
peripheral self-tolerance and tumor immunosuppression (24).

A low level of expression of Notch1 and Notch2 has been 
detected in naïve CD4+ and CD8+ T cells and their expression is 
activated through many canonical and non-canonical mechanisms 
such as T  cell receptor (TCR) signaling and different cytokines  
(22, 25). The role of Notch in regulating Th1 and Th2 differentia-
tion versus function is somewhat controversial. Notch appears to 
act as an unbiased amplifier of these Th programs by sensitizing 
cells to their microenvironmental cues, but lacks the direct capac-
ity of instructing specific Th differentiation (23). Notch directly 
regulates gene expression of master regulators of Th1: T-bet and 
interferon-γ (IFNγ) (23), Th2: IL4 (also in NKT cells) and GATA3 
(26–29), and Th17: IL17 and Rorγt (23, 30). Therefore, depending 
on the strength of the upstream inflammatory signaling, Notch 
may serve as a hub to regulate and also synergize with key signal-
ing pathways important for Th commitment such as mTOR–AKT 
and NFκB to regulate Th differentiation (22). However, alterna-
tively, there are other studies that have shown a more direct role of 

Notch in the control of the types immune cell responses, e.g., both 
in vitro and in vivo studies have shown a greater association of DLL 
family ligands with the development of IFNγ-secreting Th1 cells 
and Th17, while Jagged family ligands elicit Th2, Th9, and Treg 
responses (10, 22, 27). Notch also controls the survival and main-
tenance of memory CD4+ T cells which are essential for preventing 
recurrent infection (31). The studies highlight the complexity of 
the Notch signaling pathway during immune cell response.

Regulatory T cells are an immunosuppressive subpopulation 
of CD4+ cells that express Forkhead box P3 (FoxP3) and are 
generated from naïve CD4+ T  cells following stimulation with 
TGF-β1 (32). Tregs are involved in the regulation of peripheral 
self-tolerance, tissue repair, and the control of pro-inflammatory 
immune responses, as well as the prevention of the immune 
response to tumors (24). Both Jagged-1 and Jagged-2 increase the 
generation of Tregs, e.g., Jagged-2 expression on hematopoietic 
progenitor cells increases the expansion of Tregs (33). Bone 
marrow mesenchymal stem cells educate DCs to promote a Treg 
expansion via Jagged-1 (34). Interestingly, upon Th2 stimulation, 
bone marrow-derived DCs express Jagged-2 (33), which can 
potentially regulate Treg function. Notch-1 and TGF-β coopera-
tively regulate the master regulator of Tregs, Foxp3 gene expres-
sion and hence directly induce peripheral Tregs (32). Altogether, 
Notch signaling is important in the regulation of Tregs, which can 
contribute to tumor-induced immunosuppression as discussed 
later in this review.

CD8+ T cell differentiation is also regulated by Notch signal-
ing. Naïve CD8+ T cells differentiate into cytotoxic T lymphocytes 
(CTLs) upon recognition of antigens presented by MHC class 1 
APCs. CTLs exert their functions by secreting IFNγ, transport-
ing perforins and granzymes to lyse target cells, and inducing 
apoptosis through FAS-FAS ligand (FASL) (10). Notch1 directly 
binds to the promoter of EMOES—one of the master regulators 
of CTL differentiation, perforin, and granzyme B—and there-
fore enhances CTL differentiation (35). DLL1 expressing DCs 
activate Notch2 in CD8+ T cells and promote T cell cytotoxicity 
by increasing the expression of granzyme B (36). Moreover, acti-
vated CD8+ T cells choose between short-lived terminal effector 
cells (TECs) or memory precursor cells (MPCs). Notch signaling 
controls the fate decision of TECs over MPCs (37, 38), providing 
more evidence illustrating the complexity of Notch regulation of 
different cell fate decisions and functions.

Interestingly, recent studies have discovered a new subset of 
DCs that express high levels of DLL4 under inflammatory condi-
tions (39, 40) [reviewed in Ref. (41)]. Immature DCs are fully 
differentiated through activation of pattern-recognition recep-
tors including toll-like receptors (TLRs). Immature DCs express 
low levels of DLL4 and upon activation by TLR7/8, express high 
levels of DLL4 (41). It seems that at some point during DC dif-
ferentiation, DLL4 expression is elevated and that DLL4+ DCs 
have a greater ability than DLL4− DCs to promote the generation 
of Th1 and Th17 T cells producing IFNγ and IL-17, respectively 
(39, 40). Interestingly, inhibiting DLL4 abrogates efficient effec-
tor T cell function (42, 43). DLL4+ DCs are also important for 
promoting the differentiation and expansion of CD8+ T  cells 
(41). Altogether, these results show that Notch plays an impor-
tant role in regulating normal immune cell differentiation and 
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FigURe 2 | Notch regulates both cancer cells and cancer stem cells (CSCs) and many components of tumor microenvironment including immune cells, fibroblasts, 
and endothelial. Notch co-operates with various key signaling pathways to exert its functions. Tumor-associated macrophages and myeloid-derived suppressor cells 
(MDSCs) promote tumor progression by various mechanisms including suppressing immune cells, supporting CSC, and enhancing angiogenesis and metastasis.  
(i) Deregulated Notch activity in MDSC results in expansion of M-MDSC. (i and ii) MDSCs induce Notch signaling in cancer cells and promote CSC capacity.  
(iii) MDSCs can also promote CSCs through IL-6/STAT3 activation and nitric oxide/Notch cross-talk signaling. Notch helps sustain STAT3 signaling which is 
important for CSC maintenance. (iv) Similar to MDSCs, regulatory T cells (Tregs) also promote evasion of immune surveillance. Notch-1–TGF-β signaling 
cooperatively regulates Foxp3 gene expression, and hence directly induces peripheral Tregs. (v) On the other hand, DLL-1 expressing dendritic cells or stromal  
cells can activate Notch in cytolytic T cells and enhance antitumor activities. (vi) Moreover, endothelial cells contribute to tumor progression and metastasis. Notch1 
controls macrophage recruitment to endothelial cells and facilitate vessel branching, which can increase metastasis. (vii) In addition to facilitating the invasion of 
cancer cells, endothelial cells play a role as CSC niches by releasing supportive factors or by direct cellular contact.
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the regulation of immune cell function. The role of Notch in the 
tumor immune response will be discussed in more detail below.

NOTCH iN THe CANCeR iMMUNe 
ReSPONSe

It is now well appreciated that inflammatory responses play key 
roles at different stages of tumor development, from initiation 
to malignant conversion, invasion, and metastasis, as well as 
therapy resistance and recurrence (44). Depending on its type, 
tumor-induced inflammation consists of innate immune cells 
including macrophages, neutrophils, mast cells, myeloid-derived 
suppressor cells (MDSCs), DCs, and NK  cells and adaptive 
immune cells such T cells (effector cells—Th cells and Tregs—
and NKT cells) and B cells (44). The interplay between tumor 
cells and immune cells in the tumor microenvironment dictates 
the overall immune surveillance and responses to therapies, 
and subsequently clinical outcome and patient survival. Notch 
regulates many components of the tumor microenvironment 

including immune cells as well as fibroblasts, endothelial, and 
mesenchymal cells (Figure 2) (42, 43, 45, 46).

Tumor initiation and Cancer Stem  
Cells (CSCs)
Immune cells contribute to and enhance tumor initiation and 
progression through various mechanisms including activating 
chronic inflammation and tissue repair, angiogenesis, and the 
induction of pre-malignant cell proliferation, and/or CSCs. CSCs 
or tumor-initiating cells are a subpopulation of cancer cells that 
mediate primary tumor formation and metastasis, as well as resist-
ance to therapies through self-renewal activities and immune 
evasion. Moreover, they are associated with cancer progression, 
resistance and recurrence, and clinical outcome in cancer patients 
(47). Elevated Notch pathway activity has been detected in the 
CSC subpopulation of many cancer types including medullo-
blastoma, breast, intestine, prostate, and colon cancer, pancreatic 
ductal adenocarcinoma (PDAC), and squamous cell carcinoma 
(47–52). The role of Notch in breast cancer and breast CSCs is 
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very well studied. Notch plays a crucial role both in initiation 
and progression of breast cancer (53). Both Notch1 and Notch4 
are found to have differential activities in breast cancer cell lines 
and patient samples, with Notch4 being the major receptor in 
the CSC populations of luminal and basal breast cancer cell lines  
(54, 55). Notch4 and Notch3 are expressed at higher levels in 
poorly differentiated basal breast cancers and are associated 
with poor overall survival (54–56). By using a Notch antagonist-
γ-secretase (GSI), CSC populations were decreased in vivo. An 
additive effect was detected with GSI and Docetaxel, suggesting 
that combination therapies with Notch targeted therapies might 
be beneficial in treating heterogeneous cancer cell populations 
(55). Moreover, early-phase clinical trials of GSI in breast cancer 
have provided a limited clinical benefit which can be explained 
by its activity against CSCs (57). Both Jagged-1 and Jagged-2 have 
been shown to regulate Notch signaling in breast cancer (56, 58). 
High expression of Jagged-1 has been detected in aggressive 
tumors especially triple-negative breast cancer (TNBC) and 
associated with increased tumor relapse, drug resistance, and 
metastasis (53). Several studies have shown that Jagged-1 is 
elevated in endocrine-resistant luminal breast cancers leading to 
an increase in CSC activity (59). Jagged-2 is also upregulated by 
hypoxia and results in increased CSCs (60).

Besides the cell intrinsic effects, Jagged-1 expression induced 
by endocrine therapy resistance affects the tumor microenvi-
ronment by induction of macrophage differentiation toward 
tumor-associated macrophages (TAMs) (61). TAMs are the most 
frequently found immune cells within the tumor microenviron-
ment that play an important role in suppressing immune sur-
veillance (44). TAMs acquire an anti-inflammatory phenotype, 
which express immunosuppressive cytokines including IL-10 and 
TGF-β as well as high expression of arginase-1, which promote 
cell proliferation, tissue remodeling, and angiogenesis (44). By 
contrast, macrophages, activated by IFNγ and microbial products, 
secrete pro-inflammatory cytokines including IL-1b, IL-12, IL-6, 
TNF-α, and inducible nitric oxide synthase, which are capable 
of killing pathogens and inducing antitumor immune responses 
(44). In contrast to these results, forced expression of Notch in 
macrophages can repress TAM activity by upregulating miRNAs 
including miR-125 and miR148a-3p, and therefore enhance anti-
tumor capacity (62–64). In addition to TAMs, MDSCs promote 
tumor progression by various mechanisms including suppressing 
immune cells and enhancing angiogenesis and metastasis (65). 
MDSCs are immature myeloid cells that in mice are characterized 
by either having monocytic characteristics M-MDSCs or neutro-
philic characteristics polymorphonuclear (PMN)-MDSCs (65). 
Notch activity (Hes1 expression) is lower in MDSCs, especially 
in PMN-MDSCs of patients with renal cell carcinoma and in con-
ditioned media from cultures of breast and lung cancer cell lines. 
This is caused by an inhibitory phosphorylation of the NICD by 
casein kinase 2, which disrupts the Notch transcriptional complex 
(66). In addition, inhibition of Notch promotes PMN-MDSCs 
over M-MDSCs and these cells had less immunosuppressive 
capacity when compared with the M-MDSCs when using a lower 
ratio of MDSCs to cancer cells (67). However, another study 
showed that deregulated Notch activity can cause myelopoiesis 
and expansion of MDSCs; this was caused by accumulation 

of a S2-cleaved Notch receptor, without S3 cleavage, through 
increased function of ADAM metalloproteases at the S2 site, or 
inhibition of γ-secretase (Figure 2i) (68). It is not clear if differ-
entiation of M-MDSCs was preferred over PMN-MDSCs in this 
study and whether the immunosuppressive capacity of MDSCs 
was affected. These apparently conflicting data suggest that the 
temporal and special regulation of Notch signaling as well as 
presence of specific cytokines can impact myeloid differentiation 
and macrophage polarization during tumor initiation.

We previously have shown that MDSCs are recruited to the 
tumor microenvironment through activation of the mTOR path-
way and production of G-CSF. Furthermore, MDSCs induced 
Notch signaling in cancer cells and promoted CSC capacity 
(Figure  2ii) (69). This type of positive feedback loop between 
cancer cells, immune cells, and CSCs has been observed previ-
ously. MDSCs can also promote CSCs through IL-6/STAT3 acti-
vation and nitric oxide/Notch cross-talk signaling. Notch helps 
sustain STAT3 signaling (Figure 2iii) (70). IL-6-STAT3 activation 
also results in both the expansion of MDSCs and their circula-
tion in various cancer types (71). Moreover, cancer cells increase 
Jagged-1 and Jagged-2 expression in MDSCs through NFκB-P65 
signaling which results in tumor-induced T cell tolerance (72). 
The presence of MDSCs (CD33 staining and a G-CSF gene 
signature) correlates with CSC properties in clinical specimens 
and predicts poor survival outcome (69, 70). Therefore, targeting 
MDSCs can be beneficial both by decreasing immunosuppres-
sion and inhibiting CSCs.

Similar to MDSCs, Tregs also promote evasion of immune 
surveillance and are associated with tumor invasiveness and 
poor clinical outcome. Notch1, which is a key regulator of 
luminal estrogen receptor (ER+) breast cancers is inversely cor-
related with the aggressive TNBC/basal-like breast carcinomas 
and infiltrating Foxp3+ Tregs (73). However, Notch-1–TGF-β 
signaling cooperatively regulates Foxp3 gene expression, and 
hence directly induces peripheral Tregs (Figure 2iv) (32). Given 
that Notch4 and Notch3 are expressed at higher levels in poorly 
differentiated basal breast cancers (54–56) it will be important to 
elucidate the association of different Notch pathways with Tregs 
during cancer formation. Moreover, it will be important to under-
stand the regulation of different Notch ligands in different cancer 
types and the recruitment of Tregs. Both Jagged-1 and Jagged-2 
increase the generation of Tregs (33) and both of these ligands 
are highly expressed in TNBC, CSCs, and the treatment-resistant 
populations (53, 59, 60). Interestingly, in an experimental model 
of autoimmune diabetes, it was demonstrated that Notch3 expres-
sion in the lymphoid organs results in generation of Tregs. These 
Tregs secrete suppressive cytokines such as IL-4 and IL-10 and 
express cytotoxic T  lymphocyte-associated protein 4 (CTLA-4) 
(74), a receptor shown to block T cell co-stimulation, by compet-
ing with CD28 for B7 ligand, and therefore abrogate an activated 
T cell response (75).

Notch also regulates the antitumor immune response. 
Increased T  cell numbers, specifically activated CD8+ CTLs 
and Th1  cells, correlate with better survival in many cancers 
(44). Both Notch1 and Notch2 were shown to directly regulate 
CTL-specific gene expression including granzyme B (35, 36). 
Notch2, but not Notch1-deficient CD8+ T cells were unable to 
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expand and suppress tumors in mice (76). In addition, Notch2 
agonists or DLL-1 expressing DCs or stromal cells enhanced 
CTL activity and eradicated tumors (76, 77). Using a mouse 
model of lung cancer, systemic administration of multivalent 
forms of DLL-1 enhanced the Th1 response through STAT1/
STAT2/T-bet resulting in an increase in T cell infiltration into 
tumors and CD8+ memory cells, as well as a decrease in Tregs, 
and tumor vascularization (78). In addition, progression-free 
survival was increased when the multivalent DLL-1 was 
combined with EGFR-targeted therapy, Erlotinib, as a result of 
augmented tumor-induced T  cell immunity (78). The soluble 
clustered DLL1 acts as an activator of Notch receptors, whereas 
soluble forms of DLL1 (or other Notch ligands) act as inhibi-
tors of Notch signaling (77). In a recent study, a role for Notch 
in generating antigen-specific stem cell memory T (TSCM) for 
adoptive immunotherapy cells has been described. TSCM cells 
were generated from activated CD4+ and CD8+ T cells by co-
culturing with stromal cells that expressed DLL1 (79). These 
long-lived and highly proliferative memory T cells were shown 
to lose the markers for exhausted T cells, programmed cell death 
protein 1 (PD-1), and CTLA-4 and to elicit antitumor activities 
(Figure 2v) (79).

A subset of DCs with high DLL4 expression has been described 
recently. DLL4+ DCs were essential for an effective antitumor 
response. Under low doses of antigen, DLL4-Notch signaling acts 
as a co-stimulator to potentiate phosphatidylinositol 3-OH kinase 
(PI3K)-dependent signaling downstream of the TCR-CD28, and 
therefore enhances CD4+ T  cell to elicit an effective antitumor 
response (80). This subset of DLL4+ DCs has also been found 
in human peripheral blood under inflammatory conditions and 
was shown to be more efficient in promoting Th1 and Th17 dif-
ferentiation (40). However, its role in cancer patients has not yet 
been studied. This is very important because there are now several 
blocking antibodies against DLL4 being tested in clinical trials. 
Additional evidence for the essential role of Notch in regulating 
DC-dependent antitumor immune response comes from a study 
where RBP-J-deficient DCs were shown to be incapable of inhib-
iting tumor growth due to their decreased capacity to activate 
and/or recruit T, B, and NK cells (81). Therefore, it is important 
to understand which specific combination of Notch ligands and 
receptors contribute to the heterogeneous population of tumor 
and tumor microenvironment.

Angiogenesis and Metastasis
Tumor progression and the initiation of invasion and metastasis 
are supported by angiogenesis. DLL4–Notch1 signaling was 
shown to coordinate the formation of the endothelial “tip cells” 
in relation to the “stalk cells” required for the correct sprout-
ing and branching patterns during angiogenesis (82). Notch1 
controls macrophage recruitment during retinal angiogenesis in 
mice and these macrophages interact with the DLL4-positive tip 
cells to facilitate the bridging between sprouts or vessel anasto-
mosis (Figure 2vi) (42). Endothelial cells are suggested to play 
a role as CSC niches by releasing supportive factors or by direct 
cellular contact (Figure 2vii) (83). Endothelial cells were shown 
to support glioblastoma multiforme (GBM) CSCs by providing 
Notch ligands. Furthermore, Notch inhibition in endothelial 

cells blocked self-renewal of the CSCs and GBM tumor growth 
(84). In ovarian cancer, Notch (Jagged-1 expression) enhances 
tumor progression by supporting both cancer cell proliferation, 
chemoresistance, and endothelial cell regulating angiogenesis 
(45, 46).

Besides supporting CSCs, endothelial cells regulate the passage 
of cancer cells and immune cells across the endothelium lumen. 
Notch signaling is implicated in promoting inflamed endothe-
lium which results in opening of gap junctions and promoting 
the adhesion of tumor cells (85, 86). This enhances migration of 
leukocytes, and potentially cancer cells, across endothelium. A 
recent study has shown that endothelial Notch1 can be activated 
by tumor cells and myeloid cells at a distant metastatic site (lung) 
(87). Sustained Notch activation induced inflamed endothelium 
which expressed the adhesion molecule VCAM1; this further 
promoted neutrophil infiltration, tumor cell adhesion to the 
endothelium, and intravasation at the primary site, as well as 
extravasation to the pre-metastatic niche (87).

Notch is also implicated in regulating the epithelial–mesenchymal  
transition (EMT) in various cancers including breast, prostate, 
pancreatic, and squamous cell carcinoma (49, 88–90). In both 
breast and pancreatic cancers, Jagged-1 expression is associated 
with EMT including increased Slug gene expression, and inhibit-
ing Notch decreased metastasis (88, 89). In particular, gemcit-
abine-resistant pancreatic cancer acquired EMT properties and 
a CSC phenotype through Jagged1–Notch2 (89), suggesting that 
inactivation of Notch may be a potential therapeutic approach to 
overcome chemoresistance in invasive and metastatic pancreatic 
cancer. In another study, Jagged-1 expression was correlated with 
high tumor grade and vascular invasion, and shorter disease-free 
survival in breast cancer (91). Elevated Jagged-1 expression also 
correlates with positive lymph node, metastatic relapse, and 
a higher number of disseminated tumor cells in bone marrow 
aspirates (91). Interestingly, in patients with detectable circulat-
ing tumor cells (CTCs), more than 85% of CTCs express Jagged-1 
(91), suggesting that Notch may be implicated in the survival of 
disseminated tumor cells and metastasis.

At the metastatic site, tumor-derived Jagged-1 promotes 
osteolytic bone metastasis in breast cancer (92). Notch activation 
in osteoblasts induces the expression and secretion of IL-6, which 
in return supports the growth of tumor cells (92). Meanwhile, in 
osteoclasts (bone-resorbing cells differentiated from monocyte/
macrophage precursors), Notch directly controls the maturation 
of these cells, and therefore enhances osteolytic function (92). 
Release of TGF-β as a result of bone destruction triggers a positive 
feedback loop to sustain Jagged-1 expression in tumor cells and 
therefore maintains the osteolytic environment (92).

Drug Resistance, Dormancy, and 
Recurrence
Notch is implicated in drug resistance and survival of dormant 
cells. Elevated Notch signaling is associated with therapeutic 
resistance and increased risk for tumor recurrence in breast 
cancer patients (93). Using a Her2/neu mouse model of 
mammary gland tumors, Notch signaling was shown to be 
activated in a subset of dormant residual cells following 
anti-Her2 therapies. Furthermore, Notch accelerated tumor 
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recurrence (93). Another study showed that ErbB-2 inhibition 
by a monoclonal antibody Trastuzumab activated Notch1 in 
breast cancer cell lines and Trastuzumab-resistant cells showed 
higher Notch activity (94). In both studies inhibiting Notch 
impaired tumor recurrence (93, 94). Moreover, Notch signal-
ing has been implicated in endocrine-resistant breast cancer 
(59, 95). Jagged-1–Notch4 is highly expressed in resistant CSCs 
resulted from anti-estrogen therapy and combining endocrine 
therapy with Notch inhibition overcame this resistance (59). 
The presence of TAMs in the microenvironment correlates 
with tamoxifen resistance and decreased survival of post-
menopausal breast cancer patients (96). Jagged-1 upregulation 
in endocrine-resistant breast cancer modulates the differentia-
tion and polarization of macrophages to TAMs to promote the 
metastatic potential of cancer cells (61). Notch activation has 
also been implicated in resistance against chemotherapy by 
either inducing a CSC phenotype or promoting intratumoral 
heterogeneity (90, 97, 98), thus suggesting that combination 
therapies may be more efficacious.

THeRAPeUTiC TARgeTiNg OF NOTCH

The extensive study of Notch pathway regulation has provided 
us with many potential avenues for Notch modulation including 
inhibiting ligand–receptor interactions or proteolytic activation 
of the receptor. GSIs are the best studied small molecules target-
ing the Notch pathway. GSIs prevent Notch from being cleaved 
and reduce the levels of intracellular activated Notch (53). There 
are several GSIs at different stages of clinical trials, including 
MK-0752 and RO4929097. In preclinical studies, the MK-0752 
inhibitor—MRK-003—decreased CSCs in breast cancer and 
PDAC models (99, 100). Using various other GSIs, including 
RO4929097, GBM CSCs also were significantly decreased (101). 
Moreover, about 45% of GBM patients had high Notch pathway 
activity and were predicted to respond to GSIs (101). GSI mono-
therapies are associated with gastrointestinal toxicities, but in 
combination with chemotherapy and glucocorticoids, they can 
be both more efficacious and less toxic (102). In fact, MK-0752 
treatment improved the activity of docetaxel and reduced 
breast CSCs (57). Moreover, a clinical trial of RO4929097 with 
chemotherapy (paclitaxel and carboplatin) showed complete 
pathologic response in 50% of TNBC patients (53). Additional 
details about different GSI clinical trials have been reviewed 
elsewhere (103).

Therapeutic antibodies may demonstrate better efficacy and 
specificity than small molecule inhibitors in cancer therapy. 
Several blocking antibodies against DLL4 are being tested in 
phase I clinical trials. Demcizumab (OMP-21M18) may inhibit 
CSCs and angiogenesis and is being tested in various cancer types 
including non-small-cell lung cancer, ovarian, and pancreatic 
cancer (103). Results from phase Ib trial of Demcizumab in 
combination with chemotherapy showed some clinical ben-
efit, however, it did not meet the expected endpoints (47, 53). 
Rovalpituzumab tesirine (SC16LD6.5) is an antibody–drug 
conjugate consisting of DLL3-specific IgG1 monoclonal antibody 
SC16 and the DNA cross-linking agent SC-DR002 (D6.5) (104). 
Rovalpituzumab tesirine exhibited encouraging single-agent 

antitumor activity in small-cell lung cancer patients who express 
high levels of DLL3 (104).

Antibodies have been developed to target Notch1, Notch2, 
or Notch3. Tarexumab (OMP-59R5) is an antibody against 
Notch 2 and Notch3 that can inhibit CSCs and tumor growth 
(47, 105). Tarexumab is being tested in phase II trials for the 
treatment of pancreatic cancer and small-cell lung cancer (103). 
Brontictuzumab (OMP-52M51), an anti-Notch1 antibody, has 
shown to reduce CTCs and provided some efficacy in patients 
with metastatic colorectal cancer (103).

CONCLUSiON AND FUTURe DiReCTiON

Most of the Notch therapeutics have been tolerated by patients. 
Although they are associated with various adverse effects, these 
effects are usually manageable. However, the effects of these thera-
pies on tumor immunology are not well studied. Immunotherapies 
are revolutionizing the treatment of many cancers. Inhibiting 
negative regulators of immune activation (immune checkpoint) 
through immune checkpoint blockade therapies (ICBT) has been 
remarkably effective in several cancer types including metastatic 
melanoma and non-small cell lung cancer (106, 107). These treat-
ments target negative regulators of T cell activity, thereby unleash-
ing antitumor immunity. Two very successful strategies of ICBT 
have been achieved by antibodies blocking the CTLA-4 or the 
PD-1 pathways, either alone or in combination (108). Therefore, 
it is necessary to understand the effect of Notch therapeutics on 
tumor immunology. As discussed earlier, both in vitro and in vivo 
studies have associated DLL family ligands with the development  
of IFNγ-secreting Th1 cells and Th17, while Jagged family ligands 
elicit Th2, Th9, and Treg responses (10, 22, 27). Moreover, DLL 
and Jagged ligands appear to elicit opposite effects in myeloid 
cells: DLL1 and DLL4 promote differentiation of DCs while acti-
vation of Notch through Jagged-1 promotes immature myeloid 
cells (20). On the other hand, Notch2 controls the survival of 
DCs (also identified as Cx3cr1low Esamhigh DC subset), which is 
required for efficient T cell priming. Therefore, these results sug-
gest that combining anti-Notch2 and DLL therapies with ICBT 
might not be beneficial because of reduced T cell priming and 
activation of Th1, Th17, and CD8+ T cells that happens through 
DCs. Moreover, Notch1 and Notch2 have been shown to directly 
regulate CTL-specific gene expression including granzyme B, 
therefore prolonging administration of these drugs might sup-
press CTL activity and again dampen the efficacy of ICBT. On 
the other hand, anti-Jagged therapies look more promising if 
combined with ICBT, e.g., in a mouse model, anti-Jegged-1/2 
both inhibited MDSCs and induced Notch1 in CD8+ T  cells, 
which promoted antitumor T-cell immunity and protective 
immune memory response (72). The majority of recent studies 
suggest that because of the broad functions of Notch signaling, 
we must design better strategies utilizing anti-Notch therapies 
both by dosage deescalation and by combinations with different 
therapies as well as designing specific treatment schedules. For 
example, it may be preferable to use anti-Jagged therapies before 
ICBT, as the host immune system might be primed to respond 
better to ICBT or to use even a lower dosage of ICBT and there-
fore decrease toxicity. Moving forward, there needs to be more 
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research to investigate the effect of Notch therapies on different 
immune cell compartments and functions to enable the design of 
combinatorial treatments.
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