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In allogeneic hematopoietic stem cell transplantation, which is the major curative therapy 
for hematological malignancies, T cells play a key role in the development of graft- 
versus-host disease (GvHD). NOTCH pathway is a conserved signal transduction sys-
tem that regulates T cell development and differentiation. The present review analyses 
the role of the NOTCH signaling as a new regulator of acute GvHD. NOTCH signaling 
could also represent a new therapeutic target for GvHD.
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inTRODUCTiOn

Hematopoietic stem cell transplantation from allogeneic donors is the major curative therapy for 
hematological malignancies such as acute leukemias (ALs). The development of graft-versus-host 
disease (GvHD) is the most common complication which dramatically increases post-transplant 
morbidity and mortality (1). The clinical presentations of GvHD include acute GvHD (aGvHD) 
which regards 30–50% of transplanted patients and chronic GvHD (cGvHD) which includes 
30–70% of patients who underwent allogeneic hematopoietic stem cell transplantation (2, 3). GvHD 
is triggered by the donor T cells that can cause an inflammatory disease ultimately leading to severe 
multiorgan damage (liver, gut, and skin) (4–8).

Donor T cells play a crucial role not only in mediating the onset of GvHD but also in eradicating 
malignancy, the graft-versus-leukemia (GvL) effect as showed by clinical (9, 10) and experimental 
studies (11–13). Allogeneic T cells recognize host antigens on leukemic cells and leukemia-specific 
responses may also occur (14). Despite this strong GvL effect exerted by donor T cells, relapse is 
still the major cause of treatment failure in high-risk AL patients who underwent allogeneic HSCT 
(15–18). Strategies to separate GvHD and GvL are then under investigation.

The NOTCH signaling pathway relies on the interactions between receptors (NOTCH1–4) and 
ligands (Jagged1 and -2 or Dll1, -3, and -4) that are expressed on neighboring cells (19). The interac-
tions NOTCH/NOTCH ligand induce proteolytic activation of the receptor by an ADAM family 
metalloprotease and then by the γ-secretase complex. The sequential cuts lead to the release of the 
active intracellular NOTCH (ICN) that enters the nucleus and interacts with the DNA binding CSL/
RBP-Jk factor, constituting a transcriptional activation complex with a mastermind-like (MAML) 
family coactivator. This ultimately promotes the transcription of target genes, controlling crucial bio-
logic processes, such as survival, proliferation, and differentiation (20). Besides the canonical ICN/
CSL/MAML-dependent transcriptional activation, RBP-Jk-independent non-canonical NOTCH 
signaling have also described (21, 22).
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NOTCH signaling was first studied for its fundamental role 
in the early step of lymphopoiesis (23) and it has been implicated 
also in mature T cell function (24–26). More recently, NOTCH 
signaling has emerged as a new regulator of acute (27–32) and 
cGvHD (33). In this review, we will focus on NOTCH signaling 
and aGvHD.

nOTCH SiGnALinG iS ACTivATeD 
DURinG GvHD in DOnOR T CeLLS

NOTCH and alloimmune responses have been extensively studied 
in GvHD and in non-GvHd models. In Severe Aplastic Anemia 
(SAA) mouse model, Roderick et  al. (34) showed NOTCH 
signaling mediate Th1 cell differentiation and T-BET expression. 
Treatment with γ-secretase inhibitors (GSIs) reduced NOTCH 
and T-BET expression and rescued mice from SAA.

In the setting of GvHD, the Kean group (35) demonstrated 
the existence of NOTCH-related signature in alloreactive T cells 
harvested from a non-human primate model.

The Maillard group reported that NOTCH signaling is 
a strong regulator of T-cell activation, differentiation, and 
function during GvHD (28, 36). Murine models of allo-HCT 
showed that inhibition of canonical NOTCH signaling mark-
edly decreased GVHD severity and mortality (28–30). NOTCH 
inhibition dramatically reduced the accumulation of alloreac-
tive T cells in the gut. Interestingly, NOTCH-inhibited T cells 
significantly retained their antileukemic activity. By using 
humanized antibodies and conditional genetic models, Tran 
et al. (29) demonstrated that all the effects of NOTCH signal-
ing during GvHD were dependent on NOTCH1/2 receptors in 
T cells and Dll1/4 ligands in the recipient, with dominant roles 
for NOTCH1 and Dll4 (29). NOTCH-inhibited T cells acquire a 
hyporesponsive phenotype in both CD4 and CD8 populations. 
NOTCH deprived T cells markedly reduced cytokine produc-
tion but maintain their expansion capacity and their in  vitro 
cytotoxic ability (30).

The exact mechanisms of NOTCH modulation in T cells remain 
to be elucidated. Mochizuki et al. (37) in murine model showed 
that during GvHD, inflammatory DCs Dll4 ligand positive pro-
duce significantly high level of IFN-γ and IL-17. More recently, 
Chung et  al. (27) showed that NOTCH signal are delivered to 
donor T cells shortly after transplantation and that host stromal 
cells are the source for NOTCH ligands during in vivo priming 
of alloreactive T cells. Interestingly, Luo et al. (38) have shown 
in an MHC-mismatched murine all-BMT model, inhibition of 
NOTCH signaling reduce the incidence of GvHD by reducing 
DCs and CD8 T cell proliferation and activation.

NOTCH pathway inhibition could be therapeutically targeted 
by: (1) GSIs that block the proteolytic activation after the 
NOTCH/NOTCH ligand interaction (39). However, the use 
of GSIs in murine model of GvHD is associated with a severe 
toxicity in the gut epithelium (29); (2) monoclonal antibodies 
directed against NOTCH ligands such as Dll1–4 (29); (3) we 
recently identified the calcium channel modulator bepridil as 
a new NOTCH1 pathway inhibitor in Chronic Lymphocytic 
Leukemia (40). It represents an attractive therapeutic strategy 
to prevent also GvHD (Figure 1).

ReGULATORY T CeLLS (Tregs) 
DOwnReGULATe nOTCH SiGnALinG  
in DOnOR T CeLLS

Regulatory T  cells suppressed alloimmune reactions like, for 
example, GvHD (41). They also promoted tolerance to alloge-
neic organ transplants (42). Adoptive Treg/conventional T  cell 
(Tcons)-based immunotherapy in full-haplotype mismatched 
transplantation practically eliminated acute and cGvHD, sup-
ported post-transplant immunological reconstitution and exerted 
a strong GvL effect (43–48) in high-risk AL patients.

Although the mechanisms underlying Treg suppression of 
GvHD with no loss of GvL activity remain to be unraveled, the 
principal hypotheses are based on (a) the Treg/Tcon homing 
and distribution patterns and (b) different molecular pathways 
in Tcon activation and proliferation and, consequently, GvL 
and GvHD. Interestingly, using humanized antibodies and con-
ditional genetic mouse models to inactivate NOTCH signaling 
in donor T cells markedly reduced GvHD severity and mortal-
ity (28–30). NOTCH signaling other than a cell autonomous 
mechanism can be modulated with an extrinsic signal from an 
adjacent interacting cell. Current evidence suggests that Tregs 
and anti-NOTCH1 compounds inhibit the same NOTCH ligands 
and receptors on Tcons (29, 49). Mimicking the drug-mediated 
NOTCH1 inhibition (30), Tregs directly inhibited NOTCH1 
signaling on Tcons in vitro and in vivo, with the blockade being 
observed on CD4 and CD8 cells from mouse lymph nodes (49). 
Jagged1 and Dll4 NOTCH1 ligands, played major roles (49) with 
Dll4 being reported to mediate all NOTCH signaling effects in 
Tcons during GvHD (29). As a GvHD prevention strategy, using 
alloantigen-specific Tregs which preferentially inhibit alloreac-
tive Tcons to downregulate NOTCH1 clearly offers advantages 
over administering pharmaceutical agents which exert a total 
blockade on NOTCH1 signaling on all Tcons.

CD39–NOTCH1 pathway crosstalk was also demonstrated 
(49). In fact, NOTCH1 expression and signaling on Tcons were 
restored when CD39 was blocked by the anti-CD39 monoclonal 
antibody or polyoxometalate-1 (POM-1), the selective CD39 
inhibitor (49). Increased cAMP levels were associated with 
NOTCH1 reduction in Tcons; adding anti-CD39 reduced cAMP 
levels and reversed the Treg-mediated NOTCH1 reduction. 
GvHD reappeared in mice after POM-1 administration (49). In 
vitro studies (50–52) showed that blocking Abs or chemical prod-
ucts downmodulated the CD39/adenosine axis and reversed Treg 
suppression of T cons. Although the Treg mechanisms of action 
are multiple and partially unclear (53), these data showed that 
Tregs triggered NOTCH1 downregulation directly in Tcons and 
acted through the CD39/adenosine axis to inhibit the NOTCH 
pathway which, in turn, regulates Tcon proliferation (Figure 1). 
This mechanism of action could account for Treg-induced inhibi-
tion of Tcon proliferation which was observed by others (30).

Interestingly, in CD4 and CD8 cell populations, NOTCH1 
downregulation was more marked in peripheral blood than in 
bone marrow (54). Tregs were demonstrated to block Tcons in 
the periphery but not in bone marrow (55). We could speculate 
that Treg homing patterns play a major role in these results. Tregs 
could have downregulated NOTCH1 expression in peripheral 
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FiGURe 1 | NOTCH signaling and graft-versus-host disease (GvHD). The effects of NOTCH signaling during GvHD are dependent on NOTCH1/2 receptors in 
T cells and Dll1/4 ligands in the recipient, with dominant roles for NOTCH1 and Dll4. Inhibition of canonical NOTCH signaling by γ-secretase inhibitor (GSI)-inhibitor, 
anti Dll1–4 antibodies, bepridil, and regulatory T cells (Tregs) markedly decreased GVHD (28–30). Tregs inhibit the NOTCH/NOTCH ligand interactions. They act 
through the CD39/adenosine axis to inhibit the NOTCH pathway which, in turn, regulates T cell proliferation and consequently inhibits GvHD. Blocking CD39/
adenosine axis reverts NOTCH inhibition and favors GvHD onset (49).
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tissue because they homed there while, because of different 
migratory properties, they homed less efficiently, or not at all, 
to bone marrow. Translation of tissue-specific NOTCH1 expres-
sion into a strong GvL effect without GvHD, needs, however, 
to be elucidated in depth. A Treg-related NOTCH1 blockade 
could account for clinical and experimental evidence that Tregs 
prevented GvHD and facilitated a powerful Tcon-dependent GvL 
effect (44, 45). Consequently Treg-mediated NOTCH inhibi-
tion, like drug-induced NOTCH downregulation (28–30) may 
separate GvHD from GvL. This finding has major implications 
for adoptive immunotherapy strategies in the field of transplanta-
tion for leukemia.

MeSenCHYMAL STeM CeLLS (MSCs) 
ReCRUiT inDUCeD Tregs (iTregs) BY 
ACTivATinG nOTCH SiGnALinG

NOTCH1 signaling is also involved in Treg cell differentiation. 
Liotta et  al. had described Jagged1 involvement in MSC sup-
pression of T-cell proliferation (56). Our group showed when 
cocultured with CD3+ cells, MSCs induced a T-cell population 
with a regulatory phenotype (57). When CD4+ T  cells were 

cocultured with MSCs, the NOTCH1 pathway was found to be 
activated (58). Using GSI-I or the NOTCH1 neutralizing anti-
body to inhibit NOTCH1 signaling reduced HES1 expression 
(the NOTCH1 downstream target) and the percentage of MSC-
induced CD4+CD25highFOXP3+ cells in vitro (58) (Figure 2). 
In human cells FOXP3 is another NOTCH signaling downstream 
target (58), thus data from murine models were extended (59). 
NOTCH signaling activation reversed the unstable regulatory/
suppressive properties of iTreg cells, ensuring sustained FOXP3 
expression and stable Treg-cell phenotypes (58). No crosstalk 
between NOTCH1 and TGF-β signaling pathways was observed 
(58). Previous studies had demonstrated TGF-β production was 
involved in MSCs-mediated Treg cell induction (60, 61) and 
reported TGF-β/NOTCH1 crosstalk (58) in peripheral Treg cell 
maintenance. Lack of T-cell receptor stimulation in the work by 
Del Papa et al. may account for the discrepancy with other reports 
(58, 62–64). Together, these findings indicated that NOTCH1 
pathway activation played a role in MSC-mediated human Treg-
cell induction. In conclusion while on one side our observation 
on MSC-T cell coculture suggest a positive role of NOTCH in 
the generation of iTregs, on the other side NOTCH inhibition 
(drug or Treg mediated) in mature donor T cells is associated with 
reduction in GvHD severity and mortality.
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FiGURe 2 | Mesenchymal stem cells (MSCs) recruit induced Tregs (iTregs) by activating Notch signaling. When cocultured with CD4+ cells, MSCs induced a T-cell 
population with a regulatory phenotype (iTregs) (57). NOTCH1 pathway is activated in CD4+ T cells cocultured with MSCs. Inhibition of NOTCH1 signaling through 
γ-secretase inhibitor (GSI)-I or the NOTCH1 neutralizing antibody reduced expression of HES1 and the percentage of MSC-induced CD4+CD25highFOXP3+ cells 
in vitro (58).
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COnCLUSiOn AnD PeRSPeCTiveS

Allogeneic immune system played a crucial role not only in 
mediating the onset of GvHD but also in eradicating malignancy, 
i.e., the GvL effect. Separating GvHD from GvL represent a major 
challenge. GvHD prophylaxis and treatment is mainly based on 
immunosuppressive treatment with drugs such as cyclosporine, 
tacrolimus, methotrexate, antithymocyte globulin, and gluco-
corticoids (4). Data reviewed here showed NOTCH1 as a new 

major regulator of alloreactivity. Triggering NOTCH pathway 
with pharmacological (GSIs, Ab anti-Notch) or cellular (Tregs) 
ways might represent a new strategy to separate GvHD from GvL.
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