
www.toc.ui.ac.ir

Transactions on Combinatorics

ISSN (print): 2251-8657, ISSN (on-line): 2251-8665

Vol. 6 No. 3 (2017), pp. 1-9.

c⃝ 2017 University of Isfahan

www.ui.ac.ir

COMMON EXTREMAL GRAPHS FOR THREE INEQUALITIES INVOLVING
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Abstract. Let δ(G), ∆(G) and γ(G) be the minimum degree, maximum degree and domination number

of a graph G = (V (G), E(G)), respectively. A partition of V (G), all of whose classes are dominating sets

in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is

called the domatic number of G, denoted d(G). It is well known that d(G) ≤ δ(G)+1, d(G)γ(G) ≤ |V (G)|
[6], and |V (G)| ≤ (∆(G) + 1)γ(G) [3]. In this paper, we investigate the graphs G for which all the above

inequalities become simultaneously equalities.

1. Introduction

All graphs considered in this paper are finite, undirected, loopless, and without multiple edges. We

refer the reader to the book [9] for graph theory notation and terminology not described here. We denote

the vertex set and the edge set of a graph G by V (G) and E(G), respectively. For a subset S ⊆ V (G)

the subgraph induced by S is the graph ⟨S⟩ with vertex set S and edge set {xy ∈ E(G) : x, y ∈ S}. The

complement G of G is the simple graph whose vertex set is V and whose edges are the pairs of nonadjacent

vertices of G. The square G2 of a graph G is another graph that has the same set of vertices, but in

which two vertices are adjacent when their distance in G is at most 2. We write Kn for the complete

graph of order n and Cr for the cycle of length r. For any vertex x of a graph G, NG(x) denotes the set

of all neighbors of x in G, NG[x] = NG(x)∪{x} and the degree of x is degG(x) = |NG(x)|. The minimum

and maximum degree of a graph G are denoted by δ(G) and ∆(G), respectively.

A set of vertices D in a graph G is a dominating set if every vertex in V (G)−D is adjacent to at least

one vertex in D. The domination number of a graph G, denoted by γ(G), is the minimum cardinality
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of a dominating set of G. A dominating set of G is a γ-set, if its cardinality is γ(G). A graph G is

said to be excellent if every vertex belongs to some γ-set. A dominating set D of a graph G is called

an efficient dominating set (an ED-set) if the distance between any two vertices in D is at least three.

Not all graphs have ED-sets. If G has an ED-set, then any ED-set is a γ-set of G [1]. A partition of a

nonempty set X is a family of nonempty subsets of X such that every element x in X is in exactly one of

these subsets. A domatic partition of a graph G is a partition of V (G) into dominating sets. Since V (G)

is a dominating set of G, each graph has a domatic partition. The domatic number d(G) of G is the

maximum number of elements in a domatic partition of G. The concept of domatic number of a graph

was introduced by Cockayne and Hedetniemi [6]. A domatic partition of order d(G) is a d-partition. The

problem of obtaining such a partition is known to be NP -complete even for circular arc graphs [2] but

can be solved in linear time for interval graphs [14]. A graph G is called uniquely domatic, if G has

exactly one d-partition. A graph G is called domatically critical if after deleting an arbitrary edge from

G, a graph with a smaller domatic number than that of G is obtained [4]. The domatic partition problem

arises in various situations of locating facilities in a network. Assume that a node in a network can access

only resources located at neighboring nodes (or at itself). Then if there is an essential type of resource

that must be accessible from every node (a hospital, a printer, a file, etc.), copies of the resource need

to be distributed over a dominating set of the network. If there are several essential types of resources,

each one of them occupies a dominating set. If each node has bounded capacity, there is a limit to the

number of resources that can be supported. In particular, if each node can only serve a single resource,

the maximum number of resources supportable equals the domatic number of the graph [8].

A set of vertices I ⊆ V (G) is independent if no two vertices in I are adjacent. An independent

dominating set in G is a set of vertices of G which is both independent and dominating. Partitions into

independent dominating sets of V (G) were first considered as particular domatic partitions under the

term of indominable partitions [5] or idomatic partitions [18]. Now the term idomatic is more usual

(cf. for instance [15]). Not each graph has an idomatic partition. When an idomatic partition exists on

a graph G, then G is called idomatic and the idomatic number id(G) equals the maximum number of

elements in an idomatic partition.

To continue we need the following results.

Theorem A. For any n-vertex graph G,

(i) [6] d(G) ≤ δ(G) + 1 and d(G)γ(G) ≤ n, and

(ii) [3] n ≤ (∆(G) + 1)γ(G).

In this paper, we mainly turn our attention to the graphs G for which all the inequalities in Theorem

A become simultaneously equalities.

2. Results

A graph G without isolated vertices is said to be δ-edge critical if δ(G) > δ(G− e) for each e ∈ E(G)

[10]. Clearly each k-regular graph, k ≥ 1, is δ-edge critical. A graph G is said to be domatically full

if d(G) = δ(G) + 1. All elements of the following classes of graphs are domatically full: (a) trees with
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at least 2 vertices [6], (b) outerplanar graphs [6], (c) cycles on 3k vertices [6], and (c) strongly chordal

graphs [7].

Theorem 2.1. Let G be a δ-edge critical and domatically full graph. Then the following holds:

(i) d(G) = id(G) and each domatic partition of order d(G) is idomatic.

(ii) If D1, . . . , Dk is a domatic partition of G with k = δ(G) + 1, then (a) each connected component

of the graph ⟨Di ∪Dj⟩ is a star, i, j = 1, . . . , k and i ̸= j, and (b) if x ∈ Di ∪Dj is of minimum

degree in G, then x is a leaf of ⟨Di ∪Dj⟩.
(iii) If G is regular and the partition D1, . . . , Dk is as in (ii), then ⟨Di ∪Dj⟩ is 1-regular for all

i, j = 1, 2, . . . , k, i ̸= j.

(iv) G is domatically critical.

Proof. Since G is δ-critical, the set Mδ consisting of all vertices of G having degree more then δ(G) is

independent or empty. Consider any domatic partition D1, . . . , Dk of G with k = d(G). Since G is

domatically full, k = δ(G) + 1. Let x ∈ Di and deg(x) = δ(G). Since each Dj , j ̸= i, dominates x, each

Dj contains exactly one vertex of N(x). Hence x is a leaf of ⟨Di ∪Dj⟩ and Di is independent. But then

D1, . . . , Dk is an idomatic partition of G and if a vertex y ∈ V (⟨Di ∪Dj⟩) is in Mδ, then all its neighbors

are leaves. Thus, (i) and (ii) are satisfied. Clearly, (iii) is an immediate consequence of (ii).

(iv) Since G is δ-edge critical, δ(G − e) = δ(G) − 1 for each edge e in G. Now by Theorem A,

d(G− e) ≤ δ(G− e) + 1 = δ(G) ≤ d(G)− 1. Thus, G is domatically critical. □

An efficient domination partition (or an ED-partition) of a graph G is a partition of V (G) into ED-

sets. We say that a graph G is an efficient domination partitionable graph (or an EDP-graph) if G has

an ED-partition. First results on the graphs whose vertex set has a partition in ED-sets are obtained by

Mollard in [13]. Clearly, any ED-partition of an EDP-graph is both a domatic partition and an idomatic

partition of order d(G) = id(G). A graph G is a uniquely efficient domination partitioned graph (or a

UEDP-graph) if it has only one ED-partition.

The next theorem shows that each regular domatically full graph is an EDP-graph, and vise versa.

Theorem 2.2. Let G be a graph of order n. Then the following assertions are equivalent.

(i) G is an EDP-graph.

(ii) G is regular and domatically full.

(iii) n = γ(G)(∆(G) + 1) and n = d(G)γ(G).

Proof. (i) ⇒ (ii): Any 2 vertices in the same closed neighborhood of a vertex of G belong to different

ED-sets. Hence d(G) ≥ ∆(G) + 1. This and Theorem A(i) leads to δ(G) = ∆(G) and d(G) = δ(G) + 1.

Thus G is regular and domatically full.

(ii) ⇒ (iii): By Theorem A, we know that n ≤ γ(G)(∆(G)+1) and d(G)γ(G) ≤ n. Since δ(G) = ∆(G)

and d(G) = δ(G) + 1, (iii) is clearly valid.

(iii) ⇒ (ii): By (iii), we immediately have d(G) = ∆(G)+1. But d(G) ≤ δ(G)+1 (Theorem A). Hence

(ii) hods.
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(ii) ⇒ (i): Let D1, . . . , Dk be a d-domatic partition of G. Hence k = d(G) = δ(G)+1. By Theorem 2.1,

this partition is idomatic and ⟨Di ∪Dj⟩ is 1-regular for all i, j = 1, 2, . . . , k, i ̸= j. Therefore D1, . . . , Dk

is an ED-partition of G. □

Corollary 2.3. Let G be a s-regular graph. If s ∈ {0, 1} then G is an EDP-graph. If s = 2 then G is an

EDP-graph if and only if the order of each connected component of G is divisible by three.

Observation 2.4. (Folklore) Let G be a graph of order n.

(i) If G has an ED-set D whose all vertices have a maximum degree then n = (∆(G) + 1)γ(G).

(ii) Let n = (∆(G)+1)γ(G). Then all γ-sets of G are efficient dominating, and each vertex belonging

to some γ-set of G has maximum degree. If G is excellent then G is regular.

Proof. (i) Obvious.

(ii) Let D = {x1, . . . , xr} be a γ-set of G. Then

(2.1) n = | ∪r
i=1 N [xi]| ≤

r∑
i=1

(deg(xi) + 1) ≤ r(∆(G) + 1) = γ(G)(∆(G) + 1).

Suppose that n = γ(G)(∆(G) + 1). Then the inequalities in (2.1) must be equalities. Therefore N [xk] ∩
N [xl] is empty and deg(xi) = ∆(G) for all k, l, i ∈ {1, 2, . . . , r} and k ̸= l. Thus, D is an ED-set and

since D was chosen arbitrarily, each γ-set is an ED-set. The rest is obvious. □

Proposition 2.5. Let G be an EDP-graph.

(i) [16] Then G is domatically critical.

(ii) [16] Any domatic partition D1, . . . , Dk of G, where k = δ(G) + 1, is an ED-partition of G and

the graph ⟨Di ∪Dj⟩ is 1-regular, i, j = 1, . . . , k and i ̸= j.

(iii) Each γ-set of G is efficient dominating.

(iv) If G is an UEDP-graph, then G is uniquely domatic.

Proof. (i) By Theorem 2.2, G is regular and domatically full. Now Theorem 2.1(iv) implies G is domat-

ically critical.

(ii) Immediately by Theorem 2.1(iii).

(iii) Theorem 2.2 and Observation 2.4(ii) together leads to the required.

(iv) Immediately by (iii). □

Proposition 2.6. Let G be an n-order r-regular graph and n = γ(G)(r + 1) = γ(G)(∆(G) + 1). Then

G ∈ {Kn,Kn}.

Proof. Clearly G is a (n − r − 1)-regular graph. If γ(G) = 1 then G = Kn. If γ(G) = n then G = Kn.

So, let n > γ(G) ≥ 2. By Observation 2.4, any γ-set of G is effcient dominating. Hence any two vertices

in a γ-set of G are at distance at least 3 and must form a γ-set of G. Then n = γ(G)(r + 1) = 2(n− r),

which implies n = 2r and γ(G) = 2− 2/(r + 1), a contradiction. □

Corollary 2.7. The graphs G and G are both EDP-graphs if and only if one of them is complete.
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3. Examples

In this section we present some examples of EDP-graphs. A crown graph Hn,n, is a graph obtained

from the complete bipartite graph Kn,n by removing a perfect matching.

Example 3.1. Let G = Hn,n, n ≥ 3, V (G) = {vi, ui | i = 1, 2, . . . , n} and E(G) = {viuj | i ̸= j}. Then

all γ-sets of G are {ui, vi}, i = 1, 2, . . . , n. Obviously, they form the unique ED-partition of G. Thus, G

is an UEDP-graph.

Denote by Zn = {0, 1, . . . , n − 1} the additive group of order n. Let S be a subset of Zn such that

0 ̸∈ S and x ∈ S implies −x ∈ S. The circulant graph with distance set S is the graph C(n;S) with

vertex set Zn and vertex x adjacent to vertex y if and only if x − y ∈ S. It is clear from the definition

that C(n;S) is vertex-transitive and regular of degree |S|.

Example 3.2. Let G = C(n = (2k + 1)t; {1, . . . , k} ∪ {n − 1, . . . , n − k}), where k, t ≥ 1. Denote by

Dr the set all elements of which are r, r + (2k + 1), · · · , r + (2k + 1)(t− 1), where addition is taken mod

(2k+ 1)t and r ∈ {0, . . . , (2k+ 1)t− 1}. Clearly all Dr’s are ED-sets, and D0, D1, . . . , D2k is the unique

ED-partition of G. Thus, G is an UEDP-graph.

Example 3.3. Let G = C(n; {±1,±s}) where 2 ≤ s ≤ n− 2 and s ̸= n/2. Then G has an ED-set if and

only if 5|n and s ≡ ±2 (mod 5); in addition, all ED-sets in G have the form Di = {v ∈ V (G) | v ≡ i

(mod 5)} [11]. Thus (a) G is an EDP-graph if and only if 5|n and s ≡ ±2 (mod 5), and (b) if G is an

EDP-graph then G is an UEDP-graph.

Let n ≥ 3 and k ∈ Zn − {0}. The generalized Petersen graph P (n, k) is the graph on the vertex-set

{xi, yi | i ∈ Zn} with adjacencies xixi+1, xiyi, and yiyi+k for all i. The graph P (n, 1) is equivalent to the

n-prism.

Example 3.4. A graph P (n, k) is an EDP-graph if and only if n ≡ 0 (mod 4) and k is odd. If P (n, k)

is an EDP-graph, then P (n, k) is an UEDP-graph. In particular, an n-prism is an UEDP-graph if and

only if n ≡ 0 (mod 4).

Proof. A generalized Petersen graph P (n, k) has an ED-set if and only if n ≡ 0 (mod 4) and k is odd

(Theorem 1 [12]). Moreover, by the proof of this theorem it follows that each vertex of P (n, k) belongs

to exactly one ED-set. Let n = 4r and k odd. We construct the only ED-partition D0, D1, D2, D3 of

P (n, k) as follows: Ds = {u4i+1+s | 0 ≤ i ≤ r− 1} ∪ {v4i+3+s | 0 ≤ i ≤ r− 1}, s = 0, 1, 2, 3. Thus P (n, k)

is an UEDP-graph. The rest is obvious. □

For two graphs G1 and G2, the Cartesian product G1□G2 is the graph with vertex set V (G1)×V (G2)

and (x1, x2)(y1, y2) ∈ E(G1□G2) if and only if x1y1 ∈ E(G1) and x2 = y2 or x2y2 ∈ E(G2) and

x1 = y1. The Cartesian power G□n of a graph G is the graph recursively defined by G□1 = G, and

G□n = G□(n−1)□G for d > 1. The hypercube of dimension n is the graph Qn = K□n
2 .

Example 3.5. The following result (reformulated in our present terminology) is from [13].
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(i) Let G and H be two n-regular EDP-graphs and let H be bipartite. Then G□H□P2 is an EDP-

graph.

(ii) Let G be a bipartite EDP-graph. Then G□2k□Q2k−1 is an EDP-graph, k ≥ 1.

The wreath product of graphs G andH is the graph, GwrH with vertex set V (GwrH) = V (G)×V (H)

and edge set E(GwrH) = {(x, y)(v, w) | xv ∈ E(G), or x = v and yw ∈ E(H)}. Informally, GwrH is

the graph obtained by replacing each vertex of G by a copy of H and putting all possible edges between

copies of H that replaced adjacent vertices of G.

Example 3.6. If G is an EDP-graph, then GwrKr is also an EDP-graph.

Proof. Let (Di = {x1i , x2i , . . . , xsi})ki=1 be an ED-partition of G, and let V (Kr) = {y1, . . . , yr}. Then

(U j
i = {(x1i , yj), (x2i , yj), . . . , (xsi , yj)})ki=1

r
j=1 is an ED-partition of GwrKr. □

4. EDP-graphs of order at most 10

We say that the partitions (Di)
r
i=1 and (Uj)

s
j=1 of a set X are orthogonal whenever |Di ∩ Uj | = 1 for

all i = 1, 2, . . . , r and j = 1, 2, . . . , s.

The next observation is obvious but useful in the sequel.

Observation 4.1. Let π = (Di = {x1i , x2i , . . . , xsi})ki=1 be an ED-partition of an EDP-graph G.

(A1) Then σi = (NG[x
j
i ])

s
j=1 is a partition of V (G) which is orthogonal to π, i = 1, 2, . . . , k. If k ≥ 2

then G − Di is an EDP-graph, π − Di is an ED-partition of V (G − Di), and (NG(x
j
i ))

s
j=1 is a

partition of V (G−Di) which is orthogonal to π −Di.

(A2) Let τ = (Uj)
s
j=1 be a partition of V (G) which is orthogonal to π. Define the graph G′ as obtained

from G by adding s new vertices u1, u2, . . . , us and s(∆(G) + 1) new edges, so that G is an

induced subgraph of G′ and NG′(uj) = Uj. Then G′ is an EDP-graph, π′ = π ∪{u1, u2, . . . , us} is

an ED-partition of G′, and τ ′ = (Uj ∪ {uj})sj=1 is a partition of G′ which is orthogonal to π′.

(A3) Gr = ⟨∪r
i=1Di⟩ is an EDP-graph for all r = 1, . . . , k.

We next give some applications of Observation 4.1. Denote by EDPn the set of all n-vertex mutually

non-isomorphic EDP-graphs.

Theorem 4.2. Let n be a positive integer.

(i) Kn,Kn ∈ EDPn and whenever n is prime, EDPn = {Kn,Kn}.
(ii) EDP4 = {K4, 2K2,K4}.
(iii) EDP6 = {K6, 3K2, 2K3, C6,K6}.
(iv) EDP8 consists of K8, 4K2, 2K4,H4,4 = Q3,K8 and the 3-regular connected graph G0 obtained from

2 disjoint copies of K4 − e by adding 2 edges.

(v) EDP9 = {K9, 3K3,K3 ∪ C6, C9,K9}.
(vi) EDP10 consists of K10, 5K2, 2K5, H5,5 = C(10; {±1,±3}),K10 and the graphs G1, . . . , G5 depicted

in Fig. 1.
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Figure 1. Graphs G1, . . . , G5.

Proof. First note that all graphs mentioned in (i)–(vi) are clearly EDP-graphs. Consider any G ∈ EDPn.

We know by Theorem 2.2 that G is regular and n = γ(G)d(G) = γ(G)(∆(G) + 1). Hence if n is prime,

then either ∆(G) = 0 and G = Kn, or ∆(G) = n− 1 and G = Kn. Thus, (i) holds.

In what follows, let n ∈ {4, 6, 8, 9, 10}. If ∆(G) ∈ {0, 1, 2} then G ∈ {K4, 2K2,K6, 3K2, 2K3, C6,K8,

4K2,K9, 3K3,K3 ∪ C6, C9}, because of Corollary 2.3. If ∆(G) = n − 1 then clearly G = Kn. So, let

3 ≤ ∆(G) ≤ n − 2. Since ∆(G) + 1 is a divisor of n, only the following 2 cases are possible: (a) n = 8

and ∆(G) = 3, and (b) n = 10 and ∆(G) = 4.

Case 1: n = 8 and ∆(G) = 3. Hence γ(G) = 2 and d(G) = 4. Let D1, D2, D3, D4 be any ED-partition

of G. By Observation 4.1, G−D4 is a 2-regular 6-vertex EDP-graph; hence by (iii), G−D4 ∈ {2K3, C6}.
It is easy to see that G ∈ {2K4, G0} when G−D4 = 2K3, and G ∈ {G0, Q3} when G−D4 = C6. Thus,

(iv) holds.

Case 2: n = 10 and ∆(G) = 4. Hence γ(G) = 2 and d(G) = 5. Consider any ED-partition D1, . . . , D5

of G. Note that G − D5 is a 3-regular 8-vertex EDP-graph because of Observation 4.1. Now by (iv),

G − D5 ∈ {2K4, Q3, G0}. It is not hard to see that (a) G ∈ {2K5, G2, G3} when G − D5 = 2K4, (b)

G ∈ {G1, . . . , G5} when G − D5 = G0, and (c) G ∈ {G1, G4,H5,5} when G − D5 = Q3. Thus, (vi) is

valid. □

Proposition 4.3. Let G be a s-regular EDP-graph of order n, where n− 1 > s ≥ 3.

(i) Then s ̸∈ {n− 3, n− 2}.
(ii) s = n− 4 if and only if G = C6.

(iii) s = n− 5 if and only if G ∈ {K5, 3K2, 2K4, Q3, G0}.
(iv) s = n− 6 if and only if G ∈ {K6, 2K5,H5,5, G1, . . . , G5}.
(v) If n− s− 1 is a prime, then n = 2s+ 2 and γ(G) = 2.

Proof. Obviously n ≥ 5. By Theorem 2.2, n = γ(G)(s + 1) = d(G)γ(G) and d(G) = s + 1. Hence

n/(s + 1) is an integer. But then (i) holds. Note now that all graphs mentioned in (ii)–(vi) are clearly

EDP-graphs.
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(ii) Since n/(n− 3) is an integer and n ≥ 5, we have n = 6 and s = 2. Hence G = C6.

(iii) n/(n− 4) is an integer implies that either (n = 5, s = 0 and then G = K5), or (n = 6, s = 1 and

G = 3K2), or (s = 3 and G ∈ EDP8). The result follows by Theorem 4.2(iv).

(iv) As n/(n − 5) is an integer, either G = K6 or (s = 4 and G ∈ EDP10). By Theorem 4.2(vi) we

immediately obtain the required.

(v) Since p = n − s − 1 is a prime and γ(G) = n/(s + 1) = 1 + p/(s + 1), it follows that either G is

edgeless or (p = s+ 1, γ(G) = 2 and n = 2p). □

5. Uniquely colorable graphs

The chromatic number χ(G) of a graph G is the minimum number of independent subsets that partition

the vertex set of G. Any such minimum partition is called a χ-partition of V (G). A graph G is called

uniquely χ(G)-colorable if G has exactly one χ-partition. Each member of the only χ-partition of a

uniquely χ(G)-colorable graph G is an independent dominating set of G; hence G is idomatic [5]. We

need the following result, due to Zelinka [17].

Theorem B. [17] Let G be a regular and domatically full graph. Then d(G) = χ(G2) and each χ-partition

of G2 is a domatic partition of G with d(G) members and vice versa. Furthermore, G is uniquely domatic

if and only if G2 is uniquely χ(G2)-colorable.

Theorem 5.1. Let G be a graph for which one of the following holds.

(i) G = Hn,n, n ≥ 3.

(ii) G = C(n = (2k + 1)t; {1, . . . , k} ∪ {n− 1, . . . , n− k}), where 1 ≤ k ≤ (n− 1)/2 and t ≥ 1.

(iii) Let G = C(n; {±1,±s}), where 5|n, 2 ≤ s ≤ n− 2, s ≡ ±2 (mod 5) and s ̸= n/2.

(iv) G = P (n, k), where n ≡ 0 (mod 4) and k is odd.

Then G2 is uniquely χ(G2)-colorable and d(G) = χ(G2).

Proof. Examples 3.1–3.4 show that all graphs in (i)–(iv) are UEDP-graphs. By Proposition 2.5(iv) all

these graphs are uniquely domatic. The result now immediately follows by Theorem B. □
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