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AIDS dementia complex (ADC) and HIV-associated neurocognitive disorders (HAND) are

complications of HIV-1 infection. Viral infections are risk factors for the development of

neurodegenerative disorders. Aging is associated with low-grade inflammation in the

brain, i.e., the inflammaging. The molecular mechanisms linking immunosenescence,

inflammaging and the pathogenesis of neurodegenerative disorders, such as Alzheimer’s

disease (AD) and Parkinson’s disease, are largely unknown. ADC and HAND share some

pathological features with AD and may offer some hints on the relationship between

viral infections, neuroinflammation, and neurodegeneration. β2-microglobulin (β2m) is

an important pro-aging factor that interferes with neurogenesis and worsens cognitive

functions. Several studies published in the 80–90s reported high levels of β2m in the

cerebrospinal fluid of patients with ADC. High levels of β2m have also been detected

in AD. Inflammatory diseases in elderly people are associated with polymorphisms of

the MHC-I locus encoding HLA molecules that, by associating with β2m, contribute

to cellular immunity. We recently reported that HLA-C, no longer associated with β2m,

is incorporated into HIV-1 virions, determining an increase in viral infectivity. We also

documented the presence of HLA-C variants more or less stably linked to β2m. These

observations led us to hypothesize that some variants of HLA-C, in the presence of

viral infections, could determine a greater release and accumulation of β2m, which in

turn, may be involved in triggering and/or sustaining neuroinflammation. ADC is the most

severe form of HAND. To explore the role of HLA-C in ADC pathogenesis, we analyzed

the frequency of HLA-C variants with unstable binding to β2m in a group of patients

with ADC. We found a higher frequency of unstable HLA-C alleles in ADC patients, and

none of them was harboring stable HLA-C alleles in homozygosis. Our data suggest

that the role of HLA-C variants in ADC/HAND pathogenesis deserves further studies. If
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confirmed in a larger number of samples, this finding may have practical implication for

a personalized medicine approach and for developing new therapies to prevent HAND.

The exploration of HLA-C variants as risk factors for AD and other neurodegenerative

disorders may be a promising field of study.

Keywords: HIV, AIDS, HLA, AIDS dementia complex (ADC), HIV-associated neurocognitive disorders (HAND),

β2-microglobulin (β2m)

INTRODUCTION

Neurovirulence is detectable in patients infected with
human immunodeficiency virus type 1 (HIV-1) both in the
early (i.e., acute infection) and the later stages of the disease.
During the acute infection, 25–50% of HIV-1 patients show
neurological symptoms within 3–6 weeks after infection whereas
central nervous system (CNS) complications appear, to a variable
extent, during the course of HIV-1 infection (1). In early studies
on HIV-1 neurovirulence, the neurological syndromes were well
described, and the most severe CNS form was defined as AIDS
dementia complex (ADC) (2).

The cerebral complications of HIV-1 infection, which include
disturbances of cognitive, behavioral, motor and autonomic
functions, still represent an issue in everyday practice (3).
The old concept of ADC (2, 4), a condition not commonly
encountered today in Western countries because of the wide
use of combination antiretroviral treatment (cART), has been
replaced by the wider term HIV-associated neurocognitive
disorders (HAND) (3, 5). HAND encompasses cognitive
syndromes caused by HIV-1 itself, as opposed to opportunistic
infections, and includes HIV-1-associated asymptomatic
neurocognitive impairment (ANI), HIV-1-associated mild
neurocognitive disorder (MND), andHIV-1-associated dementia
(HAD) (5), the latter conditions corresponding to ADC.

HAD represents the most severe form of the spectrum of HIV-
related CNS syndromes. Risk factors for HAD were reported by
several studies and they include nadir CD4 count, increasing
age, substance abuse, anemia, viral co-infection and viral clade
subtypes (6, 7). Before the introduction of cART, the prevalence
of dementia showed an annual incidence of 7% among subjects
in the later stages of infection (4). Following cART introduction,
HAD cases dramatically decreased, as newly diagnosed moderate
to severe dementia changed from 6.6% in 1989 to 1% in 2000 (8).

The pathogenesis of CNS damage by HIV-1 is multifactorial
and mediated by direct and indirect mechanisms (9). The
early detection of acute meningoencephalitis in several patients
indicates a rapid involvement of the brain (10). HIV-1 enters
the CNS either via infected monocytes and lymphocytes or
through choroid plexus infection (11, 12). The impairment of the
blood-brain barrier is associated with inflammation by cytokine-
driven mechanisms. In the brain, HIV-1 mainly replicates
in macrophage/microglial cells thus determining the onset of
chronic local inflammation. The pathological hallmark of HIV-
1 infection in the brain is represented by multinucleated giant
cells, which are formed by cellular syncytia of HIV-1 infected
macrophages (2, 13). In addition, HIV-1 infection of astrocytes

was detected in patients with HIV-1 associated encephalopathy
(14). It is noteworthy that astrocyte activation and increased glial
fibrillary acidic protein expression do not represent a specific
response to HIV-1 infection, but are associated with other
neurological conditions, such as neurodegenerative diseases (15,
16).

The persistent HIV-1 infection in the macrophages and
microglia causes the releases of the phospholipid ligand PAF,
glutamate, arachidonic acid, quinolinic acid, nitric oxide, and
several pro-inflammatory cytokines including IL-1β, IL-6, TNFα,
and TRAIL: all these factors are involved in neural damage
(12, 17–23).

Persistent CNS inflammation and chronic immune activation
play an important role in the pathogenesis of neurological
diseases (24) where inflammatory mediators, such as neopterin,
quinolinic acid, monocyte chemoattractant protein 1 and
β2-microglobulin (β2m) were found to be increased (25).
Importantly, these markers are also elevated in the CSF from
patients with HAD suggesting that increased immune activation
is related to more severe damage.

Most likely, the complexity of the pathogenetic model is not
related to a one-dimensional and direct pathogenetic event, but
rather to multi-dimensional and complex immunopathological
processes that are governed by viral as well as by host factors (3).

β2-Microglobulin, HLA-C Variants and HIV
Infection
Several old studies reported abnormally high β2m levels in sera
of HIV-1 infected patients with high p24 concentrations and a
reduced number of lymphocytes (26–28). High levels of β2m
were also detected in the cerebrospinal fluid (CSF) of HIV-1
infected patients with ADC (29–32). HIV-infected individuals
without dementia showed a consistent correlation between β2m
levels in plasma and CSF. Contrarily in patients with dementia,
CSF β2m level was found to be increased independently from
that in plasma β2m levels, indicating intrathecal β2m production,
which was proposed to be used as a marker for HIV-1 dementia
(25). This association between β2m high levels and HIV-1
infection has never been fully explained and clarified.

β2m is associated with HLA proteins (A, B, or C) and a small
peptide forming the major histocompatibility complex type I
(MHC-I), which plays an important role in the activation and
modulation of cellular immunity. The interaction between β2m
and HLA in the MHC-I complex stabilizes the structure of β2m
(33).

The immune complex made by HLA-C, β2m, and peptide
expressed on the cell surface tends to dissociate and to generate
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a pool of free-chains molecules devoid of β2m. This higher HLA-
C instability, compared to HLA-A and -B, is caused by the
presence of a specific amino acid sequence in the groove that
binds the peptide (34), which reduces its plasticity and increases
its instability (35).

The binding stability of different HLA-C variants and β2mwas
documented through the analysis of the relationship between free
and β2m associated HLA-C molecules (35). Recently, differences
in specific HLA-C domains were reported to influence the
peptide binding stability (36), supporting the hypothesis of the
existence of HLA-C variants with a higher or a lower binding
stability to β2m.

We previously reported that HLA-C is incorporated on HIV-
1 virions increasing their infectivity (37–39), that the expression
of HIV-1 Env on the cell membrane promotes the formation of
HLA-C molecules as free-chain, no longer bound to β2m (40)
and that HLA-C variants bind more or less strongly to β2m.
We showed that some HLA-C variants may be predominantly
associated with β2m on the cell membrane, while other ones are
predominant as free-chains, dissociated from β2m (41). In the
same study, we reported that some unstable HLA-C variants,
such as C∗03 or C∗07, are also the ones previously described
to have a low expression level, while some stable variants
such as C∗02, C∗06, C∗12, or C∗16, are highly transcribed
and expressed (41). HLA-C expression has been associated
with a different ability to control HIV-1 infection, with high
HLA-C expression levels associated to a better control of
HIV-1 infection, and low HLA-C expression levels associated
with poor HIV-1 control and rapid progression to AIDS (42–
44).

β2-Microglobulin: A Possible Pathogenetic
Role in Hand and Neurodegeneration
β2m is one of the main markers of immune activation and
inflammation in CSF in HAND (25, 45, 46).

In the CNS, β2m is involved in the regulation of brain
development and plasticity of synapses (47–49). High levels
of β2m are potentially neurotoxic, and β2m reduction has a
protective effect in animal models of dementia (50). β2m has
also been reported to be a pro-aging factor impairing cognitive
functions (51).

β2m is responsible for “dialysis-related amyloidosis,” a clinical
condition that is caused by β2m accumulation as insoluble
protein aggregate (52) in joints, bones, and muscles (53).
Studies on fatal hereditary systemic amyloidosis identified a
natural variant of β2m which shows a dramatic decrease
in thermodynamic stability and a remarkable increase in
aggregation propensity (54, 55).

Of interest, high CSF levels of β2m were detected in
neurodegenerative conditions, such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) (56–59), which are caused by
protein misfolding and abnormal aggregation (60), but the
potential pathogenetic significance of this finding is still unclear.

Symptomatic similarities between HAD/ADC and AD have
been documented (61). It has been shown that the Apo-ε4
haplotype, a known risk factor for AD, enhances the infectivity

of HIV-1 (62) and that HIV-infected patients harboring the Apo-
ε4 allele have excess dementia and peripheral neuropathy (63).
ApoE has been found to stabilize and enhance the deposition of
β2m amyloid fibrils (62, 64–67). In addition, the pathogenesis
and clearance of the amyloid-β peptide (Aβ), the pathological
hallmark feature of AD, may be influenced by HIV-1 infection.
Enhanced amyloidosis has been reported in patients with HAND
(68). Neurofibrillary tangles containing hyperphosphorylated
tau protein are a pathological hallmark of AD. A significantly
higher concentration of tau has been reported in brain tissues
of HAD patients (68–71). The loss of neuroprotective functions
of microglial cells has been suggested to contribute to the
development of AD. A similar phenomenon is observed in HIV-
infected patients since the virus can infect microglial cells, and
loss of neuroprotection might trigger neurodegenerative process,
leading to HAD (72).

After the report of patients with AD pathology and HIV-1
infection, the hypothesis that HIV-1 could create conditions ripe
for AD development, and that a link between the two diseases
does exist, has been considered (73). The view that ADC and
AD share some pathogenetic pathways may pave the way for
future studies comparing the commonalities between the two
conditions.

Inflammaging, Viral Infections, and
Neurodegenerative Diseases
The term “inflammaging” characterizes a widely accepted
paradigm that aging is accompanied by a low-grade chronic up-
regulation of pro-inflammatory responses (74). Inflammaging is
supposed to interact with processing and production of Aβ and
to be important in the prodromal phase of AD (75). Chronic viral
infections may contribute to inflammaging. Infections caused
by cytomegalovirus (CMV) (76), herpes simplex (HSV) I (77–
79), human herpes virus 6 (80), varicella zoster, Epstein-Barr,
influenza, arboviruses, rabies and polyoma viruses, coxsackie
and other enteroviruses, echoviruses (81, 82) have all been
suspected to be associated with increased risk of developing
CNS and neurodegenerative diseases, such as AD (83) and
PD (84). β2m is involved in several viral infections, such as
CMV, HSV, coxsackieviruses, echoviruses, and others (81, 82,
85–88). CMV has the ability to remove β2m from MHC-I
molecules when it binds to cells it will infect (86–88), and to
express an MHC-I homolog that binds and sequesters β2m (89).
A very recent study reports that cell-free particles from the
respiratory syncytial virus (RSV) and HSV type 1 may catalyze
amyloid aggregation in the extracellular environment, suggesting
a new connection between viral infections and neurodegenerative
diseases (90).

We thus hypothesized that some HLA-C variants which more
easily dissociate from β2m will have a higher proportion of free
heavy chains, increasing HIV-1 infectivity and promoting β2m
release, which in turn may contribute to chronic inflammation
and may be involved in the pathogenesis of HAND. Similar
phenomena may also contribute to the pathogenesis of
neurodegenerative conditions such as AD and PD, potentially
triggered by other infectious agents.
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MATERIALS AND METHODS

Participants
With the introduction of cART for HIV-1, patients
developing ADC have become rare; as a consequence, we
were able to collect only a very limited number of subjects.
From a database of almost 1100 HIV-infected subjects followed
since 1985 by the Infectious Diseases Outpatient Clinic, Azienda
Ospedaliera Universitaria Integrata Verona, we retrospectively
selected patients who had an unequivocal diagnosis of ADC.
Among these, only 11 were still available for blood sample
collection and DNA extraction and analysis. We analyzed HLA-
C variants in 11 HIV-1 infected individuals with ADC/HAD
(HIV-ADC group), which was diagnosed using standardized
brain imaging and neuropsychological criteria (91, 92).

This study was carried out in accordance with the
recommendations of the Declaration of Helsinki. The protocol
was approved by the Institutional Review Board of the University
of Verona. All the patients, or their tutors in case of severe
dementia, gave written informed consent to participate in the
study.

The baseline characteristics of the patients (9 men, 2 women)
are shown in Table 1. The patients had a median age of 50
years (interquartile range, IQR 39–58); all of them were naive
to antiretroviral treatment. CD4+ T lymphocyte count and HIV
RNA load were determined at ADC diagnosis. The median
CD4+ T lymphocytes nadir was 50 cells/mm3 (IQR 26-157),
while the median plasmatic zenith HIV-RNA viral load was
71350 copies/mL (IQR 22300-141000). A lumbar puncture was
performed in 9 patients at the time when ADC was diagnosed,
with a median CSF HIV-RNA viral load of 204000 copies/mL
(IQR 70085-511500). The diagnosis of ADC was made using,
in addition to CSF HIV-RNA viral load, brain MRI, mini-
mental state examination (MMSE), and full neuropsychological
evaluation. The most common findings observed on brain
MRI were symmetric periventricular and deep white matter T2
hyperintensity and widespread cerebral atrophy. MMSE was<25
in all ADC patients. A full neuropsychological evaluation was
performed in 4 patients and showed mild-to-moderate dementia.
The severity of dementia in the remaining 7 patients made full
neuropsychological testing difficult.

We collected a control group of 16 HIV-infected patients
(14 men, 2 women; median age: 46.5 years, IQR 35.5-51) with
no neurocognitive disorders and MMSE ≥ 25 (HIV-no-ADC
group), whose baseline characteristics are reported in Table 2.
Gender and age did not significantly differ between patients and
control groups.

Patients were classified according to the CDC 1993
classification system, whereby HIV infection was divided
into three clinical categories (i.e., A, B and C). Category A
included the patients with asymptomatic acute (primary)
infection or persistent generalized lymphadenopathy. Category
C included the patients with AIDS-indicator conditions. The
symptomatic patients, who could not be classified in categories
A or C, were included in B one. HIV positive patients were
further sub-grouped according to the absolute lymphocyte T
CD4+ count (i.e., 1: >500 cells/µL; 2: 200–499 cells/µL; 3:

<200 cells/µL) (93). According to the CDC 1993 classification,
HIV-related neurological complications were described as HIV-
related encephalopathy and associated to category C. Hence,
HIV positive patients with ADC were classified in category C, as
was the case for our 11 HIV-ADC patients (Table 1).

HLA-C Typing
HLA-C alleles were classified as unstable (HLA-C∗01, ∗03, ∗04,
∗07, ∗14, ∗17, ∗18) or stable (C∗02, ∗05, ∗06, ∗08, ∗12, ∗15, ∗16)
according to previous phylogenetic, structural and densitometry
findings (35, 36, 41, 94).

HLA-C typing was carried out at the HLA laboratory of tissue
typing, Azienda Ospedaliera Universitaria Integrata (AOUI) of
Verona. The laboratory is accredited by the European Federation
of Immunogenetics (EFI) since 1999.

DNAwas prepared fromwhole blood using the QIAampDNA
Blood Kit (Qiagen) and HLA-C phototyping was performed by
PCR-SSP using the commercial kit “HLA-C SSP kit” BioRad,
followed by gel electrophoresis for the detection of positive bands
and the interpretation of the data (95).

Data Analysis
We compared HLA-C alleles (stable/unstable) and genotypes
distribution between the ADC group and the population
of northern Italy, low-resolution typing (96). Guerini and
coworkers (2008) described HLA-C allele frequencies in a
large Italian population cohort showing a consistent picture
of their distribution in Italy. These data can be currently
used as reference population for clinical and anthropological
studies. Similarly, we compared the HIV-no-ADC group
with the same reference population. Finally, we compared
the two HIV-infected groups, i.e., HIV-ADC vs. HIV-no-
ADC.

The significance of the association between groups of
categorical data (stable and unstable alleles) was examined using
2 × 2 contingency tables and the Fisher’s exact test, while
quantitative data were examined using the MannWhitney U test.
The Fisher’s exact test is conservative but guarantees type I error
control for small sample sizes.

Genetic associations were conducted using a 2 × 2
contingency table of 2N case-control by allele counts, where N
is the number of individuals tested. The strength of association
was reported as Odds Ratio (OR) with a 95% confidence interval
(CI).

When the statistical significance was tested under the
hypothesis of a specific direction of association (i.e., unstable
alleles are positively associated with ADC), a one-tailed
test was employed. A two-tailed test was instead used
when the association was explored without any expectation
about the direction of the association between the tested
variables. An association was deemed to be statistically
significant by setting a significant level of 5%, that is all
tests showing a nominal p-value < 0.05 were considered
to be statistically significant. Given the exploratory nature
of this study, no correction for multiple testing was
employed.
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TABLE 1 | Baseline characteristics of HIV-1 infected patients with AIDS dementia complex (HIV-ADC group).

No. Age

range

Infection

route

CDC CLASS

‘93

CD4+ T lymphocyte plasma nadir

(cells/µL, % of lymphocytes)

HIV RNA load

zenith

(copies/ml)

HIV RNA CSF at

ADC diagnosis

(copies/ml)

HLA-C

alleles

HLA-C

stability

1 46-50 BISEX C3 111 (7.3%) 52100 204000 03/04 U/U

2 56-60 IDU C3 50 (4%) 16250 72320 04/16 U/S

3 56-60 BISEX C3 26 (1%) 205000 >500000 04/07 U/U

4 31-35 BISEX C3 157 (7%) 22300 67850 03/07 U/U

5 36-40 BISEX C3 47 (8%) 62300 187000 02/07 S/U

6 36-40 HETERO C3 4 (1%) 98000 230000 06/07 S/U

7 36-40 HETERO C2 286 (17.5%) 11853 3066 07/16 U/S

8 61-65 HETERO C3 18 (9%) 267851 NA 02/18 S/U

9 56-60 IDU C2 468 (40%) NA NA 04/14 U/U

10 51-55 HOMO C3 41 (3%) 80400 523000 07/15 U/S

11 46-50 HOMO C3 56 (4%) 141000 6000000 04/07 U/U

BISEX, bisexual; IDU, injection drug user; HETERO, heterosexual; HOMO, homosexual; NA, not available; U, unstable HLA-C allele; S, stable HLA-C allele.

TABLE 2 | Baseline characteristics of the control group of HIV-infected patients without AIDS dementia complex (HIV-no-ADC group).

No. Age

range

Infection

route

CDC CLASS

‘93

CD4+ T lymphocyte plasma nadir

(cells/µL, % of lymphocyte)

HIV RNA load zenith

(copies/ml)

HLA-C

alleles

HLA-C

stability

1 41-45 HETERO A1 362 (14.1%) 4380 01/07 U/U

2 31-35 HOMO A2 304 (15%) 200000 03/07 U/U

3 21-25 HOMO B3 601 (39%) >10000000 04/12 U/S

4 51-55 BISEX A2 302 (18.2%) 32000 07/12 U/S

5 51-55 IDU A1 328 (20%) 21000 04/12 U/S

6 31-35 HOMO C2 268 (14%) 1328 07/12 U/S

7 56-60 HETERO A1 221 (17%) 253061 06/12 S/S

8 36-40 HOMO A3 60 (7.1%) 191463 07/12 U/S

9 61-65 BISEX A1 713 (17%) 481000 04/15 U/S

10 31-35 BISEX A3 120 (7.4%) 200000 06/07 S/U

11 46-50 HOMO A2 300 (18.8%) 86000 06/12 S/S

12 46-50 BISEX A2 214 (20.2%) 16900 02/12 S/S

13 46-50 HOMO A1 294 (22%) 75200 04/07 U/U

14 56-60 HOMO A2 302 (28%) 30400 02/16 S/S

15 36-40 HOMO A2 391 (14%) 52900 14/15 U/S

16 46-50 HOMO A2 330 (20%) 72000 04/07 U/U

BISEX, bisexual; IDU, injection drug user; HETERO, heterosexual; HOMO, homosexual; U, unstable HLA-C allele; S, stable HLA-C allele.

RESULTS

All 11 HIV-ADC subjects carried unstable HLA-C alleles in
homozygosis (U/U, n = 5) or in heterozygosis (U/S, n = 6), but
none of them was carrying stable alleles in homozygosis (S/S;
Table 1).

Among the 16 HIV-no-ADC subjects, four carried unstable
HLA-C alleles in homozygosis (U/U), 4 stable alleles in
homozygosis (S/S) and eight were heterozygotes (U/S; Table 2).

The HLA-C stable/unstable allele distribution was different
between the HIV-ADC group (stable 27%, unstable 73%)
and the northern Italy population [stable 50%, unstable
50%; Fisher exact test, p = 0.029; OR 2.630 [CI: 1.112-∞];
Table 3].

No differences in alleles distribution were observed when the
HIV-no-ADC group (stable 50%, unstable 50%) was compared
with the northern Italy population [Fisher exact test, p = 0.584;
OR 0.098 [CI: 0.514-∞]; Table 3].

We also compared the HIV-ADC group with the HIV-no-
ADC group, showing a slight difference in stable/unstable HLA-
C alleles distribution [Fisher’s exact test, p = 0.082; OR 2.618
[CI: 0.870-∞]; Table 3]. The two groups differed neither for sex
(Fisher’s exact test, p= 1.000) nor for age (MannWhitney U test,
p= 0.312).

The two HIV-infected groups did not differ for HIV RNA
zenith level (Mann Whitney U test, p = 0.896), while they
were different for CD4+ T lymphocyte nadir (Mann Whitney U
test, p = 0.001). The lower CD4 count in HIV-infected patients
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TABLE 3 | HLA-C alleles distribution (stable, unstable) in HIV-infected patients

with ADC (HIV-ADC), HIV-infected patients without ADC (HIV-no-ADC), and in

northern Italy (96).

HIV-ADC HIV-no-ADC Northern Italy

HLA-C unstable 16 16 771

HLA-C stable 6 16 761

TABLE 4 | HLA-C allele 12 distribution in HIV-infected patients with ADC

(HIV-ADC), HIV-infected patients without ADC (HIV-no-ADC), and in northern Italy

(96).

HIV-ADC HIV-no-ADC Northern Italy

HLA-C*12 0 8 261

HLA-C Others 22 24 1271

with ADC is the consequence of the longer duration of HIV-1
infection with worsening immunodeficiency, which was frequent
in the pre-cART times.

Finally, we analyzed the distribution of the different HLA-C
alleles between the 3 groups.

We found interesting differences on HLA-C subtypes, in
that HLA-C∗12 appeared to be absent in the HIV-ADC group
(0%) when compared either with the reference northern Italy
population (17%, p = 0.038) and with the HIV-no-ADC group
(25%, p = 0.016; Table 4). No difference was observed for the
distribution of HLA-C∗12 between the HIV-no-ADC group and
the northern Italy population (p= 0.237; Table 4).

DISCUSSION

Our results, despite being very preliminary, and derived from
a small sample of patients, may have some implications for
better understanding HAND/ADC pathogenesis and eventually
improve the treatment of this condition.

ADC was common in patients with HIV-1 infection during
disease progression in the pre-cART era (97). The introduction
of cART regimens tackled the onset of ADC in these patients and
reduced the likelihood and severity of HAND, indicating that the
treatment of HIV-1 infection is essential to reduce neurological
damage (98). At variance, the prevalence of less severe HAND
syndromes is 46% of HIV-1-infected people and is expected to
increase in the next years (99). Why HAND prevalence did not
significantly decrease after the introduction of cART (100) is
poorly understood (3).

To answer this question, we hypothesized that the
development of HAND could be associated with the expression
of specific unstable variants of HLA-C and the subsequent CNS
release and deposition of free β2m, which has been reported to be
neurotoxic and to deteriorate cognitive functions (50, 51). To this
aim, from a large database of nearly 1100 HIV-infected subjects,
we retrospectively selected patients who had an unequivocal
diagnosis of ADC, the most severe form of HAND. Only 11

among them were still available for sample collection, DNA
extraction, and analysis.

Our findings showed a higher frequency of unstable HLA-
C alleles in HIV-1 infected patients who developed ADC in
comparison to northern Italy general population. This finding
argues in favor of a possible involvement of β2m in triggering
and/or sustaining the development of neurologic complications
of AIDS. In contrast, the HIV-infected population without ADC
showed the same distribution than the general population of
northern Italy, thus excluding the hypothesis that the higher
frequency of unstable HLA-C alleles is associated with a higher
susceptibility to HIV-1 infection. The present data raise the
question whether patients expressing unstable HLA-C alleles in
the control group did not develop ADC. We speculate that
unstable alleles might predispose to ADC pathogenesis, but other
viral and host factors (e.g., time of infection, HIV subtypes,
immunological response) could contribute to the development
of HAND/ADC. Moreover, the degree of stability vary across
different alleles, and exploring single HLA-C variants may help
better stratify the risk of ADC/HAND.

We observed an unexpected lower frequency of HLA-C∗12,
a stable HLA-C variant, in HIV-ADC subjects. Recent studies
reported a protective role of HLA-C∗12 in HIV-1 infection (101,
102). It would be tempting to speculate that the presence of HLA-
C∗12 might have some kind of protective effect on the risk of
developing ADC inHIV-infected individuals. A study on a higher
number of cases, allowing the analysis of the effect of single HLA-
C alleles on the risk of developing neurological diseases in HIV-1
patients is definitely needed, to confirm this very preliminary but
also very tempting observation.

HIV-1 neurovirulence could contribute to the dissociation of
β2m from HLA-C molecules, as a consequence of the association
of HIV-1 Env with unstable HLA-C variants (40). A three amino
acid position in HIV-1 gp120 glycoprotein was recently reported
to be associated with HAND (99).

The treatment of HAND is still is an issue in the era of cART
(103, 104), as the improvement of neurocognitive symptoms to
cART is variable (105), mild neurocognitive impairment is found
in some patients, and factors predicting a response in single
patients are unknown. Indeed, several studies demonstrated that
cART is not effective on HAND in all HIV-1 positive patients
(106, 107).

It would be reasonable to use antiretroviral drugs with high
CNS penetration/effectiveness score, such as darunavir, abacavir
or raltegravir (108, 109), to reduce the risk of HAND. However,
some antiretroviral drugs are potentially neurotoxic: they may
increase the production of Aβ protein by neurons and reduce
its microglial phagocytosis, leading to the deposition of amyloid
plaques in the CNS (68, 110). If our hypothesis is confirmed
by further studies, an antiretroviral therapy with CNS-targeted
drugs might be considered for patients with unstable HLA-C
variants, paying attention to the possible side effects of some of
them.

Effective cART suppresses HIV-1 replication and increases
the immune system activity, thus determining a beneficial
effect on the CNS through the reduction of HIV viral load,
viral neurotoxic proteins production, and neuroinflammation.
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However, neuroinflammation may still be active as microglial
activation in specific brain areas, including the hippocampus and
temporal cortex, whereas in pre-cART era these changes were
more common in the basal ganglia (111). Chronic inflammation
and other immune mechanisms triggered by viral infection,
rather than direct HIV-1 involvement, may thus play a key role
in HAND pathogenesis.

ADC is rare nowadays due to the cART, and, despite
our efforts, we were not able to recruit a larger ADC
sample. We are fully aware that our data are preliminary
and should be considered with caution. However, they are
appealing and may pave the way for recruiting a larger
population of patients through a multicenter study. If
confirmed in larger populations of patients, these findings
would suggest that HIV-infected patients carrying specific
unstable variants of HLA-C should undergo strict monitoring
of neuropsychological and neurological symptoms to promptly
recognize early HAND stages. Moreover, CSF β2m levels might
be explored as a molecular biomarker to recognize early HAND
stages, given the absence of specific tests for this condition
(112).

The observation we reported may be a starting point to
explore whether some HLA-C variants are associated with
higher risk of CNS viral infection, neuroinflammation and
neurodegenerative disorders (113, 114). HLA-C∗07, which is one
of the most unstable variants (36), was found to be associated
with AD (115). Similarly, very old studies associated HLA-C∗03,
another unstable HLA-C variant, to higher AD risk (116–118).

There are many features in common between HAND/ADC
and AD, including clinical features that overlap between the
two conditions (61). Aβ peptide biogenesis and clearance may
be influenced by HIV-1 infection (119). Increased Aβ amyloid
has been reported in up to 72% of HIV-1 patients with HAND
(68), but also in 38% of those without HIV-1 but no cognitive
symptoms (73, 119). We may speculate that shared pathogenetic
mechanisms in response to neurotropic viral infections (e.g.,
herpesviridae) may contribute to Aβ amyloid deposition in AD
patients without HIV-1 and that neuroinflammation due to β2m
release in patients with unstable HLA-C alleles may accelerate
this phenomenon.

The large number of HIV-infected patients under cART
with a long-life expectancy due to a nearly complete control
of viral load raises concern about their risk of cognitive
dysfunction in the presence of cardiovascular risk factors
(e.g., smoking, hypertension, diabetes, hypercholesterolemia)
(120) that are known to increase also the risk of AD (121).
The presence of unstable HLA-C variants might be explored
as a possible predictor for worse cognitive performance at
older age in HIV-infected patients with cardiovascular risk
factors.

CONCLUSIONS

Our very preliminary data suggests that HIV-1 infected
individuals carrying unstable HLA-C allelic variants may

be at higher risk of CNS complications. Specifically, we
observed that alleles encoding unstable HLA-C variants were
more frequent in HIV-1 infected patients who developed
ADC, the most severe HAND subtype. The identification
of specific variants of HLA-C as risk factors for HAND
can provide a contribution both in the field of personalized
medicine and for the development of new therapies, aimed at
preventing and/or reducing neurocognitive damage in AIDS
patients.

Given the potential commonalities between HIV-induced
aging, neurocognitive decline and AD that represent a promising
future hot research topic (73), our findings might be helpful
for better understanding the pathogenesis, and for identifying
disease-modifying therapeutic strategies to be offered to patients
at higher risk of neurodegenerative disorders at presymptomatic
disease stages.
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