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Abstract. In this paper, we initially introduce the concept of n-distance-balanced property which

is considered as the generalized concept of distance-balanced property. In our consideration, we also

define the new concept locally regularity in order to find a connection between n-distance-balanced

graphs and their lexicographic product. Furthermore, we include a characteristic method which is

practicable and can be used to classify all graphs with i-distance-balanced properties for i = 2, 3

which is also relevant to the concept of total distance. Moreover, we conclude a connection between

distance-balanced and 2-distance-balanced graphs.

1. Introduction and preliminaries

During a few decades ago, a great interest has been devoted to the study of graph theory. Recently,

a new class of graphs so-called distance-balanced graphs have been introduced and then investigated

in several papers (see [2]-[8], [12]-[14]).

We know that equilibrium in communication networks and its preservation in inevitable events

is so important and vital. In network optimization, we sometimes need to remove some links to

prevent additional costs. One of the most important flaws in the concept of distance-balanced is that

a removal of an edge always destroys the property of being distance-balanced (see [11, Proposition

3.1]). Throughout this paper, we initially introduce the concept of n-distance-balanced property

which reduces this problem to some extent.

In the following, we recall some basic definitions which will be needed further on. Let G be a

finite, undirected and connected graph with diameter d, and let V (G) and E(G) denote the vertex
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set and the edge set of G, respectively. For u, v ∈ V (G), we let d(u, v) = dG(u, v) denote the minimal

path-length distance between u and v. For a pair of adjacent vertices u, v of G we denote

WG
uv = {x ∈ V (G)|d(x, u) < d(x, v)}.

Similarly, we can define WG
vu. These quantities studied in earlier literature, especially with relation

to the Wiener index (of trees) and the Szeged index [4, 5, 8]. Also, consider the notion

uW
G
v = {x ∈ V (G)|d(x, u) = d(x, v)}.

Note that for any edge uv ∈ E(G) the sets WG
vu, W

G
uv and uW

G
v form a partition of V (G) but if G

is connected and bipartite graph, then the vertex set of G is partitioned into only WG
vu and WG

uv.

As these notions play a crucial role in metric graph theory, Jerebic and Klavz̆ar [11] introduced the

following class of graphs based on these sets.

Definition 1.1 ([11]). We say that G is distance-balanced whenever for an arbitrary pair of adjacent

vertices u and v of G there exists a positive integer γuv, such that

|WG
uv| = |WG

vu| = γuv

Jerebic and Klavz̆ar [11] obtained some basic properties of these graphs and studied on this concept

with respect to symmetry conditions in graphs and local operations on graphs. They also proved that

distance-balanced Cartesian and lexicographic products of graphs can be characterized. Motivated

by the results of [6], Handa considered distance-balanced partial cubes and proved that they are

3-connected, with the exception of cycles and the complete graph of order two.

The aim of this paper is to introduce the notion of n-distance-balanced graph as an extended

version of the notion of distance-balanced, to provide examples of such graphs and discuss relations

between distance-balanced and n-distance-balanced properties from an special point of view, as well

as to prove some other results regarding these graphs. To do this, we first discuss some basic

properties of n-distance-balanced graphs in Section 2, and then we study n-distance-balanced graphs

in the framework of lexicographic product in Section 3. In Section 4, some characteristic results for

i-distance-balanced (i = 2, 3) are presented using the concept of total distance and existence of either

odd or even circles. Such results let us to discuss on classifying the n-distance-balanced graphs for

n > 3 in the later investigations which also require to have a connection between such graphs and the

concept of total distance. Finally, in Section 5, we highlight the most significant parts of obtained

results.

2. Basic properties of n-distance-balanced graphs and examples

Throughout of this section, we initially introduce a large class of graphs including distance-balanced

graphs which are called n-distance-balanced graphs and then we present some results and examples

concerning with this concept.
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Definition 2.1. A connected graph G is called n-distance-balanced if and only if for each u, v ∈ V (G)

with d(u, v) = n we have |WG
unv| = |WG

vnu| where

WG
unv = {x ∈ V (G)|d(x, u) < d(x, v)}.

Similarly, we can define WG
vnu. Also, consider the notion

uW
G
v

n
= {x ∈ V (G)|d(x, u) = d(x, v)}.

Similar to distance-balanced property we easily see that all three sets as above form a partition

for V (G). Besides, 1-distance-balanced property coincides to distance-balanced property and so the

collection of all n-distance-balanced graphs are larger than the set of all distance-balanced graphs. In

the following we first present some results for the graphs with n-distance-balanced property inspired

by the results related to distance-balanced property which are easily obtained and left without proof

(see also [11]) .

Proposition 2.2. A graph G of diameter d is n-distance-balanced if and only if

|N [a]/N [b]|+
d−1∑
k=2

|Nk(a)/Nk−1(b)| = |N [b]/N [a]|+
d−1∑
k=2

|Nk(b)/Nk−1(a)|

holds for all a, b ∈ V (G) with d(a, b) = n where

Nk(x) = {y|d(x, y) = k}, Nk[x] = {y|d(x, y) ≤ k}, x, y ∈ V (G), 1 ≤ k ≤ d,

and for k = 1, these notations are replaced by N(x) and N [x], respectively.

Corollary 2.3. Let G be a regular graph of diameter d. Then G is n-distance-balanced if and only

if

d−1∑
k=2

|Nk(a)/Nk−1(b)| =
d−1∑
k=2

|Nk(b)/Nk−1(a)|

holds for all a, b ∈ V (G) with d(a, b) = n.

Corollary 2.4. Let G be a graph with diameter d = 2. Then G is an n-distance-balanced graph if

and only if all vertices of distance n ≤ 2 in G have the same degree, that is,

∀a, b ∈ V (G), d(a, b) = n =⇒ deg(a) = deg(b).(2.1)

Remark 2.5. Comparing Corollary 2.4 as above with Corollary 2.3 in [11], which states all distance-

balanced graphs of diameter 2 are only regular graphs, we see that unlike distance-balanced graphs,

any n-distance-balanced graph with diameter 2 does not need to be regular and only some certain

vertices should be with the same degree.

In the following we present some well-known non-regular 2-distance-balanced graphs with diameter

2 which are satisfied in Corollary 2.4.
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Example 2.6. Complete bipartite graphs (or bicliques) Km,n (m ̸= 1 or n ̸= 1) are class of graphs

with diameter 2 which satisfy (2.1) and so are 2-distance-balanced. Therefore, all stars Sk with k > 1

as complete bipartite graphs K1,k are 2-distance-balanced graphs. Some of stars are shown in Figure

1. Notice that the mentioned graphs are not included in the class of distance-balanced graphs.

Figure 1. The star graphs S3, S4, S5 and S6

Example 2.7. Friendship graph (or Dutch windmill graph or n-fan) Fn is a planar graph with 2n+1

vertices and 3n edges. This graph is 2-distance-balanced but not distance-balanced. The friendship

graph Fn can be constructed by joining n copies of the cycle graph C3 with a common vertex (see also

[7]). In the following some of such graphs have been shown.

Figure 2. friendship graphs F2, F3 and F4

Example 2.8. Wheel graph Wn with n vertices (n ≥ 4) is a 2-distance-blanced graph formed by

connecting a single vertex to all vertices of an (n− 1)-cycle.

Figure 3. The wheel graphs W5,W6,W7,W8 and W9

Example 2.9. In the final example, we present two well-known 2-distance-balance graphs. The dia-

mond graph as a complete graph K4 minus one edge and the butterfly graph which can be constructed
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by joining two copies of the cycle graph C3 with a common vertex (and is therefore isomorphic to the

friendship graph F2) both are 2-distance-balance graphs. Note that similar to the previous examples

the mentioned graphs have diameter 2 and are not distance-balanced.

Figure 4. The butterfly graph and the diamond graph

We remark that there are several graphs which have the both distance-balanced and 2-distanced

properties, simultaneously. Here in Figure 5 we give an example for non-regular graph with both

distance-balanced and 2-distance-balanced properties.

Figure 5. Distance-balanced and 2-distance-balanced non-regular graph.

As observed in the examples, Corollary 2.4 is so efficient and can help us to classify all 2-distance-

blanced graphs with diameter 2 but the graphs with d = n > 2 is still discussable. We now give a

sufficient condition for n-distance-balance graphs which is inspired by Proposition 2.4 in [11] (with

similar proof) and concerned in connection between symmetry conditions and distance-balanced

property.

Proposition 2.10. Let G be a graph. If for any vertices a, b of V (G) with d(a, b) = n there exists

an automorphism φ of G such that φ(a) = b and φ(b) = a, then G is n-distance-balanced.

Definition 2.11. A graph G is said n-vertex-transitive if for any given vertices v1 and v2 of G with

d(v1, v2) = n, there is an automorphism f : V (G) → V (G) such that f(v1) = v2.

To determine n-vertex-transitive graphs, loosely speaking, all vertices with distance n look the

same. Moreover, following Definition 2.11 we easily see that any vertex-transitive graph is n-vertex-

transitive for all n. In the next section, we introduce a class of n-vertex-transitive graphs for n > 1

while they are not vertex-transitive.

Corollary 2.12. Suppose that graph G is n-vertex-transitive. Then G is n-distance-balanced.
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2.1. Affection of removal an edge on n-distance-balanced property. As we know that a

removal an arbitrary edge in a distance-balanced graph G implies loss of distance-balanced property,

the question arises, is this proposition true for n-distance-balanced property for each positive n or

not. In general, we can not find a suitable answer for this but applying Corollary 2.4 we are able to

access more information about 2-distance-balanced graphs. We easily observe that removal an edge

may not cause loss of 2-distance-balanced property and this is possible if we pick a certain vertex.

In order to prevent ambiguity, we call such edge a 2-distance-balanced preserving removal edge. See

the following example.

Example 2.13. Complete graphs K3, K4 and the diamond graph are 2-distance-balanced but there is

a 2-distance-balanced preserving removal edge e (see Figure 6) which does not destroy the 2-distance-

balanced property and it refers to the nature of this concept.

Figure 6. 2-distance-balanced preserving removal edge in K3, K4 and the diamond graph

Remark 2.14. Concerning with discussion as above we see that removal a certain edge may be

ineffective on 2-distance-balanced property. As a motivation, we notice that comparing to distance-

balanced property this is practically considered an advantage. For instance, in communicational

structures we may eliminate some certain links to prevent further costs so that it does not affect on

the network balance in the sense of distance-balanced property. This fact about 2-distance-balanced

property may help us to reach this goal.

Problem 2.15. Taking a look to all previous examples and using Corollary 2.4 a question is arose

that ” is there any 2-distance-balanced graph with d = 2 and without a central vertex (a vertex with

degree V (G)− 1)? ”.

3. n-Distance-balanced lexicographic product graphs

In this section, we determine which lexicographic products are n-distance-balanced. In order

to obtain a characteristic result for n-distance-balanced lexicographic product graphs we need to

introduce a new class of graphs containing the regular graphs and so the strongly regular graphs.

We recall that the lexicographic product of graphs G and H is the graph G ◦H with the vertex set

V (G)× V (H) and the edge set:

E(G ◦H) = {(a, u)(b, v) | ab ∈ E(G), or a = b and uv ∈ E(H)}.
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Definition 3.1. Let G be a connected graph. Then G is called locally regular graph if any non-

adjacent vertices in G have the same degree.

For example, the complete bipartite graph Km,n for m ̸= n, wheel graph Wn for n ≥ 5 and

friendship graph Fn for n ≥ 2 are locally regular graphs but not regular. Moreover, we easily can

construct a partially regular graph from a given r-regular graph while has not regularity. To do this,

consider an r-regular graph G with V (G) ̸= r + 1, then the graph G+ v obtained by adding vertex

v and E(G + v) = E(G) ∪ {uv|u ∈ V (G)} is a locally regular graph but not regular. In Figure 7,

we see the structure of a locally regular graph using Peterson graph while the obtained graph is not

regular.

Figure 7. A locally regular graph deduced by Peterson graph and vertex v

Moreover, we remark that we can add more vertices such as v1, v2, . . . , vk to regular graph G for

arbitrary k ∈ N and obtain locally regular graphs with sufficiently large size.

Remark 3.2. Following the construction of the class of locally regular graphs as above, we see that if

G is vertex-transitive, then G+ v is n-vertex-transitive (n > 1) and is not vertex-transitive since its

automorphism group does not act transitively upon its vertices including the vertex v. Using this fact

together with Corollary 2.12 we obtain so many n-distance-balanced graphs. Similar to the notion

of n-vertex-transitive graph, if we define n-symmetric graph based on symmetry, then G + v is n-

symmetric (n > 1) while it is not symmetric. Therefore, we see that the technique mentioned as

above can be applied in the other classes of graphs with new notions.

Remark 3.3. Following Corollary 2.4 we observe that the only 2-distance-balanced graphs with d = 2

are locally regular graphs, and vice versa.

Theorem 3.4. Let G and H be connected graphs. Then G ◦H is n-distance-balanced if and only if

G is n-distance-balanced and H is regular for n = 1 and locally regular for n > 1.

Proof. Obviously, for n = 1 since both concepts of 1-distance-balanced and distance-balanced graphs

are the same hence the statement and Theorem 4.2 in [11] are so and there is nothing to prove for
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this case. For n > 1, let G ◦H be n-distance-balanced. Bring in mind that

dG◦H((g, h), (ǵ, h́)) =


dG(g, ǵ); if g ̸= ǵ,

1; if g = ǵ and hh́ ∈ E(H),

2; if g = ǵ and hh́ /∈ E(H).

Suppose (a, x), (a, y) ∈ V (G ◦ H), x ̸= y and d((a, x), (a, y)) = n, then xy /∈ E(H). On the other

hand, for (u, v) ∈ V (G)× V (H) we have the following implication

d((u, v), (a, x)) < d((u, v), (a, y)) =⇒ u ̸= a, vx ∈ E(H), vy /∈ E(H),(3.1)

similarly,

d((u, v), (a, y)) < d((u, v), (a, x)) =⇒ u ̸= a, vy ∈ E(H), vx /∈ E(H).(3.2)

Since G ◦H is n-distance-balanced by applying (3.1) and (3.2) we get∣∣∣∣{v | vx ∈ E(H)

}∣∣∣∣ = ∣∣∣∣{v | vy ∈ E(H)

}∣∣∣∣.
Since xy /∈ E(H), the recent equality shows that any non-adjacent vertices of H have the same degree

which means H is a locally regular graph. Now consider (a, x), (b, y) ∈ V (G ◦ H) such that a ̸= b

and d((a, x), (b, y)) = n. Then d(a, b) = n and also we have

(u, v) ∈ WG◦H
(a,x)n(b,y), u /∈ {a, b} ⇐⇒ u ∈ WG

anb,(3.3)

similarly

(u, v) ∈ WG◦H
(b,y)n(a,x), u /∈ {a, b} ⇐⇒ u ∈ WG

bna.(3.4)

These facts together with the n-distance-balanced property of G ◦H imply that G is an n-distance-

balanced graph. We note that in the previous implications the case u ∈ {a, b} can never happen.

More precisely, by taking u = a (similarly u = b) we get

vx ∈ E(G) =⇒ (a, v) ∈ WG◦H
(a,x)n(b,y), (a, v) /∈ WG◦H

(b,y)n(a,x)

vx /∈ E(G) =⇒



(
(a, v) ∈ WG◦H

(a,x)n(b,y) ⇐⇒ n > 2

)
,

(
(a, v) ∈ (a,x)W

G◦H
(b,y)

n

⇐⇒ n = 2

)
,

(a, v) /∈ WG◦H
(b,y)n(a,x),

which is inferred from both that G ◦H can not be n-distance-balanced. Now, let G be n-distance-

balanced and H is locally regular. Consider (a, x), (b, y) ∈ V (G ◦H), a ̸= b and d((a, x), (b, y)) = n,
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then d(a, b) = n and we again obtain both relations (3.3) and (3.4) which shows that G ◦ H is n-

distance-balanced. Indeed, for such case G ◦H is n-distance-balanced if and only if G is n-distance-

balanced. Suppose that (a, x), (a, y) ∈ V (G ◦ H), x ̸= y and d((a, x), (a, y)) = n, then xy /∈ E(H)

and

(u, v) ∈ WG◦H
(a,x)n(a,y) ⇐⇒ u = a, xv ∈ E(H) and yv /∈ E(H),

also

(u, v) ∈ WG◦H
(a,y)n(a,x) ⇐⇒ u = a, yv ∈ E(H) and xv /∈ E(H).

Therefore,

WG◦H
(a,x)n(a,y) =

{
(a, v) | xv ∈ E(H), yv /∈ E(H)

}
,

WG◦H
(a,y)n(a,x) =

{
(a, v) | yv ∈ E(H), xv /∈ E(H)

}
,

which together with the fact that H is locally regular implies that G ◦H is n-distance-balanced and

the proof is completed. □

Taking G = mK1 of isolated vertices with V (G) = m, an immediate consequence can be obtained

by following an argument similar to that used in the proof of Theorem 3.4.

Corollary 3.5. Suppose that H is a connected graph. Then mK1 ◦H is n-distance-balanced if and

only if H is regular for n = 1 and partially regular for n > 1.

Remark 3.6. Corollary 3.5 shows that we can construct n-distance-balanced graphs with any order

by locally regular graphs.

4. Recognition of n-distance-balanced graphs

One possible way to attack the characterization problem for n-distance-balanced graphs at least

for some n is to try to classify such graphs based on the existence of odd or even circles in graph

and using the concept of total distance. As the most significant part of the paper this section is

dedicated to such investigation where the n-distance-balanced graphs would be characterized for

some n. However, for larger integers n the classification becomes very complicated so soon and

currently beyond our reach and may be infeasible by the concept of total distance.

Theorem 4.1 ([1]). Let graph G be a connected graph. Then G is distance-balanced if and only if

|{td(u) | u ∈ V (G)}| = 1 where td(u) denotes the total distance of u in G and is defined by

td(u) := d(u, V (G)) =
∑

v∈V (G)

d(u, v).
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Similarly, one can present some results for n-distance-balanced graphs with certain n. The follow-

ing result plays the role of a prototype in our discussion of this section which is inspired by Theorem

4.1.

Definition 4.2. The connected graph G has the property (△n) if for any u, v ∈ V (G) with d(u, v) = n

and x ∈ WG
unv the shortest path Pxv connecting x to v does not contain Pxu as the shortest path

connecting x to u.

We remark that the property (△n) as a sufficient condition is needed for the existence of circle in

the proof of the following theorems.

Theorem 4.3. Suppose that G is a connected graph and one of the following conditions holds:

(i): G has no odd circle, that is, G is bipartite;

(ii): G has the property (△2) with no even circle.

Then G is 2-distance-balanced if and only if for all u, v ∈ V (G) with d(u, v) = 2 we have d(u, V (G)) =

d(v, V (G)).

Proof. To prove it under condition (i), suppose that u, v are pair of vertices in G such that d(u, v) = 2,

then d(u, V (G)) = d(v, V (G)) is equivalent to

∑
x∈WG

u2v

d(u, x) +
∑

x∈WG
v2u

d(u, x) +
∑

x∈uW
G
v

2

d(u, x) =
∑

x∈WG
u2v

d(v, x) +
∑

x∈WG
v2u

d(v, x) +
∑

x∈uW
G
v

2

d(v, x)

which shows that

∑
x∈WG

u2v

(d(u, x)− d(v, x)) =
∑

x∈WG
v2u

(d(v, x)− d(u, x)).(4.1)

Now we prove that d(u, x)− d(v, x) = −2 for all x ∈ WG
u2v. Let x ∈ WG

u2v and d(x, u) = l(R) where

R is the shortest path connecting x to u. Then

l(R) = d(x, u) < d(x, v) ≤ l(R) + 2

which yields that d(x, v) = l(R)+ 1 or l(R)+ 2. If d(x, v) = l(R)+ 1 then there is an odd circle with

length 2l(R) + 1 or 2l(R) + 3 (see Figure 8). This is a contradiction since G is bipartite and thus

the claim is proved. We note that if path R crosses Q or P then we obtain some new cycles which

at least one of them is odd.
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Figure 8. vetices u, v and possible paths connecting x to u, v in G

Similarly, we have d(v, x)− d(u, x) = −2 for all x ∈ WG
v2u. Now (4.1) shows that

∑
x∈WG

u2v

(−2) =
∑

x∈WG
v2u

(−2)

and it holds if and only if G is 2-distance-balanced which completes the proof for the case (i). Now,

let G has the property (△2) with no even circle. Then following the proof in the previous case we

observe that d(x, v) = l(R) + 1 if d(x, u) = l(R) for all x ∈ WG
u2v. Because if d(x, v) = l(R) + 2 then

there is a path P with length l(R) + 2 connecting x to v (or path Q with length l(R) + 1 connecting

x to w) which shows that G has an even circle with length 2l(R) + 4 (or 2l(R) + 2) and this is a

contradiction (see Figure 8). According to Figure 9, we remark that if Q = P3 + P4 (or P ) crosses

R = P1 + P2 then l(P2) ≤ l(P4) since R is the shortest path connecting x to u. On the other hand,

considering both paths P2+P3 and P3+P4 we observe that l(P4) ≤ l(P2) which means that P2+P4

is an even circle and that is a contradiction.

Figure 9. vetices u, v and the intersecting paths R = P1 + P2 and Q = P3 + P4
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Therefore,

∑
x∈WG

u2v

(d(u, x)− d(v, x)) =
∑

x∈WG
v2u

(d(v, x)− d(u, x)) ⇐⇒
∑

x∈WG
u2v

(−1) =
∑

x∈WG
v2u

(−1)

and the consequence follows. □

Unlike simple look, Theorem 4.3 plays a crucial role to classify a group of the distanced-balanced

graphs with specified properties. Using the both recent theorems we have an immediate consequence

as follows.

Corollary 4.4. Suppose that G is bipartite and 2-distance-balanced. Then G is distance-balanced.

Remark 4.5. Based on Corollary 4.4 we observe that for any bipartite and 2-distance-balanced graph

G we have that Ge as a graph obtained from G by subdividing e ∈ E(G) is distance-balanced if and

only if G is a cycle (see [11, Proposition 3.3]).

In the following we give a similar condition for characterization of 3-distance-balanced graphs

based on the concept of total distance. For 3-distance-balanced graphs, the procedure is very much

analogous to that for 2-distance-balanced graphs.

Theorem 4.6. Suppose that G is a connected graph and has the property (△3) with no even circle.

Then G is 3-distance-balanced if and only if for all u, v ∈ V (G) with d(u, v) = 3 we have d(u, V (G)) =

d(v, V (G)).

Proof. Inspired by the proof of Theorem 4.3 we claim that

∑
x∈WG

u3v

(d(u, x)− d(v, x)) =
∑

x∈WG
v3u

(d(v, x)− d(u, x)) ⇐⇒
∑

x∈WG
u3v

(−2) =
∑

x∈WG
v3u

(−2).(4.2)

To prove this assertion we let x ∈ WG
u3v and d(x, u) = l(P ) where P is the shortest path connecting

x to u. Since l(P ) = d(u, x) < d(v, x) ≤ l(P ) + 3 hence d(v, x) ∈ {l(P ) + 1, l(P ) + 2, l(P ) + 3}. If

we have d(v, x) = l(P ) + 1 then following the property (△3) and using the paths Q,R or S there is

an even circle with length 2l(P ), 2l(P ) + 2 or 2l(P ) + 4, respectively, which is a contradiction (see

Figure 10). Similarly, if d(x, v) = l(P )+3 then using the paths Q,R or S there is an even circle with

length 2l(P )+ 2, 2l(P )+ 4 or 2l(P )+ 6, respectively, which is again a contradiction and so the claim

is proved. Similar to the proof of the former theorem we notice that the path P does not intersect

Q,R or S and the proof is completed.
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Figure 10. vetices u, v and possible distinct paths connecting x to u, v in G

□

Remark 4.7. If one may follow the process as above for n-distance-balanced graphs, then for x ∈
WG

unv and d(x, u) = l(P ) we get d(v, x) ∈ {l(P ) + 1, l(P ) + 2, . . . , l(P ) + n} which all n cases should

to be considered.

5. Conclusions

We have shown that it can be introduced a new sense of distance-balanced property so-called

n-distance-balanced and it seems this concept has more advantages than distance-balanced property.

Because first the distance-balanced graphs are included in the class of n-distance-balanced graph. Sec-

ond, unlike distance-balanced property removal a certain edge may not ruin the n-distance-balanced

property. Moreover, when a graph is a model for a real-life problem (say in economy, communication

networks, or some natural phenomena) we may encounter optimization problem and have to elimi-

nate some redundant costs and the recent property of n-distance-balanced is helpful in such cases.

Thus, in many situations the design of n-distance-balanced networks is highly desirable.

For further research, using the nicely distance-balanced and strongly distance-balanced properties

which both recently have been introduced one can define new concepts, similar to the technique we

applied and obtain results (see [1],[9]-[11]).
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