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Abstract. Existing research on construction time-cost tradeoff issues rarely explore the origin of the crashing cost. 
Crashing cost function was either assumed without much justification, or came from historical data of some real pro-
jects. As a result the conclusions of the papers can hardly be used to guide allocations of labor and equipment resources 
respectively.  The authors believe Cobb-Douglas function provides a much-needed piece to modeling the cost functions 
in the construction time-cost tradeoff problem during the crashing process. We believe this new perspective fills a gap of 
existing time-cost tradeoff research by considering project duration, labor and equipment cost as parameters of the Cobb-
Douglas production function.  A case study was presented to show how the proposed framework works. Our conclusion 
is that introducing Cobb-Douglas function into time-cost tradeoff problem provides us extra capacity to further identify 
the optimal allocations of labor and equipment resources during crashing.
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Introduction

Time-cost tradeoff problem (TCTP) has been intensively 
studied in construction scheduling research (Feng et al. 
1997, 2000; Hegazy 1999; Ng, Zhang 2008) to find out 
the best solutions in terms of minimizing the cost while 
shortening the project duration. Many different algo-
rithms and assumptions were used in searching the best 
solutions which are explained in detail later. 

Despite many existing researches on TCTP, very lit-
tle study was found in exploring or explaining the source 
or the origin of the cost increase during activity crash-
ing. Instead, in many studies, the cost functions associate 
with crashing were assumed, or based on historical data, 
or based on simulation results. Being able to explain quan-
titatively where the increased crashing costs come from is 
important to better understand the theoretical fundamental 
of TCTP.

There has been a lack of theoretical base to model 
the cost functions associated with activity crashing. Even-
smo and Karlsen (2008) were among the few researchers 
tried to explain the origin of cost increase during activity 
crashing. However, in their study they only discussed the 
causes due to labor input changes. A significant limitation 

in their approach is the lack of consideration of changes 
of equipment inputs during crashing activities. 

Considering many construction crews are composed 
of both labor and equipment, it is necessary to identify or 
develop new models to consider both labor and equipment 
changes during the activity crashing procedure, so we can 
more accurately modeling the crashing cost functions.

Cobb-Douglas production function (CDPF) (Eqn (1))  
(Cobb, Douglas 1928; Varian 1992) has been widely used 
in research on economics (Meeusen, van den Broeck 
1977; Dennis et al. 2010), technology progress (Sircar, 
Choi 2009), and productivity (Banker, Natarajan 2008; 
Pendharkar et al. 2008): 

 Q = A..Lb .Ka, (1)

where: Q – total production; L – labor input; K – capital/
equipment input; A – technology; α and β are the output 
elasticity of labor and capital respectively. 

In particular, CDPF models production, labor inputs, 
equipment/capital inputs and technology efficiency in a 
very elegant formation, which can be used to explain many 
types of production activities. Some important features of  
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CDPF (Fig. 1) are very useful in explaining the origin of 
the crashing cost under many different situations.

An Isoquant (Varian 1992) is a contour line drawn 
through the set of points at which the same quantity of 
output is produced while changing the quantities of inputs. 
Figure 1 shows a set of isoquants for a production function 
with two inputs of capital (K) and labor (L). K is equiva-
lent to or interchangeable with equipment in this paper.

One important feature of CDPF is reflected by the 
summation value of α and b. When the summation of a 
and b is less than 1 (DRTS) the double inputs of L and 
K will generate less than double output of Q. This is il-
lustrated by case from point C to D in Figure 1. When 
the summation of a and b is equal to 1 (CRTS) the dou-
ble inputs of L and K will generate double output of Q, 
which is illustrated by case from point B to C. When the 
summation of a and b is greater than 1 (IRTS) the double 
inputs of L and K will generate more than double output 
of Q,  which is illustrated by case from point A to B. 

In case that the production function is CRTS, it is 
introduced as:

  (2)

Another important feature related to this study is the ef-
ficiency of substituting part of labor (∆L) input for part of 
equipment input (∆K). As we can see in the isoquant curve 
of  Q = 6, the efficiency of substituting K for L is decreasing 
(from ∆K1∆L1 to ∆K2∆L2) as more labor replacements are 
added to generate the same amount of Q, in this case Q = 6.

Construction activity crashing can be achieved 
through increasing A, technology, or by increasing inputs 
of L and/or K in fixed period of time. In both cases the 
Q will increase in unit time period, which is essentially 
activity crashing. In this paper, we limit our scope of 
crashing within the allocation of L and K, while assum-
ing construction technology (A) is same during the crash-
ing process. This will allow us to focus our discussions 
on how to best utilize L and K in crashing.

The authors believe CDPF provides a feasible tool 
to model construction schedule crashing activities, es-
pecially model the time-cost trade-off problem. The ori-
gin or source of the cost increase in construction TCTP 
can be theoretically explained using CDPF. The duration 
crashing is achieved through increase either L or K or 
both, so to increase Q in a given time. The CDPF to-
gether with cost functions of both labor and equipment 
provide a potential way to incorporate detailed labor and 
equipment costs and utilization information into the time-
cost optimization model in construction TCTP.  

To this end, in the paper, the authors discuss a new 
framework for TCTP in construction using CDPF and 
GA. A case study is presented using the proposed frame-
work and the results are discussed. The authors believe 
the proposed CDPF framework for TCTP provide a new 
perspective for research in construction TCTP by ena-
bling further analysis on optimizing labor and equipment 
allocations during the activity crashing process. This ap-
proach enable the project managers to further understand 
his options in allocating appropriate combinations of la-
bor and equipment based on the CDPF. This additional 
capacity is a major contribution of this paper, which has 
not been reported in existing publications to our best 
knowledge. 

1. Related works

Existing publications on construction TCTP can be clas-
sified based on various cost function they assumed, 
different solution method, different objective function  
assumed for the problems, models and solution methods.

1.1. Construction crashing time-cost function
The relation between cost and the time has been well 
studied in various researches. Cost functions such as lin-
ear (Bazaraa, Shetty 1979; Fulkerson 1961), nonlinear 
(Moussourakis, Haksever 2010), discrete (Kelly 1961; 
this research), convex (Lamberson, Hocking 1970;  
Demeulemeester et al. 1993), and concave (Berman 1964)  
have been implemented in the studies on TCTP hitherto.

1.2. Objective function
Objective function in construction crashing cost analysis 
may vary significantly. Some researchers consider multi-
objective function and assume priority between time and 
cost, and base on that, they try to optimize the solution. 
Some consider minimizing total project cost. Some try 
to minimize total project cost or duration subject to pre-
defined constraints.

Moussourakis and Haksever (2010) considered three 
objective functions include minimizing project comple-
tion subject to a crash budget constraint, minimizing total 
project cost, and minimizing total cost under late comple-
tion penalties. They used nonlinear time-cost functions. 

Leu et al. (2001) tried to determine project  
completion time regarding project total cost which  
includes both direct and indirect cost. Some other authors 

Fig. 1. Illustrative isoquant curves from CDPF
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consider a limited budget for the project and try to mini-
mize the project duration under the budget constraints 
(Buddhakulsomsiri, Kim 2006).

Jaskowski and Sobotka (2006) proposed a multi-
criteria objective function which consider both time and 
cost together, and they end up with a Pareto set. They 
used an evolutionary algorithm to compare different so-
lutions based on fitness values.

One of the main assumptions or constraints, which 
highly considered in the literature, is the limitation of 
resources. Jaskowski and Sobotka (2004) try to minimize 
the project completion time regarding the limitation on 
resources. They also proposed an evolutionary algorithm 
to assign recourses to activities in a proper time.

Some authors assume chose different approach to 
cope with this problem. To avoid delay in projects, Lin 
et al. (2011), based on historical data, for prediction of 
construction project completion time. They used regres-
sion model to forecast the future projects. Chen et al. 
(2011) developed a cash-payment model for forecasting 
the cash flow. They evaluated their model by comparing 
two historical real dataset.

1.3. Models
There are three main categories in existing literature 
regarding models or assumptions in time-cost trade-off 
problem: 1) Deterministic relation between time and cost 
was assumed in Gerk and Qassim (2008), Moussourakis 
and Haksever (2010), Pollack-Johnson and Liberatore 
(2006). 2) Stochastic relation between time and cost was 
assumed in Aghaie and Mokhtari (2009), Cohen et al. 
(2007), Ke et al. (2009). 3) Fuzzy relation between time 
and cost was assumed by Ghazanfari et al. (2009).

Gerk and Qassim (2008) considered both ac-
tivity overlapping and substitution in their model.  
Pollack-Johnson and Liberatore (2006) assumed discrete  
time-cost trade-off activity like as we do in the following 
section. In both studies predefined budget were assumed. 
Moussourakis and Haksever (2010) assumed nonlinear 
time cost function which is more realistic than linear 
ones. Some other authors Diaby et al. (2011) took simi-
lar approach in terms of cost functions. They propose a 
geometric programming, and then try to solve it.

Aghaie and Mokhtari (2009) proposed a nonlinear 
mix integer programming to increase the probability of 
completion of the project in a given due date. They also 
assume that each activity duration follow an exponential 
distribution. Ke et al. (2009) proposed integrating sto-
chastic simulation and genetic algorithm to increase the 
probability of completion of a project by the due date. 
Cohen et al. (2007) wanted to minimize the expected 
cost related by the project.

Ghazanfari et al. (2009) assumed fuzzy variables. 
Via Possibility Goal Programming the cost was mini-
mized while considering the minimum duration. The 
main contribution of this fuzzy approach is the use of 
vagueness in cost function during the project execution. 

Zheng and Ng (2005) also presented fuzzy set theory re-
garding the uncertainty included in TCTP problem. They 
also use GA as a meta-heuristic algorithm to develop a 
Pareto set between time and cost. 

1.4. Solution method
Large-scale time-cost trade off problem is often NP-
hard. The methods developed to tackle this problem var-
ied from exact approach such as dynamic programming 
(DP) (Robinson 1965) to heuristic and meta-heuristic 
algorithms. Yang (2007) proposed a particle swarm al-
gorithm to complete the project for all kind of linear or 
nonlinear cost function, discrete or continuous, and con-
cave or convex. 

Feng et al. (1997) proposed a genetic algorithm to 
draw a Pareto set for a discrete time-cost trade-off. They 
consider a multi-objective criteria problem to find the op-
timal solution, which ended up with a Pareto set. Aghaie 
and Mokhtari (2009) proposed an ant colony optimiza-
tion for stochastic crashing problem. They also assume 
a discrete time cost function problem. As stated earlier, 
they have assumed that the time-cost relationship is sto-
chastic. So they also use Monte-Carlo simulation to cope 
with this problem. 

One recent example of exact solution method for 
large-scale problems using benders decomposition-based 
exact algorithm is introduced by Hazir et al. (2010). Sku-
tella (1998) proposed an approximation algorithm which 
is an effective algorithm for large scale problems. Meta-
heuristic algorithms have been introduced in the recent 
years even in other areas of construction project man-
agement. Zhang and Ng (2012) who used this kind of 
algorithm to develop DSS for TCTP, and Bozejko et al. 
(2012) was a good example for that.

The proposed approach of this paper and other re-
cent related researches are summarized in Table 1, to 
provide a context of our contribution to this research do-
main. 

2. Time-cost model formation using Cobb-Douglas 
function

In this paper, the amount of work need to be done for 
each activity is fixed and it is defined as workload (W) 
for each activity. Activities with reducible duration are 
remarked as soft activities versus the hard activities with 
irreducible duration. When an activity is crashed (the 
time is shortened from normal duration), production out-
put Q is increased through the increased inputs of labor 
(L) and/or equipment (K).

Considering the production function of an activity 
as Q = F(L, K), and normal time, t0, then the production 
output rate to accomplish the activity is:

 , (3)

where: Q0 is the normal production output rate; W is the 
total production output during t0 duration.
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Table 1. Related works
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• Approach

Feng et al. (2000) Discrete Multi-objective ∨ ∨ GA-Simulation
Zheng et al. (2004) Discrete Multi-objective ∨ ∨ GA
Zheng and Ng 
(2005) Discrete Optimal balance of time 

and cost ∨ ∨ Fuzzy set theory-GA

Pollack-Johnson and 
Liberatore (2006) Discrete Min project duration 

considering quality ∨ Quality Management

Cohen et al. (2007) Linear Completion by a due date ∨ Robust optimization

Evansmo and 
Karlsen (2008) Linear

Determine the impact of 
labor cost on total project 
cost

∨ ∨ –

Aghaie and 
Mokhtari (2009)

Non-linear 
integer math. 
Programming

Completing the project by 
a due date ∨ ∨ Ant Colony Optimization 

and MC Simulation

Ke et al. (2009) Discrete Min expected cost ∨ ∨ Chance constraint 
optimization-GA

Ghazanfari et al. 
(2009) Non-linear Min crashing cost-min 

duration ∨ Possibility goal 
programming

Moussourakis and 
Haksever (2010) Non-linear

minimizing project 
completion-minimizing 
total project cost-
minimizing total cost 
under late completion 
penalties

∨ ∨ –

Hazir et al. (2010) Discrete
minimizing project 
completion considering 
the budget

∨ ∨ Benders decomposition

Diaby et al. (2011) Non-linear Project completion ∨ ∨ Geometric programming

This research Discrete
Optimizing construction 
crashing cost considering 
labor and equipment cost

∨ ∨ ∨ ∨
Hybrid Genetic 
Algorithm & 
Cobb-Douglas Function

During crashing when duration was shortened to t1 
from t0, the corresponding output becomes:

 , (4)

where: Q1 is the crashed production output rate; t1 is the 
crashed duration.

Therefore, to reduce the activity duration by t0 – t1,  
output is increased by Q1 – Q0 per time unit, due to the 
extra inputs of labor and/or equipment. Although both 
CRTS and DRTS (for example, due to working space 
constraints) are possible scenarios, to simplify the discus-
sion without compromising the main topic we limit our 
discursion in this paper to a CRTS scenario, in which  
a + b = 1 (Fig. 1). 

Also we assume that technology A is constant and 
equal to 1 for simplicity without affecting the results and 
conclusions, since the paper is concern with allocation 
of existing labor and equipment resources during crash-

ing, not with introducing new technology into crashing. 
In most existing literature (Sircar, Choi 2007) technol-
ogy changes were often measured (by changes of A) over 
long period of time, normally 5 to 20 years.  

As discussed earlier, in this paper, we limit our con-
cern to CRTS. In this case, according to Romer (2005), in 
order to eliminate the uncertainty caused by A, eliminate 
the impact of other resources such as land and other natu-
ral resources, Eqn (2) can be converted into the intensive 
form as follows:
 f(k) = ka, (5)

where k is defined as . k is capital per unit of effec-
tive labor.

α and β are also known as the labor and capital’s 
share of output which identify the contribution of labor 
and capital in total production. Different combinations of 
α and β for different activities can be estimated by pro-
ject managers based on the historical data, for example 
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via regression method (Mateescu 2010). In many exist-
ing production research (Felipe, Adams 2005), α = 0.3,  
β = 0.7 are often reported. Since the specific value of A, 
α and β are treated as case parameters and will not affect 
the proposed overall framework.  We assume α = 0.7 in 
intensive form of the function, then we get: 

 f(k) = k0.7. (6)

If W = 10000 for this specific activity, and normal time 
t0 = 25 days, then we have:

 
 (7)

Accordingly, if the crashed duration t1 and t2 equal to 20 
day and 16 days respectively, then we have:

 

 

(8)

 

 

The cost function of an activity is often defined as:

 TC = c1L + c2K , (9) 

where: TC – total cost of the activity; c1 – salary rate; 
L – labor input quantity; c2 – equipment rental rate;  
K – equipment input quantity; labor cost LC = c1L; 
equipment cost KC = c2K.

Eqn (9) can be illustrated by the isocost lines shown 
in Figure 2, in which lines TC1, TC2 and TC3 are cost 
lines with same r and s values. The tangent points (such as 
points A and B) between the isocost lines and the isoquant 
curves are the minimal cost of producing Q = 3 (point A) 
and producing Q = 6 (point B). The line connecting all 
the tangent points is referred as production expansion line, 
which represent the minimal cost solution to expand the 
production if the cost function (c1 and c2) hold the same.

If we assume labor cost is 30 dollars per labor unit, 
capital cost is 90 dollars per equipment unit, Eqn (8) will 
become:

 TC = 30x1 + 90x2 , (10) 

where x1 and x2 represent L and K, respectively.
Using f0,  f1 and  f2 to derive isoquant curves and 

Eqn (10) to draw isocost lines, we can find the mini-
mal total cost (TCmin) for Q0, Q1 and Q2, in which 
f0  represent production in a normal duration, and f1  
and f2  represent production in the crashed durations  
(Fig. 3).

The results are: while ti ={25, 20, 16}; TCi min = 
{848, 1062, 1314} and LCi, KCi = {(477, 371); (598, 
464); (739, 575)}. The results are graphically shown in 
Figure 3, where straight lines represents isocosts from 
Eqn (10) and curve lines represent isoquants derived from 

CDPF with 3 different f values. The TCmin for each dura-
tion (or f) is the tangent point of each isoquant curves.

Considering the total crashing cost for all activities 
in a network, the mathematical model to find combina-
tion of labor and equipment factors minimizing the total 
cost for all involved activities is represented as:

 
 (11)

In order to present a multi-objective function which  
contains cost and duration we define the objective func-
tion as:

 , (12)

where w1 and w2 are defined based on the decision mak-
ers’ preferences and w1 + w2 = 1.  Ci and Ti are normal-
ized scores of cost and duration respectively, and both 
have values from 0 to 1. Ci and Ti are defined as: 

Fig. 2. The concept of isocost lines and the minimal cost of 
producing Q

Fig. 3. A simple example of finding minimal activity cost 
using isocosts and isoquants
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  (13)

  

So the best score for either cost or duration is 1, when the 
solution is the minimal. And the worst score is 0, when 
the solution is maximal. The larger Z values represent the 
better overall solutions.

3. The proposed hybrid genetic algorithm (HGA)
3.1. GA background
Genetic algorithm (GA) was developed by John Holland  
(1975). GA is a population based searching technique. 
Its main idea came from natural evolution. There are 
various hard optimization problems such as Travel 
Salesman Problem (TSP), job shop scheduling, cover-
ing etc., can be solved by genetic algorithm. GA, like 
other meta-heuristic algorithms, searches the whole 
space containing two conflicting operation exploring 
the whole space while trying to improve the quality of 
current solution in its neighborhood through finding the 
local optimum. 

Genetic algorithm contains two main operations: 
crossover, and mutation. In the crossover phase, GA pro-
duces new offspring from two parents which are chosen 
from the population.  The second operation in GA, which 
helps GA to search the all search space and not just look-
ing for the local optimums, is mutation. GA like other 
artificial intelligence algorithms avoids trapping in local 
optimum solutions through its operation called mutation 
which will be explained later. The new generations are 
compared with the existing solutions; they may be re-
placed if they have a better fitness value. 

3.2. HGA background
One of the main problems associated with GA is its ini-
tial solution in the population. Two main categories could 
be considered for this problem, first related to the popu-
lation size which is usually determined by try and error, 
and according to Golberg (1989), it is normally between 
30 and 500. The other issue is the quality of chromo-
somes or initial solutions generated in population. 

Hybrid genetic algorithms (HGA) (El-Mihoub et al. 
2006) were proposed to overcome limitations of most 
meta-heuristic algorithms by adding local searches, add-
ing learning methods, etc. (Revees 1994; Thierens et al. 
1998) to make it more efficient. In this paper local search 
called 2-opt is used to overcome the mentioned prob-
lems. The 2-opt local search is expected to improve the 
randomly generated population solutions. 2-opt was first 
introduced in Croes (1958) as a local search in traveling 
salesman problem. Later, it is modified and used in other 
operation research applications (McGovern, Gupta 2003; 
Buffa et al. 1964) as an effective way to address the limi-
tations of pure GA.

3.3. The proposed HGA 
In this section, we present the proposed hybrid genetic 
algorithm for time-cost optimization problem. The pro-
posed algorithm is depicted in detail in Figure 4. In the 
initialization phase, algorithm starts with randomly gen-
erated chromosomes based on population size (as an 
input). To avoid the generation problems, which is our 
main reason to use a hybrid algorithm, 2-opt procedure 
will improve the initial solutions, which will explain later 
more in depth later. To go through the GA, a selection 
procedure proposed, which chooses chromosomes to be 
transformed by GA based on their quality (fitness value). 

As stated before, GA includes two main operations: 
crossover and mutation. After that, these two operations 
transform the solutions to get a better solution regard-
ing fitness function. If the new solution is better than 
the current one it is substituted with the current solution 
(chromosome); otherwise it keep the current solution. 
Then the procedure starts again. It should be noted that a 
termination criteria presumed for the algorithm. When it 
meets the criteria, it would be stopped. 

Fig. 4. The flowchart of HGA
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3.3.1. Notations
There are some notations that we need to define before 
developing a genetic algorithm:

 – PS:  Population size (which is usually defined based 
on the problem size);

 – T:  Number of generation before termination;
 – Zi: Objective value (fitness value) of solution ith.
PS and T which are presented in Figure 4 as inputs 

of genetic algorithm. They are determined before the 
algorithm starts. Although, as discussed earlier, PS has 
an impact on the performance of genetic algorithm and 
may cause problem in case that it defined improperly, it 
defines mostly by try and error. It is the same story for 
defining T as number of iteration must be implemented 
before the time that the algorithm is terminated. With try 
and error, it defines based on trade-off between run time 
and the efficiency of solutions. 

In the proposed algorithm PS is equal to 100, and T 
is assumed 300. Zi which will be used in different phases 
of the algorithm is the objective value or fitness value of 
a solution ith. Zi is the basis for comparing the solutions.

3.3.2. Initialization
Regarding the PS, we generate chromosomes. Number of 
genes in each chromosome is equal to number of activi-
ties included in the project. For each activity (genes) a 
random number generated based on number of activities 
regarding the fact that we consider discrete form of time-
cost function in this study. So now, we have PS (popula-
tion size) randomly generated chromosomes.

3.3.3. Procedure of 2-opt
In order to hybridize the genetic algorithm to work more 
efficiently, we use 2-opt which is a well-known algorithm 
among researchers. 2-opt, as stated, first developed by 
Croes (1958) for traveling salesman problem to change 
the order of arcs which are passed by salesman. After 
then, it is developed in other problems.

Here, for the second phase in the proposed HGA 
which works as an improvement phase for the initial 
solutions generated in the population, we develop a 
2-opt procedure which generates all possible combina-
tion of two randomly selected genes and their neighbor-
hoods. That is, for each chromosome (initial solution), it  
generates 5 offspring. In the first one, it just changes the 
positions of selected genes. After then, all possible swaps 
are checked. Although it increases the run time, it avoids 
the problems which caused by generating random popu-
lation. Figure 5 shows the details of how 2-opt works. 

Then, the fitness value of parent and offspring (all to-
gether would be at most 6 solutions) are compared and the 
best one will be replaced by the current solution (parent).

3.3.4. Selection
While in most articles in the literature, authors propose an 
algorithm which randomly selects the chromosomes from 

the population to do the GA operations on them (Zheng 
et al. 2004), chromosome selection from the population is 
based on their objective value (fitness value) in this study. 
Roulette wheel selection (Goldberg 1989) is applied here 
to come up with this drawback in the literature. First, it 
avoids that not only the best chromosome in the popula-
tion selected. Second, it is not selected randomly. That is, 
the chromosome selection is proportional to their objec-
tive values. So, the better a chromosome is regarding its 
objective value, the more probability has to choose.

The roulette wheel selection method is summarized 
in the following steps:
Step 1: Calculate the total fitness of all chromosomes in 
the population:

  (14)

Step 2: Calculate the selection probability for each chro-
mosome, which is proportional to the fitness value of 
that chromosome to total fitness of all chromosomes in 
the population:

 
 (15)

Step 3: First, it should be noted that:

  (16)

So, the summation of selection probabilities from the first 
chromosome to the ith chromosome is called cumulative 
probability. Calculate the cumulative probability for each 
chromosome:

 
 (17)

Step 4: generate  
Step 5: chromosome ith will be selected if  The 
difference between qi-1 and qi is pi.

  (18)

3.3.5. The crossover
The proposed crossover is the classical order crossover 
introduced by Gen and Cheng (1997). In the first step, 
it chooses two parents from the population randomly 
then does the required transformation on them to have 
new offspring. According to the fact that, each chromo-
some contains specific options for each activity, after  

Fig. 5. 2-opt algorithm
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choosing a substring in order to do crossover, the genes 
are exchanged to have new offspring. The procedure is 
as follows:
Step 1: Select a substring from the first parent randomly. 
Step 2: Produce an offspring by copying the substring 
into the corresponding positions in that.
Step 3: Place the genes other than the chosen substring 
from the first parent, into the unfilled positions of the 
offspring from left to right. 
Step 4: Repeat Steps 1–3 to produce another offspring by 
exchanging the two parents.

Afterward, Zis are compared to choose the better 
one between each offspring and the related parent. This 
process is shown in Figure 6.

3.3.6. The inversion mutation
There are various procedures are introduced for mu-
tation in different research areas; one of those is in-
version mutation. The inversion mutation firstly  
introduced by Gen and Cheng (1997). In this phase, a 
substring is randomly selected, and all included genes 
are flipping. As stated earlier, mutation operation is de-
veloped to exploit all over the search space to find the 
global optimum instead of looking for local optimum 
in the neighborhood of current solution. Inversion mu-
tation is used to diversify the solution in the solution 
space, which should be done basically by a mutation 
operation. The inversion mutation procedure is shown 
in Figure 7.

4. Case study

A case study is presented in this section to demonstrate 
the application context of the proposed approach. The 
network has been chosen from (Liu et al. 1995) and is 
illustrated in Figure 8. 

We adopted the duration options and the activity 
network from Liu’s paper (Liu et al. 1995) for each  
activity. But we assigned estimated workload (W) to 
each activity in order to use CDPF to better analyze 
best allocations of labor and equipment. We also iden-
tified typical unit costs for labor (CL) and equipment 
(CK) for each activity from RS Means Construction Cost 

Data Book 2009. After knowing the W for each activity,  
associated Q of each of the three options are obtained 
using Eqn (2) and Eqn (3) as described in Section 2 of 
the paper.

Then, L and K (the amount of labor and equipment 
inputs respectively) are determined according to the cost 
minimization function constrained to Cobb-Douglas 
function, which is presented as Eqn (10) in Section 2. 
The assumption  is α = 0.7. The total labor cost for each 
activity (TLC) is obtained from CL×L; and the total 
equipment cost for each activity TKC is obtained from 
CK×K. Total cost (TC) is equal to the summation of TLC 
and TKC. All data used in this case are presented in the 
Table 2. 

5. Results

HGA is applied to data in Table 2 to find the optimum/
near optimum solution reflected by maximal Z value. 
Then the solutions are compared with the optimum solu-
tion which is obtained from checking all possible com-
binations of activities’ options. The HGA has been run 
for 10 times for each case, and in all case the result is 
the same as the optimum solution, which shows that it 
works properly.

Assuming the decision makers’ priority (utility func-
tion) for time and cost is: w1 = 0.4 and w2 = 0.6, then the 
optimum solution is shown in Table 3 and the selected 
option of each activity is boxed in Table 2.

The 83-day duration of the project is obtained from 
the critical path (using Fig. 8) of the optimal solution 
options. Total cost of the project is obtained from the 
summation of total cost of the selected option of each 
activity in the optimal solution, which is equal $128,523 
(see Table 2 for details of the selected option in each 
activity) including both labor ($5,458.8) and equipment 
($12737.3) costs. 

Objective value of this solution is calculated using 
Eqns (12), (13), and (14) as follows:

Fig. 6. The crossover

Fig. 8. The project network (Liu et al. 1995)

Fig. 7. The inversion mutation
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Max and min of cost of the project obtained by assigning 
the options with max cost and min cost to all activities  
respectively. The same story is true for max and min 
time. As stated earlier, when w1 = 0.4, and w2 = 0.6, the 
objective value is calculated as:

  

Figure 9 illustrates all possible solutions. In case we do 
not consider utility function (priority) for time and cost, a 
Pareto set could be drawn like Figure 9. For example, in 
this specific case, if we do not assume any specific pref-
erence of w1 and w2, then the solution varied on the dash 
line in Figure 7. All the possible solutions on this line do 
not dominate the other ones; but when we assume some 
values for w1 and w2 we have just one answer based on 
w1 and w2 priorities. Pareto set optimality have been used 
extensively by authors in different aspects of construction 
project management. Jiang et al. (2011) have used Pareto 
set for cash flow planning in construction project manage-
ment. They develop a multi objective cash flow consists 
of cash balance and interest paid to have a Pareto set. 

Figure 10 depicts how changes of w1 (and also w2 
since w2 = 1 – w1) affect the objective Z values. As ex-
pected either w1 or w2 becomes 1, Z value would be 1 
since only criteria need to be satisfied. When the decision 
maker weight time and cost equally in his decision mak-
ing, Z value is at the lowest point. So the optimal solu-
tion identified using HGA will depends on the decision 
maker’s preference of time or cost. 

Table 2. The case project information

 Activity Option W T (day) Q CL ($) CK ($) L K TC ($) TLC ($) TKC($)
1 1 5000 14 357.1 40 100 374.8 349.8 49975.3 14992.6 34982.7
1 2 5000 20 250.0 40 100 262.4 244.9 34982.7 10494.8 24487.9
1 3 5000 24 208.3 40 100 218.6 204.1 29152.2 8745.7 20406.6
2 1 500 15 33.3 50 70 23.3 38.9 3885.4 1165.6 2719.8
2 2 500 18 27.8 50 70 19.4 32.4 3237.8 971.4 2266.5
2 3 500 20 25.0 50 70 17.5 29.1 2914.0 874.2 2039.8
3 1 600 15 40.0 45 80 33.1 43.4 4960.0 1488.0 3472.0
3 2 600 22 27.3 45 80 22.5 29.6 3381.8 1014.5 2367.3
3 3 600 33 18.2 45 80 15.0 19.7 2254.5 676.4 1578.2
4 1 6000 12 500.0 75 70 263.3 658.2 65819.1 19745.7 46073.4
4 2 6000 16 375.0 75 70 197.5 493.6 49364.3 14809.3 34555.0
4 3 6000 20 300.0 75 70 158.0 394.9 39491.5 11847.5 27644.1
5 1 4500 22 204.5 60 60 113.0 263.7 22606.6 6782.0 15824.6
5 2 4500 24 187.5 60 60 103.6 241.8 20722.8 6216.8 14505.9
5 3 4500 28 160.7 60 60 88.8 207.2 17762.4 5328.7 12433.7
6 1 5500 14 392.9 55 20 106.9 686.2 19604.7 5881.4 13723.3
6 2 5500 18 305.6 55 20 83.2 533.7 15248.1 4574.4 10673.7
6 3 5500 24 229.2 55 20 62.4 400.3 11436.1 3430.8 8005.2
7 1 4700 9 522.2 65 30 168.0 849.2 36392.3 10917.7 25474.6
7 2 4700 15 313.3 65 30 100.8 509.5 21835.4 6550.6 15284.8
7 3 4700 18 261.1 65 30 84.0 424.6 18196.1 5458.8 12737.3

Optimum 
Solution 83   128522.9 38556.9 89966.1

TC: total cost; TLC: total labor cost; TKC: total capital cost; T: duration options; Q: production quantity.

Table 3. Optimal solution options

Activity 1 2 3 4 5 6 7
Option 3 1 1 3 3 3 2

Fig. 9. All possible solutions



196 Z. Shen et al. Multi-objective time-cost optimization using Cobb-Douglas production function and hybrid genetic algorithm

Using this proposed approach, not only we obtain 
the optimal objective value, but also we understand clear-
ly what the respective allocations of labor and equipment 
resources are. This will provide us with much needed 
capacity in TCTP to better evaluate all the possible  
resource allocation scenarios.  

Conclusions and future study

A framework using Cobb-Douglas production function 
(CDPF) to solve construction time-cost trade-off problem 
(TCTP) is proposed in this paper. Within the framework, 
a multi-objective optimization method utilizing Hybrid 
Genetic Algorithm is presented with a case application. A 
significant advantage of introducing CDPF into TCTP is 
that CDPF can be used to quantitatively explain the ori-
gin of the crashing costs from both labor  and equipment 
perspective, which was a fundamental gap in previous 
research on TCTP.

The results suggested that, by tying CDPF to TCTP, 
the proposed approach is capable to identify optimal labor  
and equipment allocation solution effectively to satisfy 
the need for duration reduction. 

Although the presented case application is simple, 
the proposed approach is expected to work efficiently in 
larger and more complex applications. In future study, 
stochastic approach can be used with respect to uncer-
tainties of α and β in the CDPF, and uncertainties of the 
cost function of labor and equipment inputs.
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