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The oxidative C-H bond activation mediated by heme and nonheme enzymes and
related biomimetics is one of the most interesting processes in bioinorganic and oxidative
chemistry. However, the mechanisms of these reactions are still elusive and controversy
due to the involvement of highly reactive metal-oxo intermediates with multiple spin
states, despite extensive experimental efforts, especially for the N-dealkylation of
N,N-dialkyalinines. In this work, we employed multistate density functional theory
(MSDFT) and the Kohn-Sham DFT to investigate the mechanism of N-demethylation
of N,N-dimethyalinines oxidized by the reaction intermediate FeIV(O)(N4Py)(ClO4)2. The
Kohn-Sham DFT study demonstrated that the reaction proceeds via a rate-limiting
hydrogen atom transfer (HAT) step and a subsequent barrier-free oxygen rebound step
to form the carbinol product. The MSDFT investigation on the first C-H activation
further showed that this step is an initial hydrogen atom abstraction that is highly
correlated between CEPT and HAT, i.e., both CEPT and HAT processes make significant
contributions to the mechanism before reaching the diabatic crossing point, then
the valence bond character of the adiabatic ground state is switched to the CEPT
product configuration. The findings from this work may be applicable to other hydrogen
abstraction process.

Keywords: C-H activation, N-dealkylation, mechanism, MSDFT, HAT, CEPT

INTRODUCTION

Heme and nonheme iron enzymes mediate a variety of fundamental biochemical transformations
which are vital to biological processes. These enzymes are found in all aerobic species (Ortiz de
Montellano and De Voss, 2002) and carry out a myriad of significant catalytic transformations,
ranging from detoxification, biosynthesis to drug metabolism (Nam, 2007; Li D. et al., 2012). In
particular, hydrogen atom transfer (HAT) mediated by high-valent iron(IV)-oxo complexes is a
key process in the activation of C-H, O-H, or N-H bonds (Wang et al., 2007). Over the years,
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the mechanism of hydrogen abstraction has been actively
investigated because of its vital function (Mayer et al., 2002; Jeong
et al., 2008; Tishchenko et al., 2008; Mayer, 2011; Sirjoosingh
and Hammes-Schiffer, 2011; Cembran et al., 2012; Lai et al.,
2012; Usharani et al., 2013; Saouma and Mayer, 2014), including
N-dealkylation reactions. As shown in Scheme 1, the reaction
proceeds via an initial hydrogen abstraction, followed by an
oxygen rebound step to form a carbinolamine intermediate.
Then, after nonenzymatic and water-assisted C-N bond cleavage,
the final products of an aldehyde and a secondary amine
are produced. In fact, the mechanism of the initial hydrogen
transfer step has been studied quite thoroughly (Wimalasena and
May, 1987; Bhakta and Wimalasena, 2005; Nehru et al., 2007;
Chiavarino et al., 2008; Li C. et al., 2009; Li D. et al., 2009
Baciocchi et al., 2010; Roberts and Jones, 2010; Wang et al., 2010;
Park et al., 2011, 2014; Morimoto et al., 2012; Barbieri et al.,
2015). Evidence exists to suggest that the first step undergoes
a single electron transfer (SET) process, namely an electron
transfer from the aniline to the enzyme and produce an amino
radical intermediate after the deprotonation of the aniline cation,
as Pathway (a) shown in the Scheme 1 (Wimalasena and May,
1987; Bhakta and Wimalasena, 2005; Baciocchi et al., 2010; Park
et al., 2011; Barbieri et al., 2015). However, some researchers
suggested that this step is a HAT process, Pathway (b) shown in
Scheme 1 (Li C. et al., 2009; Li D. et al., 2009; Roberts and Jones,
2010). At the center of this seemingly controversy underscores
the distinction between concerted and stepwise mechanisms for
electron transfer and the proton transfer. The overall reaction is
a proton-coupled electron transfer (PCET), which can be a HAT
or a concerted-asynchronous proton-electron transfer (CEPT)
(Hammes-Schiffer, 2001, 2015; Mayer et al., 2002; Hammes-
Schiffer and Iordanova, 2004; Reece et al., 2006; Rhile et al., 2006;
Huynh andMeyer, 2007; Hammes-Schiffer and Soudackov, 2008;
Jeong et al., 2008; Tishchenko et al., 2008; Reece and Nocera,
2009; Hammes-Schiffer and Stuchebrukhov, 2010; Sirjoosingh
andHammes-Schiffer, 2011; Cembran et al., 2012; Lai et al., 2012;
Usharani et al., 2013; Park et al., 2014; Saouma and Mayer, 2014).
Nehru et al. (2007) firstly elucidated the N-dealkylation of N,N-
dimethylaniline mediated by heme and synthetic nonheme oxo-
iron(IV) complexes. In their experiments, various substituted
N,N-dimethylanilines are used as probes and clarified the C-H
abstraction in N-dealkylation is a rate-limiting electron transfer
(ET) followed by a proton transfer (PT) process. However, the
inter and intramolecular kinetic isotope effect (KIE) experiments
demonstrated that the ET process may occur by coupling with
the PT process but these two processes are not kinetically
independent (Nehru et al., 2007). That is to say, the N-
dealkylation process may go through a concerted PCET process.
Thus, we decide to carry out theoretical calculation of this system
to solve this controversy.

For reactions involving coupled transfers of an electron and a
proton, it is useful to characterize the reaction coordinate using
diabatic potential energy surfaces that define the localization
of the proton and electron in their donor and acceptor sites.
Kohn-Sham density functional theory (DFT) based on the
Born Oppenheimer approximation with delocalized orbitals is
not appropriate to model these diabatic states. On the other

hand, a method based on valence bond theory (Hiberty et al.,
1992; Cooper, 2002; Song et al., 2005) can effectively describe
charge-localized configurations (Shaik et al., 2008; Lai et al.,
2012; Usharani et al., 2013, 2014). Shaik et al. used a valence
bond (VB) model to represent the mechanisms of C–H bond
activation and O-H/N-H bond activation (Usharani et al., 2013).
The XMVB program can be used to define the diabatic states
(Song et al., 2005). Using a local determinant representation
of individual Lewis structures, which effectively contracts many
VB configurations into a single determinant approximation,
we introduced a mixed molecular orbital and valence bond
(MOVB) model, in which the block-localized wave (BLW)
function method is used to define diabatic electronic states (Song
et al., 2009; Gao et al., 2010; Mo et al., 2011; Cembran et al.,
2012). This idea has been extended to density functional theory,
and the general approach is called multistate density functional
theory (MSDFT), and it can be used to study the mechanisms
of PCET processes (Song et al., 2009; Gao et al., 2010; Mo et al.,
2011; Cembran et al., 2012). To this end, dynamic correlation is
first incorporated into the definition of the diabatic states in the
active space relevant to PCET reactions. Then, static correlation is
taken into account by configuration interaction of these diabatic
states to yield the adiabatic electronic states. Consequently,
MSDFT follows a dynamic-then-static ansatz, taking advantage
of both wave function theory and density functional theory
(Song et al., 2009; Gao et al., 2010; Mo et al., 2011; Cembran
et al., 2012). Thus, the MSDFT has been successfully applied
in the construction of adiabatic and diabatic energy surfaces of
coupled proton and electron transfer process in the isoelectronic
series, HNO3 in aqueous solution and the hydrogen molecule
dissociation (Cembran et al., 2012; Gao et al., 2016; Ren et al.,
2016; Grofe et al., 2017a,b).

In this article, we use Kohn-Sham DFT and MSDFT to
study the pathway of hydrogen abstraction from para-substituted
N,N-dimethylanilines by [(N4Py)-FeIV =O](ClO4)2, and the
subsequent steps. Our traditional Kohn-Sham DFT calculations
show that the mechanism of the C-H abstraction is a HAT
mechanism, whereas MSDFT reveals that the mechanism is a
blended of HAT and CEPT mechanism to be exactly from the
effective diabatic energy surfaces of HAT and CEPT, as pathway
(c) shown in Scheme 1. Since the individual reaction steps can
be separately defined using MSDFT, it is possible to provide a
definitive answer to the mechanistic debate about the hydrogen
abstraction reaction between N,N-dimethylaniline and a heme or
a synthetic nonheme oxo-iron(IV) complexes.

THEORETICAL METHODS

In this study, the [(N4Py)-FeIV=O](ClO4)2 and para-substituted
N,N-dimethylanilines were used as the active species of a
biomimetic nonheme oxidant and the substrate (Scheme 1),
respectively. Both the low-spin (LS) triplet and high-spin (HS)
quintet states of nonheme oxidant were considered.

Kohn-Sham DFT calculations were performed using the
Gaussian 09 program (Frisch et al., 2010). Following early studies,
the B3LYP functional, which has been successfully applied to
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SCHEME 1 | ET-PT(SET) and HAT mechanism in the para-substituted N,N-dimethylanilines activated by [(N4Py)-FeIV =O](ClO4)2.

the Fe compounds (Kumar et al., 2005; Shaik et al., 2005, 2007,
2008; Hirao et al., 2006; Wang et al., 2007; Tishchenko et al.,
2008; Usharani et al., 2013), was chosen for all the calculations.
Considering the computational cost, the basis set with LANL2DZ
for Fe and 6-31G(d,p) for all remaining atoms (B1) was used
in geometry optimizations, frequency and the intrinsic reaction
coordinate (IRC) calculations. The basis for nonmetal atoms
were expanded to 6-311++G(d,p) (B2) in single-point energy
calculations, which along with zero-point energy corrections
were used in all discussions in the text. Mulliken spin densities
and NBO charges were analyzed to gain insights into the
electronic properties of the key reaction species

The MSDFT calculations were carried out using a locally
modified GAMESS package (Schmidt et al., 1993; Song et al.,
2005, 2009). Scheme 2 illustrates a More O’Ferrall–Jencks
diagram (O’Ferrall, 1970) for the electron transfer and proton
transfer pathways of the C-H activation of N-dealkylation by
[(N4Py)-FeIV =O](ClO4)2, in which the four corners depict the
diabatic electronic states, corresponding to the reactant (lower
left) and product (upper right) states, and the electron transfer
(upper left) and proton transfer (lower right) intermediate. In the
MSDFT framework, they were defined and optimized using block
localized Kohn-Sham (BLKS) DFT (Cembran et al., 2012)
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2
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(
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where Ã, is the antsymmetrizer,�k
γ is the product of the occupied

BLKS orbitals of the kth(k= 1, 2) fragment defined in the diabatic

SCHEME 2 | More O’Ferrall–Jencks diagram for the H-abstraction reaction of
para-substituted N,N-dimethylanilines mediated by [(N4Py)-FeIV =O](ClO4)2.
The horizontal and vertical coordinates stand for proton transfer (PT) and
electron transfer (ET) pathway, and the diagonal line implies the concerted
PT-CT pathway. The four corners (0a, 1a, 0b, 1b) of the diagram stand for the
reactant state, electron transfer state, proton transfer state, and product state,
respectively.

stateγ (γ = 0a, 0b, 1a, and 1b), L, X and Sub stand for N4Py,
ClO−

4 and the para-substituted N,N-dimethylanilines. Equations
(1)–(4) constitute a contracted active space in MSDFT, which can
be used in configuration interaction to yield the adiabatic ground
and excited states potential energy surfaces:

8GS
MSDFT =

∑

ip
cGSip 9BLKS

ip (cip; i = 0, 1; p = a, b) (5)

8ES
MSDFT =

∑

ip
cESip 9BLKS

ip (cip; i = 0, 1; p = a, b) (6)

Thus, the potential energy surfaces for the overall coupled PT and
ET processes, either concerted or stepwise, are represented as the
admixture of the four basis configurations.

To elucidate the mechanistic origin of N-H bond activation
beyond the orbital picture, we employed MSDFT to characterize
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the HAT and CEPT reaction pathways. In MSDFT framework,
the two-state representation of the HAT and CEPT mechanism
can be constructed from the four diabatic states in Scheme 2

according to Equations (7)–(10) (Cembran et al., 2012).

8CPET
R = c0a9

BLKS
0a + c0b9

BLKS
0b (7)

8CPET
P = c1a9

BLKS
1a + c1b9

BLKS
1b (8)

8HAT
R = c0a9

BLKS
0a + c1a9

BLKS
1a (9)

8HAT
P = c0b9

BLKS
0b + c1b9

BLKS
1b (10)

where the coefficients are determined by separate (2 × 2)
configuration interactions involving the two diabatic states in
each equation.

Equations (7) and (8) describe the reactant and product
states in the CEPT mechanism, respectively. Here, the
Born-Oppenheimer approximation breaks down and multi-
configuration methods are needed. For HAT mechanism, which
distinguishes from CEPT by strong electronic coupling to result
in a strongly avoided crossing with the ground and excited states
well-separated, the Born-Oppenheimer approximation is fully
valid and the electronic structure is stationary with respect to
the proton nuclear coordinates. Thus, the wave functions for
the reactant and product states of the HAT mechanism can be
expressed as linear combinations of the electronic configurations
with the transferring proton localized on the donor and acceptor
sites, respectively (Equations 9, 10).

RESULT AND DISCUSSION

Kohn-Sham DFT calculations on the hydroxylation of
N,N-dimethylaniline oxidized by the reactive species
FeIV(O)(N4Py)(ClO4)2 on the triplet and quintet spin states
are first presented in Figure 1. Then, MSDFT results on the
oxidative C-H bond activation is introduced to elaborate the
mechanistic origin of the formally PCET process. We found in
Figure 1 that the ground state of the reagent complex (RC) is
the triplet spin state, whereas the quintet state lies 9.7 kcal mol−1

higher in energy. Interestingly, the transition state (TS) for the
hydrogen abstraction on the adiabatic potential energy surface
is switched to a quintet spin-state, which is about 1 kcal/mol
lower than that in the triplet state. The overall barriers, relative
to the triplet RC configuration are 12.6 and 13.9 kcal/mol for
the two spin states, respectively. Obviously, this is a two-state
reactivity (TSR) that was originally proposed by Shaik et al.
(Schröder et al., 2000; Shaik et al., 2005, 2007; Hirao et al., 2006;
Klinker et al., 2009). The nascent intermediate (IM) lies 0.3 kcal
mol-1 on the quintet state and for the triplet IM, 2.2 kcal mol−1.
The subsequent oxygen recombination step is a barrierless,
exothermic process, and the product complexes (PCs) lies −27.3
kcal mol−1 for the quintet PC and −17.4 kcal mol−1 for the
triplet one.

The geometric information of these reaction intermediates is
presented in Figure 2. For the triplet reagent complex, the C-
H bond of the substrate is 1.095 Å, Fe=O is 1.630 Å and the
distance between H(C) and O(Fe) is 2.732 Å. The bond angle
( 6 H-O-Fe) is 156.8◦. For the quintet transition state, the C-H

FIGURE 1 | The triplet and quintet energy profiles (in kcal/mol) related to triplet
reactant state N-dealkylation of para-substituted N,N-dimethylanilines
activated by [(N4Py)-FeIV =O](ClO4)2.

length becomes 1.284 Å, Fe=O 1.739 Å and H(C) and O(Fe)
1.308 Å, and the bond angle ( 6 H-O-Fe) becomes 120.8◦. At
the intermediate state, the Fe-OH bond is elongated to 1.799
Å, a formally a single bond, and the bond angle ( 6 H-O-Fe) is
changed to 113.5◦. KS-DFT results correspond to a synchronous
transfer of the proton and electron in the first reaction step.
Following the hydrogen abstraction, an oxygen rebound step
occurs, the O-H group is transferred to the C radical site. At
the product complex state, the length of C-O bond is 1.470
Å.

For the quintet state, there is little difference in structure from
that of the triplet for the reactant species, with key structural
parameters shown in Figure 2. For the quintet transition state,
the key structural parameters show some variation with slightly
shorter C-H (1.217 Å) and the Fe=O (1.710 Å) bond lengths, and
slightly longer H(C)-O(Fe) distance (1.395 Å) compared to the
corresponding data of the triplet. The most striking structural
variation is the 6 H-O-Fe bond angle at 167.0◦, which is 53.5◦

greater than the triplet counterpart. In addition, the imaginary
vibration frequency at the TS for the quintet is reduced by
a factor of two relative to that of the triplet transition state.
Whereas, for the quintet transition state, the contribution of the
Fe=O stretching vibration and the substrate swinging vibrations
to the imaginary vibration more than that those on the triplet
transition state. Furthermore, the longer Fe=O bond length at
the transition state, accompanied by a shorter H-O(Fe) distance,
indicate that the TS is more advanced toward the product side
than that in the triplet state, and that a greater degree of electron
transfer to the iron center. As for C-O bond, the length of the
triplet is slightly shorter than that of quintet, consistent with
Shaik et al. (Klinker et al., 2009). For the C-H and O-H distance.
compared to that of the quintet one, the length of the C-H
distance is longer and the O-H one is shorter for the triplet
transition state (Hirao et al., 2006).

The segmental spin densities and Mulliken charges of the
reactants, transition states and products of the triplet and quintet
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FIGURE 2 | The important bond length (in Å), angle (in degree) and vibration frequency (in cm−1) of the key intermediates for the triplet and quintet in the C-H bond
activation of para-substituted N,N-dimethylanilines catalyzed by [(N4Py)-FeIV =O](ClO4)2.

are shown in Table 1. Herein, the Sub-H stands for the para-
substituted N,N-dimethylanilines without the proton of the C-H
bond oxidated in the reaction, of which the spin densities are all
0.00 for reactants. when getting to the triplet transition state, the
value becomes 0.57. Meanwhile, the spin density of Fe=O unit

is reduced by 0.56, and there is no net change in spin density
on the ligand N4Py and perchlorate ions. Thus, the β electron
transfers to the singly occupied orbital of Fe=Ounit, pairing with
the existing α electron. At the product complex, the spin density
of Sub-H is 0.96, indicating that almost the entire β electron has
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TABLE 1 | Mulliken charges and spin densities of main intermediates in the H-transfer reaction of para-substituted N,N-dimethylanilines mediated by
[(N4Py)-FeIV =O](ClO4)2, herein, there is no changes in the spin densities and charges of the counterions ClO−

4 , Sub denotes the para-substituted N,N-dimethylanilines
and Sub-H denotes the para-substituted N,N-dimethylanilines without H atom.

Spin density (ρ) Charge (Q)

Fe O N4Py H Sub-H Fe O N4Py H Sub-H

3RC 1.16 0.88 −0.04 −0.00 0.00 0.90 −0.52 1.31 0.15 −0.12
5RC 2.97 0.70 0.33 −0.00 0.00 1.01 −0.52 1.20 0.15 −0.12
3TS 0.88 0.60 −0.04 −0.03 0.60 0.85 −0.67 1.11 0.31 0.07
5TS 3.80 0.34 0.44 −0.01 −0.57 1.03 −0.73 0.97 0.32 0.16
3IM 0.92 0.18 −0.10 0.02 0.94 0.81 −0.69 1.19 0.31 0.07
5IM 3.93 0.38 0.50 −0.02 −0.78 1.05 −0.78 0.96 0.36 0.13
3PC 1.96 0.01 0.02 0.00 0.01 0.67 −0.53 0.91 0.33 0.35
5PC 3.71 0.02 0.26 0.00 0.00 0.74 −0.55 0.83 0.34 0.37

been transferred. Concomitantly, the spin density of the Fe=O
unit is decreased by 0.94, revealing that the β electron spin density
is transferred to the Fe=O unit. For the quintet transition state,
the spin density of Sub-H changes from 0.00 to −0.58, reduced
by 0.56, and that of Fe=O is increased by 0.47, suggesting that
the α electron spin density is shifted from Sub, mostly to empty
orbital of Fe=O unit. For the product complex, the spin density
of the Sub-H is further reduced to −0.80, as that of the Fe=O
unit is increased to 4.31. Thus, from the transition state to the
product, the entire α electron spin density is transferred to the
Fe=O unit.

The spin natural orbitals (SNO) are shown in the Figure 3.
According to the molecular orbital shape and electron
configuration, these five d orbitals are spread in a distorted
octahedron field (Kumar et al., 2005; Shaik et al., 2005, 2007,
2008; Hirao et al., 2006;Wang et al., 2007; Tishchenko et al., 2008;
Usharani et al., 2013). The π∗

xz, π
∗
yz, and σ∗z2 antibonding orbitals

are hybrid mainly by Fe(d) and O(p), in which, π∗
xz and π∗

yz are
nearly in energy below σ∗z2. Besides, Fe(d) and N(p) contribute
to δ and σ∗xy. Herein, the maximum direction of electron cloud
belonging to Fe(dxy) is over against that of N(p), resulting in σ∗xy
being of a high energy below σ∗z2 and bonding orbital δ lies in the
lowes. The way that an electron of triplet in δ orbital jumps to
σ∗xy forms quintet makes the energy of quintet higher than that
of triplet at initial reactant. But in turn, when a spin-up electron
of σC−H transfers to the σ∗z2 orbital, the five newly formed d
orbitals in quintet possess d-d exchange interaction (Cartert
and Goddard III, 1988a,b), this stabilizes the quintet, making
it in a low energy. This is consistent with the energy profiles in
Figure 1, a crossover occurs during the C-H activation, that’s to
say the balance in energy gets ready for the two-state reaction.
At the reactant states of [(N4Py)-FeIV =O](ClO4)2, Fe contains
four d electrons, its triplet has δ2π∗1π∗1 configuration, and the
configuration of quintet is δ1π∗1π∗1σ∗xy

1. And at the transition
states, a spin-up electron of σC−H transfers to the empty σ∗z2
orbital on the quintet surface to activate the H-abstraction
reaction, as can be seen from the molecular orbital shape, the
included angle of the two orbitals is close to 180◦, consistent
with the value in Figure 2, namely, this α electron attacks the
σ∗z2 orbital almost head-on, in this way, a strong σ∗ formed.

FIGURE 3 | Spin natural orbitals (SNO) and their occupation numbers of main
intermediates in the H-transfer reaction of para-substituted
N,N-dimethylanilines mediated by [(N4Py)-FeIV =O](ClO4)2. A negative
occupation number corresponds to spin β.

Whereas, on the triplet surface, a β electron of σC−H transfers
to the singly occupied π∗ orbital during the reaction, the two
orbitals forming an angle of about 120◦, fitted with the result in
Figure 2, that is, the β electron attacking the π∗ orbital sideways.
Compared with the two pathways, attacking head-on is easier
and the formed σ∗ is stronger, these contribute to the lower
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FIGURE 4 | The effective diabatic and adiabatic potential energy surfaces for triplet (A) and quintet (B) high-valent oxoiron (IV) complexes along IRC in the C-H bond
activation reactions. CEPT(R) (red line) and CEPT(P) (green line) represent the effective reactant state and product state of CEPT reaction mechanism, HAT(R) (orange
line) and HAT(P) (blue line) mean the effective reactant state and product state of HAT reaction mechanism. The two black lines stand for the ground state and excited
state. Use the lowest energy of the quintet ground state as the zero-point energy. The abscissa and ordinate stand for reaction coordinate from IRC (amu1/2bohr) and
energy (kcal mol−1 ), respectively.

energy gap on the quintet surface than triplet. Furthermore, the
electrons and protons of both triplet and quintet transfer via
the direction of the σ-type nonbonding orbital which is along
the C···H···O axis. This is a signature for HAT processes (Li C.
et al., 2012).

The computed potential energy profiles for the reactant
(R) and product (P) diabatic states corresponding to the
HAT and CEPT reaction mechanisms are shown in Figure 4

(more data are shown in Supplementary Material), both in
the triplet (Figure 4A) and quintet (Figure 4B) spin states.
Figure 4 also displays the potential energy curves of the
adiabatic ground and excited state determined by MSDFT,
along the intrinsic reaction coordinate obtained from KS-
DFT calculations. In general, the diabatic states that best
match the adiabatic potential energy curves, reflected by
the smaller energy gap between the crossing point of the
diabatic states and the barrier on the adiabatic surface, can
be denoted as the overall reaction mechanism. Thus, this
procedure provides a straightforward way to identify the
reaction mechanism, consistent with a VB state-interaction
perspective.

Figure 4 shows that the reactions both in the triplet
(Figure 4A) and quintet (Figure 4B) states follow the same
reaction mechanism, which is a concerted proton and electron
transfer, but it can neither be fully described by a HAT nor by
a CEPT process throughout the reaction path. On the product
side, the concerted electron-proton transfer, or CEPT diabatic
state best resembles the reaction profile, which is asymptotically
transformed into of the adiabatic ground state. Conversely, the
reactant diabatic state of the CEPT(R) mechanism approaches
the adiabatic excited state. On the other hand, the reactant
diabatic states of the HAT mechanism is lower in energy than
that of the CEPT mechanism, thereby, having a closer match
to the adiabatic ground state. The difference is particularly

striking in the quintet spin state in comparison with that of
the triplet state (Figure 4). Since the maximum on the adiabatic
ground state potential (TS) lags behind the diabatic crossing
points either between the two CEPT states or between the
HAT reactant state and the CEPT product state (as shown in
Figure 4), the HAT reactant state has significant contributions
to the adiabatic ground state prior to the crossing point, after
which the dominant character switches to the CEPT product
state. For comparison, according to the classic VB-correlation
diagram developed by Shaik et al. (2008), Lai et al. (2012),
and Usharani et al. (2013, 2014), the C-H bond activation by
the reactive agent FeIV(O)(N4Py)(ClO4)2 would have been best
described as a concerted CEPT process for both triplet and
quintet states. Because the diabatic crossing point for the HAT
reaction mechanism occurs at a much higher energy (83.0 kcal
mol−1 for triplet state and 36.8 kcal mol−1 for the quintet
state) than the CEPT mechanism (71.0 kcal mol−1 for triplet
state and 29.9 kcal mol−1 for the quintet state), after the CEPT
crossing point the dominant VB character switches from HAT
on the reactant side to purely CEPT on the product state.
The energetic features of the HAT states prior to the diabatic
crossing points, and the dominantly CEPT character afterwards
are, in fact, fully consistent with the intuitive perspective of C-
H activation reaction. Here, both the transferring electron and
proton originate from an identical site in the reactant state, but
they end up in different locations (as a proton and an electron,
separately) in the product.

CONCLUSIONS

In summary, both Kohn-Sham DFT and MSDFT calculations
have been performed in the present study to investigate
the mechanism of C-H activation, which transpires in the
catalytic oxidation of N,N-dimethyalinines by the reactive species
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FeIV(O)(N4Py)(ClO4)2. Computational results show that the
overall reaction comprises of two processes: the initial C-
H activation is followed by a barrierless hydroxyl radical
recombination. Kohn-Sham DFT calculations reveal that the C-
H bond activation occurs via a HAT mechanism, in accord with
the recent predictions of PCET reactivity in analogous N-H and
O-H bond activation reactions. In addition, the MSDFT method
has been used to explore the diabatic and adiabatic potential
energy surface along the reaction coordinate. Interestingly,
the MSDFT calculations suggest that the mechanism involves
an initial HAT mechanism prior to reaching the diabatic
crossing point, after which the mechanism is dominated by
the CEPT product formation. The present study offers a clear
theoretical example of a concerted electron-proton transfer
reaction in C-H bond activation by FeIV(O)(N4Py)(ClO4)2,
and elucidates the explicit pathway for N-dealkylation of N,N-
dimethylaniline mediated by nonheme oxo-iron(IV) complexes
in drug metabolism. More importantly, the present study shows
that MSDFT approach can be used to investigate other hydrogen
abstraction process in a diabatic point of view.
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