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Considerable debate persists around the definition of risk. Depending on the area of
study, the concept of risk may be defined as the variance of the possible outcomes,
the probability of a loss, or a combination of the loss probability and its maximum
possible loss. Mounting evidence suggests the anterior cingulate cortex (ACC), including
the surrounding medial prefrontal cortex (mPFC), and the anterior insula/inferior frontal
gyrus (IFG) are key neural regions that represent perceived risks. Yet it remains unclear
which of these formalisms best accounts for the pattern of activation in brain regions
representing risk, and it is also difficult to disentangle risk from value, as both contribute
to perceived utility. To adjudicate among the possible definitions, we used fMRI with a
novel gambling task that orthogonalized the variance, loss probability, and maximum
possible loss among the risky options, while maintaining a constant expected value
across all monetary gambles to isolate the impact of risk rather than value. Here we show
that when expected value is controlled for ACC and IFG activation reflect variance, but
neither loss probability nor maximum possible loss. Across subjects, variance-related
activation within the ACC correlates indirectly with risk aversion. Our results highlight the
variance of the prospective outcomes as a formal representation of risk that is reflected
both in brain activity and behavior, thus suggestive of a stronger link among formal
economic theories of financial risk, naturalistic risk taking, and neural representations of
risk.
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INTRODUCTION

Cognitive neuroscience studies have used risky decision-making tasks to identify a network of brain
regions involved in predicting and evaluating the potential outcomes of an action, which often
influences decisions to avoid anticipated risks (Preuschoff et al., 2008; Jahn et al., 2011; Barkley-
Levenson et al., 2013; van Duijvenvoorde et al., 2015). Across such studies, however, are sizeable
differences in the treatment of risk, as risk constructs often represent various meanings across a
wide range of disciplines.

In its most basic form, risk involves increasing uncertainty about an outcome and possible
undesirable consequences. Earlier work suggested that greater risk involves greater variance
or heavier tails of a distribution (Rothschild and Stiglitz, 1970). Currently the concept of risk

Frontiers in Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 553

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00553
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2018.00553
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00553&domain=pdf&date_stamp=2018-08-14
https://www.frontiersin.org/articles/10.3389/fnins.2018.00553/full
http://loop.frontiersin.org/people/544831/overview
http://loop.frontiersin.org/people/6056/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00553 August 13, 2018 Time: 16:6 # 2

Fukunaga et al. Neural Representations of Risk

generally equates to variance in the areas of economics and
finance (Markowitz, 1952; Slovic and Lichtenstein, 1968). This
definition of risk, however, sometimes misses the broader concept
of risk as entailing aversive consequences. For example, an
equal probability of gaining either $1 million or $2 million
would entail a large variance in the outcome, although neither
outcome would necessarily be considered aversive. In other
disciplines, risk has different meanings that focus specifically
on the possibility of aversive outcomes rather than simply
variance. In health psychology for example, risk involves
the probability of a bad outcome such as getting a disease
(Rothman and Salovey, 1997), and in other contexts, risk
analysis involves both the probability of a particular aversive
outcome and the severity of the aversive outcome (Saaty,
1987).

Functional MRI studies have suggested a variety of often
competing theories of how risk is represented neurally, to the
point that a direct test of competing neural risk constructs is
needed. Earlier studies of risk using a card guessing task found
that dorsal anterior cingulate cortex (dACC) is activated by
greater “uncertainty” regarding an outcome (Critchley et al.,
2001). Subsequent studies with a similar task treated risk as
identical to variance and found strong representations of risk
as variance, which were distinct from reward representations
(Preuschoff et al., 2006). This distinction has been challenged
by others who argue that appetitive and aversive factors such as
reward and risk are represented by a scalar composite signal of
value, without a separate neural representation that is activated
specifically by aversive properties of a gamble (Tom et al.,
2007). A related study found heightened dACC activity with
an increased “spread of outcomes” or greater variance, but did
not covary with risk attitudes – although the IFG activity did
covary with risk aversion (Christopoulos et al., 2009). A set
of follow-up studies showed that neural representations of
variance were distinct from variance prediction errors in the
bilateral insula (Preuschoff et al., 2008), and that such signals
are stronger in those who tend to avoid risk (Rudorf et al.,
2012). Previous work has also implicated the role of cortical
regions such as the prefrontal cortex and parietal lobe, in
addition to the insula, during decision-making to minimize loss,
maximize gain, and assess gain probability (Venkatraman et al.,
2009).

The same insula or inferior frontal gyrus (IFG; Amiez et al.,
2016) and cingulate regions found to represent variance have
also been proposed to represent alternative risk constructs such
as loss probability (Brown and Braver, 2005), the magnitude
of a loss (Brown and Braver, 2007; Canessa et al., 2013),
and the related construct of loss aversion (Mohr et al., 2010;
Fukunaga et al., 2012). In one study, the authors went so far
as to propose that there is no formal explicit representation
of risk in the brain, but only an implicit representation of
risk seen as a reduction in value-related brain activity (Tom
et al., 2007). As a result of this lack of clarity, a systematic
decomposition and study of various risk concepts has been
called for in the literature (Venkatraman et al., 2009; Schonberg
et al., 2011) to resolve discrepancies across disciplines and
build a bridge between the literatures on economic risk

taking and more naturalistic risk taking (Schonberg et al.,
2012).

Here we aim to answer this call and directly test competing
theories about how risk is represented at the neural level.
This fMRI study examines the underlying neural correlates of
risky decision-making by directly disentangling brain signals
associated with three commonly applied definitions of risk:
variance, loss probability, and the magnitude of potential loss,
while controlling for expected value. A 2-arm bandit task
(see Figure 1) was designed to orthogonalize the three ‘risk’
conditions, while maintaining a constant expected value across all
gambles. Participants chose between a gamble and a “sure thing
(ST)” outcome, with the sure option adjusted dynamically to the
certainty equivalent (CE) for each gamble in order to ensure
that individuals chose the gamble over the ST on 50% of trials.
There are potentially other factors that we could not decorrelate
in the present design, including the skewness of the gamble, the
entropy of the gamble, and the maximum possible win. Still, to
our knowledge, this is the first neuroimaging study to implement
an experimental paradigm that allows for findings to discriminate
which among a set of risk formalisms best accounts for brain
activity at the time of risky decision-making involving monetary
gain and loss outcomes, and how such activity may correlate with
avoidance behavior.

MATERIALS AND METHODS

Participants
A total of 25 participants (14 females), ages 19–30 years
(M = 24.24 years, SD = 3.00) completed the task paradigm.
Thirty-two participants were initially recruited from the student
body of Indiana University, Bloomington. All participants
provided written informed consent and were right-handed
(with the exception of one participant), and met standard
health and safety requirements. Participants were paid $25/h
for participation, plus performance bonuses (M = $4.51,
range = $3.69–$5.76) based on points earned during the
experimental task. Subjects were told “. . .you will also receive
a bonus amount between $0 and up to $30. How much
money you receive will depend on your [task] winnings. . .” (See
Supplemental Materials for full script and bonus calculation).
Losses incurred were only taken out of the subject’s possible
task bonus, not from the hourly pay rate. There is evidence
that giving feedback about the outcome of a gamble alters
behavior (Jessup et al., 2008), and furthermore that giving
abstract “points” as reward (and later converted to money) serves
as an incentivizing reinforcer (Weiner, 1971; for review, see
Hackenberg, 2009). All procedures were approved by the Indiana
University Bloomington Institutional Review Board.

Our final analysis was conducted on 25 subjects, excluding a
total of 3 participants for unusable data (severe head movement,
n = 1; non-specific abnormal radiological findings, n = 1;
incomplete data collection due to technical malfunction, n = 1),
and 4 participants who discontinued scanning (due to self-
reported claustrophobia, n = 1; physical discomfort, n = 1; severe
anxiety, n = 1; and concentration problems, n = 1).
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FIGURE 1 | Task Design. Trials began with a blank screen and fixation cross lasting 1.5, 3.5, 5.5, or 7.5 s. Each gamble was then presented with its corresponding
ST option. Participants were give unlimited time to make a response, after which a red line appeared for at least 2 s under the selected option, followed by the
gamble outcome displayed above the chosen gamble for 1.5 s. Sure thing outcome payment amounts were adjusted for each gamble to maintain 50% gamble
choice probability for each of the five different types of gambles.

Novel Gambling Task Procedure
The task procedure is depicted in Figure 1. On each trial,
participants were presented with a choice between a gamble
(option 1) or a ST (option 2). The ST option consisted of
a specified payoff with 100% certainty. Each option appeared
in the form of a pie chart, and the payoff distributions
were explicitly revealed to the participants. The options were
shown counterbalanced on either the left or right side of
the computer screen. There were five different gambles, each
with three possible outcome values. The properties of the
gamble options –probability of loss [P(Loss)], maximum possible
loss [Max(Loss)], and variance (Var)– were constructed to be
mutually uncorrelated. We did this by first creating four gambles

that differed from each other in terms of the various properties
of risk, while maintaining a constant expected value ($30) across
all five gamble options. Despite this, the risk properties of
variance, maximum possible loss, and loss probability were still
correlated with each other across the gambles. Thus, we added the
fifth gamble with parameters optimized to break the correlation
between pairs of formal properties P(Loss), Max(Loss), and (Var),
(Christopoulos et al., 2009), so that the pairwise correlations
are all essentially zero. In other words, the fifth gamble served
to orthogonalize the constructs across the gambles. It was also
necessary for each gamble to include at least three possible
outcomes in order to decorrelate the formal properties of the
gambles. The correlation coefficients (R2) were all < = 0.001
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pairwise among the three formalisms. Applying the pairwise
approach ensured that any brain activity in the fMRI general
linear model (GLM) that loaded on one of the constructs would
not be confounded with or shared with the other constructs. The
derived (risk) properties for each stimulus conditions are shown
in Table 1.

Each trial began with one of the five gamble options and
presented with its corresponding ST option (100% probability of
earning money), with the gamble appearing on the left in 50%
of trials to avoid a potential confound between motor response
and choice of gamble vs. ST. Participants were given no time
limit to indicate a choice, but were trained behaviorally on the
task outside of the scanner (∼20 trials) to make judgments
within a few seconds. Once the participant indicated a left
or right choice with a button press by the corresponding left
or right index finger, a red line appeared for 2 s (61% of
trials), 4 (25%), 6 (10%), or 8 (4%) s, based on an exponential
distribution (Dale, 1999), under the selected option to confirm
that a choice was recorded. This was followed by the amount
of the paid gamble displayed above the chosen gamble for
1.5 s. After receiving feedback, a blank screen, serving as a
jittered interval, appeared lasting either 1.5, 3.5, 5.5, or 7.5 s,
again based on the same exponential distribution function as
following the response (Dale, 1999) prior to the start of a new
trial.

To reduce the confounding factors of choice probability
(Braver et al., 2001), it is important to ensure that the gamble
and ST options are each chosen on 50% of the trials for each
of the five gambles (Christopoulos et al., 2009). The reason is
that if the probability of one choice is substantially lower than
the probability of another choice, then the infrequent choice
will likely be associated with greater activity in the medial PFC
(Jessup et al., 2010; Alexander and Brown, 2011). This would
confound effects we might see in the medial PFC. To this end, a
successive approximation method and a linear control algorithm
were used to track and estimate the CEs for each of the five
corresponding gambles separately. The CE is the ST payoff value
that is equally preferred to the gamble alternative. In other words,
this is the minimum amount of money offered as a ST payout
for which the individual is indifferent between a gamble and
the ST. The concept of CE is important for our understanding
because it can be applied to label different attitudes toward risk
taking. That is (for an uncertain alternative specified in terms
of gains), one is considered risk averse if the CE is less than
the expected value of the gamble, whereas one is labeled as risk
seeking if the CE is greater than the expected gain (Rudorf et al.,
2012).

Each participant’s experimental session proceeded as follows,
as described in earlier work (Paulus and Frank, 2006). During
the first eight trials of each of the five gamble conditions, the
ST options are narrowed based on a successive approximation
method. The upper and lower bounds are initially set to
the maximum and minimum payoffs of the gamble in the
corresponding condition. Participants are presented with a ST
that is the lower bound plus two-thirds of the difference between
the upper and lower bound. If participants choose the ST, then the
ST becomes the new upper bound. If participants instead choose

the gamble, then the ST becomes the new lower bound. On the
next trial with the same condition, the ST is the lower bound
plus one-third of the difference between the upper and lower
bound. After eight trials for each condition, the initial certainty
equivalent (ICE) is then estimated as the average of the upper
and lower bounds. This CE procedure was implemented for each
participant during the experimental task guided, in part, by prior
neuroimaging work that have also used this approach (Paulus and
Frank, 2006).

After the initial phase of eight trials per each of the five
gambles, the ST that is offered in subsequent trials followed
a modified second-order linear control signal (i.e., a modified
proportional–integral–derivative or PID controller). The control
signal is designed to (1) maintain the choice probability as close
to 50% as possible for each condition, and (2) minimize the
trial-to-trial fluctuation in the presented ST option, in order to
ensure that the decision was not too easy for the participants. To
accomplish this, a CE estimate or a “new” ST was computed as
follows:

CE← CE + 30× [GambleTrackingGain× IntegralError

+ GambleSpringTerm× (CE − ICE)]

In this equation, the IntegralError represents the integral term,
which is the cumulative number of gamble choices minus the
cumulative number of ST choices for the condition. This is
essentially the degree to which the cumulative gamble choice
probability differed from 50%. The GambleTrackingGain is set at
a constant 0.3, and the Gamble Spring Term at a constant−0.01.
Here the Proportional error term with the GambleSpringTerm
coefficient used the difference of the current and ICE estimates
instead of the difference of the gamble choice probability from
50%. This effectively anchored the current CE estimate to the
initial estimate in order to increase stability. The ICE is estimated
by the average upper and lower bounds of the CE at the
end of the initial phase of the eight trials for each gamble.
These controller coefficients were determined by Monte Carlo
optimization procedures (before any human subjects were run)
with simulations of participant choice behavior, and with the
objective of maintaining the subject choice probabilities as close
to the indifference point (i.e., 50% gamble choices) as possible.
In the end, the algorithm performed well at controlling the
choice probabilities, and the 50% choice probability of gambles
was maintained for each of the five gamble conditions across
the 180 trials (45 trials per block) completed over the course
of four runs. We also explored using a linear damping term
based on the change in CE per trial, but this did not significantly
improve the performance and thus was omitted. The final CE
calculated for each gamble for each participant was the average
of all ST options presented alongside the corresponding gamble.
For behavioral analysis, we examined whether CEs for each
participant correlated with the neural representations of variance,
loss probability, or maximum possible loss of each gamble, to
draw a direct brain-behavior relationship. We will share the
experimental script, written in E-prime, with interested parties
on request.
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TABLE 1 | Task parameters for risk formalisms.

Gamble 1 Gamble 2 Gamble 3 Gamble 4 Gamble 5

EV 30 30 30 30 30.01

P(Loss) 0.1 0.1 0.25 0.25 0.13

Max(Loss) −30 −65 −8 −30 −23

Var 240 601.66 240 600 6982.72

Skewness 0 0 0 0 12460227.5

Entropy 0.92 0.92 1.5 1.5 0.83

Gamble 1 = Baseline, Gamble 2 = Control Probability of Loss, Gamble 3 = Control Variance, Gamble 4 = Control Maximum Possible Loss, Gamble 5 = Orthogonalization
Condition. For details of the gamble offers, see Supplementary Table S1.

Self-Report Measures
Participants (n = 24) completed the Domain Specific Risk-Taking
Attitude Scale (Weber et al., 2002), a self-report measure that
assesses risk-taking and risk perception within the domains
of recreational, social, ethical, health/safety, and financial risk
taking. One of the fMRI subjects did not complete the survey. The
DOSPERT measures likelihood of risk taking behavior, perceived
risk, and expected benefits across each of these four domains. The
financial domain consists of gambling and monetary investment
subscales, containing questions involving scenarios in which
college students may not identify [e.g., “Betting a day’s income
at the horse races” (item 19), “Investing 5% of your annual
income into speculative stock” (item 15)]. We thus expected
that questions about the likelihood of participants engaging in
risky behavior would not be sensitive measures since they were
unlikely to engage in them regardless of risk perception. Instead,
we surmised that the scale’s measurement of perceived risk and
expected benefit would better capture risk evaluation.

fMRI Acquisition and Data Preprocessing
Images were acquired on a 3T Siemens TIM Trio scanner
using a 32-channel head coil. Functional BOLD data were
collected at a 30◦ angle from the anterior commissure-posterior
commissure line in order to maximize signal-to-noise ratio in
the orbital and ventral regions of the brain (Deichmann et al.,
2003). Functional T2∗ -weighted images were acquired using a
gradient echo planar imaging sequence with 35 axial slices and
3.44 mm × 3.44 mm × 3.75 mm voxels (30mm × 3.8 mm
interleaved slices; TR = 2000 ms; TE = 25 ms; 64 × 64 voxel
matrix; flip angle = 70; field of view = 220mm × 220mm).
Four runs of data were collected with 285 functional scans each.
High-resolution T1-weighted MPRAGE images were collected
for spatial normalization excitation consisting of 192 sagittal
slices (256 × 256 × 196 voxel matrix of 1 mm × 1 mm × 1 mm
voxels, TR = 1800 ms; TE = 2.67 ms; flip angle = 9) at the end of
each session.

Functional data were spike-corrected on a voxel-by-
voxel basis to reduce the impact of artifacts using AFNI’s
3dDespike1. Subsequent preprocessing was done using SPM5
(Welcome Department of Imaging Neuroscience London,
United Kingdom2). Functional images were corrected for

1http://afni.nimh.nih.gov/afni
2www.fil.ion.ucl.ac.uk/spm

differences in slice timing using sinc-interpolation (Oppenheim
et al., 1999) and head movement using a least-squares approach
and a 6-parameter rigid body spatial transformation. Once
the resulting images were co-registered to the structural image
and normalized to standard Montreal Neurological Institute
(MNI) space, the resulting functional images were then spatially
smoothed with an 8-mm3 full-width-at-half-maximum isotropic
Gaussian kernel.

fMRI Analysis
Functional neuroimaging data were statistically analyzed based
on a GLM with random effects implemented in SPM5. Each
individual subject’s GLM was estimated with a canonical
hemodynamic response function (HRF) with no derivatives, a
microtime resolution of 16 time bins per scan, a high-pass filter
cutoff of 128 s using a residual forming matrix, autoregressive
AR(1) to account for serial correlations, and restricted maximum
likelihood (ReML) for model estimation.

The GLM included a total of 17 regressors: two constant
terms, 6 motion regressors, and 9 regressors for experimental
conditions during the choice period and the feedback period.
The nine event regressors were labeled as follows: Choice
(which modeled all event times in which the subject chose the
gamble or ST), Choice∗P(Loss), Choice∗Max(Loss), Choice∗Var,
Gamble, ChoiceDur, Acknowledge, FeedbackWin, FeedbackLoss.
The rationale for these regressors is as follows. First, every
event included a Choice, whether it was for the Gamble
or the ST. The Choice regressor modeled the main effect
of a choice event, regardless of whether the choice was for
the Gamble or the ST. Next, to explore the nature of the
risk-related increase in activation, we included several mean-
centered parametrically modulated regressors for the Choice
event, namely individual regressors that modeled the variance,
loss probability, and maximum loss of the chosen option.
Each parametrically modulated regressor was mean-centered and
normalized (z-scored) by dividing the regressor by its standard
deviation, which compensated for the fact that the raw value
ranges were different (i.e., larger for variances, and smaller for
probabilities). This provided parametric modulators (indicated
by Choice∗P(Loss), Choice∗Max(Loss), Choice∗Var), aligned to
the time of response, to identify brain regions where activation
was positively or negatively correlated with the three types of
formal risk representations: (1) Loss probability: P(Loss)∗; (2)
Maximum Possible Loss: Max(Loss)∗; (3) Variance: Var∗. Next,
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we considered that there may be a main effect of activation
specifically in trials when subjects chose the gamble option
(Cohen et al., 2005; Fukui et al., 2005; Rao et al., 2008; Krawitz
et al., 2010), hence the inclusion of a regressor specifically to
model subjects choice of the gamble option at the time of
response. Note that given SPM’s limitations and our desire to
include parametrically modulated regressors for all choice trials,
we could not separately model trials in which subjects chose
the gamble vs. trials when they chose the ST, without creating
a degenerate design matrix. An epoch regressor (ChoiceDur)
with an onset at the time of presentation and spanning the
duration of the choice event was also included to capture
and control for potentially confounding effects of reaction
time (time on task) on regions heavily active during choice
behavior (Grinband et al., 2011). Feedback events were modeled
by three regressors, one to designate the time when subjects
were informed that a choice was recorded (Acknowledge),
another to model the subsequent feedback events, specifically
a loss event (FeedbackLoss) and lastly to indicate a win event
(FeedbackWin). Regions identified as loading significantly on
the parametrically modulated Choice regressors of P(Loss)∗,
Max(Loss)∗, Var∗ were further analyzed to determine whether
their activity might correlate with avoidance of gambles across
subjects, i.e., whether brain activity correlated negatively with
the CEs in such a way that the BOLD signal would be logically
sufficient to serve as avoidance signals with respect to the gamble
options.

To examine changes in the neural basis of risk representation
in the medial prefrontal region, we also planned an independent
region-of-interest (ROI) analysis based on an independent mask
taken from a previous study that identified risk signals in the
ACC (peak voxel = MNI 6, 26, 24) and bilateral IFG /anterior
insula (peak voxels = MNI –44, 16, –8 and 48, 20, –6) (Fukunaga
et al., 2012). We planned independent ROI masks to be applied
systematically across the three risk constructs to avoid ‘double
dipping’ of the same dataset (Kriegeskorte et al., 2009).

Parametrically Modulated Analysis
We used parametric modulation analysis to address the main
question of whether distinct brain regions represent any of the
three proposed constructs of risk. We focused on three main
parametrically modulated regressors modeled at the time of
decision-making: (1) Loss probability: P(Loss)∗, (2) Maximum
Loss: Max(Loss)∗, and (3) Variance: Var∗. Regions were defined
as contiguous voxel clusters passing a cluster defining threshold
of p < 0.001, unless otherwise specified. Clusters identified in
this way were further evaluated for whole-brain significance with
SPM5 based on the cluster size, i.e., cluster corrected p-values
with a cluster corrected alpha = 0.05. As an additional check to
control for potentially inflated cluster significance (Eklund et al.,
2016), we computed the minimum significant cluster size with a
version of AFNI’s 3dClustSim compiled Jan. 11, 2017, using our
population brain mask of valid voxels. This analysis suggested
that with a cluster defining threshold of p < 0.001 and cluster-
corrected alpha = 0.05, clusters of size 73 voxels (contiguous
voxel faces) or greater are significant. We thus identified as
significant clusters that exceeded this size. We will share our

anonymized data and analysis scripts with interested parties on
request.

RESULTS

Behavioral Analyses
As expected, all subjects chose the gambles and the ST options
equally often (gamble chosen average of 50.0% of trials across
population; all subject p > 0.9, Fisher Exact test). We tested to see
whether the Var, P(Loss), or Max(Loss) constructs accounted for
behavioral preferences, in particular, the CE values and reaction
times for all trials (RT) found for each gamble (Figure 2).
We fitted six linear mixed effect models with lmerTest in R
and computed p-values based on degrees of freedom computed
with Satterthwaite’s method. All RTs were greater than 350 ms,
thus trimming of fast RTs was unnecessary. However, RTs were
trimmed if they were 3 SDs above or below the subject’s mean
RT, resulting in a total of 64 (1.44%) trials removed due to slow
responding. Statistical analyses below were performed on the
log10 transformed RTs to correct for deviations from normality
(see Supplementary Figure S6 for a histogram of all raw RT
data). The six models used log RT or CEs as dependent variables,
with model Var, P(Loss), or Max(Loss) as fixed effects. All
models had random intercepts and slopes grouped by subject
as a random effect, and p-values reflect two-tailed tests. Greater
gamble variance trended toward smaller RTs [t(6.13) = −3.49,
p = 0.13] and smaller CEs [t(24.23) = −6.41, p = 1.2 × 10−6],
consistent with risk aversion. Greater gamble P(Loss) had no
association with RTs [t(24.03) = 0.83, p = 0.42] but was associated
with increasing CE [t(24.0) = 5.49, p = 1.2 × 10−5]. Greater
Max(Loss) was associated with smaller RTs [t(23.93) = −3.72,
p = 0.001] but had no relationship with CEs [t(23.98) = 0.047,
p = 0.96]. As a control, we tested whether repeated presentations
of the same gamble might causes preferences to shift over
time, but we found no evidence of this (Supplementary
Material).

We also conducted a logistic regression in each subject to
identify which factors determined the probability of choosing
the ST option, and we found that greater ST values and greater
gamble variance were associated with a greater probability of
choosing the ST, but loss probability and maximum possible
loss were not significant predictors of choice probability
(Supplementary Figure S4 and Supplementary Table S9).

fMRI Analyses
Loss Probability and Maximum Possible Loss During
Choice
Neither the P(Loss) nor Max(Loss) regressors showed significant
effects anywhere in the whole brain analysis.

Variance Regressor During Choice
Consistent with the risk definition from finance theory, we
found evidence to support outcome variance as a neural basis of
risk representation. The Var∗Choice (Variance) regressor showed
increasing activity (positive correlation; β’s > 0) in right Middle
Frontal Gyrus/ IFG (cluster size k = 2018, peak voxel MNI 42, 18,
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FIGURE 2 | Log10 Transformed Mean Reaction Times and CE s for each gamble. Gamble 1 = Baseline, Gamble 2 = Control Probability of Loss, Gamble 3 = Control
Variance, Gamble 4 = Control Maximum Possible Loss, Gamble 5 = Orthogonalization Condition. Bars above gamble pairs denote significance at p < 0.05. For
further statistics see Supplementary Tables S2–S7 and Supplementary Figure S3 in the Supplementary Materials.

FIGURE 3 | Risk Formalism Regressor Loadings During Choice. Top left: ACC region defined by significant loading on Variance regressor (Var). Top right: Region of
IFG/AI also loading on variance regressor. Other regressors were not significant. Bottom: only the variance regressor was significant. No other regions showed
significant loading on P(Loss) or Max Loss regressors. Note in the bar plot, the Variance regressor loading is significant at the level of whole brain correction. Regions
shown here were identified by whole-brain cluster correction. We report no p–value for the variance regressor ROI loading specifically because doing so would
amount to double-dipping (Vul et al., 2009). ROIs shown at FDR q < 0.01.

46; p < 0.002, cluster corrected, two-tailed) (see Figure 3) and the
right Medial Frontal Gyrus (rMFG) including the ACC (cluster
size k = 4098, peak voxel: MNI 16, 32, 44; p < 0.002, cluster
corrected, two-tailed) (see Figure 3) as the variance increased

for the chosen gamble option. Similar effects were found in
additional regions including the right Angular/Supramarginal
Gyrus (cluster size k = 1236, peak voxel: MNI 52, −50, 28;
p < 0.002, cluster corrected, two-tailed).
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TABLE 2 | Positive and negative loadings for variance regressor.

Peak MNI Coordinates

Region Laterality Cluster Size X Y Z Max stat t P Cluster Corrected

Positive Loading

Angular/Supramarginal Gyrus R 1236 52 −50 28 7.46 <0.001

Medial Frontal Gyrus R 4098 16 32 44 7.17 <0.001

Middle Frontal Gyrus R 2018 42 18 46 6.75 <0.001

Fusiform Gyrus L 289 −34 −52 −14 5.52 <0.001

Inferior Parietal Lobule L 181 −52 −36 40 4.96 0.001

Brodmann 13/Insula L 91 −32 14 −10 4.81 0.044

Parahippocampal Gyrus R 102 26 −32 −16 4.8 0.027

Inferior/Middle Temporal Gyrus R 145 58 −36 −14 4.75 0.005

Negative Loading

Lingual Gyrus R 10110 12 −84 −8 6.54 0

Paracentral Lobule R 1243 10 −44 64 6.06 0

Mid-Cingulum L 126 0 −14 40 3.83 0.01

Peak coordinates for main clusters are reported in Montreal Neurological Institute (MNI) space (x, y, z).

Additional ST Regressor
As can be seen in Supplementary Figures S1, S2, Gamble 5 had
the highest variance and was also associated with the lowest CE s.
This raises a question of whether the variance-related activation
could reflect lower ST values rather than higher variance of the
gamble. Logically, the lower ST values are caused by aversion
to the (higher variance) gamble, as subjects prefer even smaller
ST values to the gamble. This suggests that greater BOLD signal
loading must ultimately reflect the greater variance of the gamble
rather than the resulting lower ST values. Nevertheless, to explore
this, we reanalyzed the data with a regressor for the ST values
included as a fourth parametrically modulated regressor, in
addition to the original three modeling variance, loss probability,
and maximum possible loss, in a separate set of GLMs. The
ST regressor showed no significant loading, suggesting that the
ST value of each gamble did not contribute to differences in
activation in the ACC or insula, or in any other regions that might
be related to reward anticipation of the ST.

Nevertheless, the variance regressor and the ST regressor
were negatively correlated, because aversion to higher-variance
gambles necessarily results in lower ST offers, making it difficult
to decorrelate the two. In order to further analyze these
results, the initial eight trails of each condition were analyzed
independently, as the ST options are narrowed based on a
successive approximation method during these trials, causing
the largest amount of variation in the ST options relative to the
variance of the gamble. This might in principle make it easier to
see BOLD signal loading on the ST regressor, but in practice this
was not the case. The first eight trials showed results consistent
with the remaining trials. BOLD signals loading on P(Loss),
MaxLoss, and ST were non-significant, however, the Var regressor
yielded a significant cluster in the rMFG (cluster size k = 1953,
peak voxel MNI 8, 32, 38; p < 0.002, cluster corrected, two-
tailed) and right MFG/ IFG (cluster size k = 166, peak voxel MNI
28, 16, −16; p < 0.002, cluster corrected, two-tailed). We note
with caution, however, that the order in which the parametrically
modulated ST regressor is entered matters – if we enter the ST

regressor first to model all trials, then it does load significantly
in a region including the ACC (cluster size k = 2059, peak voxel
MNI −12, 40, 14; p < 0.002, cluster corrected, two-tailed). This
means that we cannot ultimately rule out greater activation in
response to lower ST values, but we note that the lower ST values
are themselves a consequence of the greater variance of a gamble,
leaving greater variance as the driving factor.

Feedback Contrasts
The difference between FeedbackWin and FeedbackLoss
regressors yielded significant clusters in the ACC, insula, and
orbitofrontal cortex (see Supplementary Table S8). These
findings are congruous with previous literature implicating
the association of these regions with error detection, feedback
integration, and decision value (Hare et al., 2008; Simões-
Franklin et al., 2010; Tsuchida et al., 2010). We do not treat
these results further here as they are not central to our questions
regarding risk representation. For completeness, we note
that the Var∗ regressor also showed decreased activity (negative
correlation; β’s < 0) in the Lingual/Posterior Cingulate Gyrus and
bilateral Paracentral Lobule (Table 2), although the significance
of this is less clear.

Region-of-Interest (ROI) Analysis
Independent ROI analysis
To examine changes in the neural basis of risk representation
in the medial prefrontal region, we conducted independent ROI
analyses based on separate masks taken from a previous study
we performed that found risk-related signals in the ACC (peak
voxel = MNI 6, 26, 24) and bilateral IFG /anterior insula (IFG/AI)
(peak voxels = MNI –44, 16, –8 and 48, 20, –6) (Fukunaga et al.,
2012). That study used the Balloon Analog Risk Task (BART)
and identified areas where BOLD activation related to choosing
to gamble increased as the probability of explosion increased. As
we had access to the full ROI mask, we used all voxels in each
mask, not just the peak voxel. We tested for the significance of the
variance regressor in these a priori regions and found significant
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variance loading in the ACC [t(24) = 1.796, p = 0.0425, one-
tailed] and right insula [t(24) = 3.599, p < 0.001, one-tailed],
but not in the left insula [t(24) = 0.234, p = 0.4083, one-tailed].
We note that our tests here are one-tailed because of the prior
hypothesis of increased activation with greater risk, and the result
in the ACC would not survive a two-tailed test, although the
result in the right insula would survive.

Relationship Between Neural Activity
and Risk Aversion
If ACC and the MFG/IFG region activities that show effects of
gamble variance are related to risk avoidance, then we would
expect greater neural activity loading on the Var regressor to
be associated with smaller average CE s, thus reflecting greater
risk aversion. To test this, we calculated for each participant
the average activation for when a gamble option was chosen
for each of the five gambles, in the ACC region identified
above (MNI 16, 32, 44). An ANCOVA with the five gambles
as a fixed factor was performed in order to evaluate whether
CE served as a covariate to ACC activation. Results were non-
significant [F(1,95) = 1.23, MSE = 0.207, p = 0.27]. We also
used a small-volume correction consisting of the region of ACC
and overlying pre-SMA defined as loading on the variance
regressor (cf. Figure 3) to investigate a potential correlation
between the variance activation in the ACC (MNI 16, 32, 44)
and average CE across subjects, but there was still no significant
effect. Furthermore, there was no significant correlation between
average CE across subjects and the GLM choice regressors that
were parametrically modulated by loss probability or maximum
possible loss.

We further explored whether ACC and MFG/IFG gamble
variance effects might correlate with CE only when the subject
chose the gamble or the ST option. To do this, we constructed
a new set of GLMs in which trials when the subject chose
the gamble were modeled separately from those in which
subjects chose the ST. First, a test of main effects showed
greater activity when subjects chose the Gamble vs. ST in the
bilateral dorsal striatum (MNI −10, 0, −14), consistent with
reward seeking, as well as in the precuneus and middle frontal
gyrus (Supplementary Table S8). The opposite contrast showed
significant effects in the superior frontal gyrus and cerebellar
culmen (Supplementary Table S8).

We found regions with both positive and negative correlations
of gamble variance on CE across subjects (Supplementary
Table S8), including a positive correlation in the bilateral
posterior insula (MNI 42, −12, −8 and MNI −38, −22, 2)
between CE and the magnitude of the response to gamble
variance, specifically when subjects chose the gamble. We
also found a negative correlation in the insula (MNI 38, −16,
−8), consistent with a role for the insula in risk aversion.
The remaining gamble variance correlation effects with CE
were found in posterior regions (Supplementary Table S8).
Regarding other effects, we also found a significant correlation
across subjects between the magnitude of the variance-
related activation in the ACC and the DOSPERT expected
benefits scale (Supplementary Materials, Supplementary
Figure S5).

DISCUSSION

Task Performance
In this study, we have aimed to adjudicate among competing
definitions of risk, and we find consistent evidence in favor of
variance as a formal definition of risk most closely related to how
the brain represents risk. We evaluated neural correlates of risky
decision-making using a novel gambling task that orthogonalized
each gamble’s variance, loss probability, and maximum possible
loss, while maintaining a constant expected value. Behavioral
findings indicated that greater variance was associated with lower
CEs, an indicator of risk avoidance, and counterintuitive to
expectation, P(Loss) was positively correlated with CE. This is
surprising considering previous behavioral findings suggest that
P(Loss) is perceived to be riskier than both Var and Max(Loss),
and impacts the perception of variance across financial gambles
(Duxbury and Summers, 2004).

Risk-Related Neural Activity
It has been posited that risk aversion to mixed gamble options is a
result of enhanced sensitivity to value and loss aversion, but that
risk is simply a factor in overall option value representation, and
not a distinct representation of risk or potential loss (Tom et al.,
2007). In contrast, ACC and insula/IFG activity has been shown
to correlate more specifically with risk and avoidance in previous
literature (Brown and Braver, 2007; Preuschoff et al., 2008;
Krawitz et al., 2010; Congdon et al., 2013). ACC is considered
to be a part of an integral network involved in decision-making
and evaluation, but its role is contested, with numerous proposed
functions (Ebitz and Hayden, 2016). Our main findings suggest
that ACC activity may signal among other things a particular
kind of representation involved in decision-making, namely the
variance of the potential outcomes. Specifically, the variance of a
gamble payout distribution may be a better formalism by which
to model risk at the neural level, as opposed to other constructs
such as loss probability or maximum possible loss (Brown and
Braver, 2005, 2007). Our results provide perspective on earlier
work showing that insula activation was associated with reducing
the possible loss (Venkatraman et al., 2009), but in that study,
reducing the loss necessarily also reduced the variance, such that
loss minimization and variance minimization were confounded.
Here we disentangle the potentially confounded factors and show
that specifically variance minimization is associated with ACC
and insula activation. Furthermore, increased variance-related
activation of the ACC was shown to correlate with decreases in
the expected benefits of risky behavior (Supplementary Figure
S5). Computationally, it appears that the brain is able to at least
represent variance without necessarily representing maximum
possible loss or loss probability per se. This is not surprising, as
the calculations are different, and variance can in principle be
computed without identifying the probability of loss specifically
or the maximum possible loss.

Competing Definitions of Risk
Our results shed light on continuing disparities in the literature
regarding the definition of risk. Our finding of increased ACC
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activation with increasing gamble payout variance is consistent
with the concept of risk as defined in literature in economics
(Markowitz, 1952) and neuroscience (Preuschoff et al., 2006).
Our findings are not as consistent with definitions of risk as the
probability of a loss per se (Saaty, 1987; Rothman and Salovey,
1997; Duxbury and Summers, 2004), at least at the level of neural
representation. While the precise roles of the ACC and AI/IFG
in decision-making and risk evaluation remain contested, we
provide further support for their role in risk evaluation and
decision-making (Amiez et al., 2016).

Relationship Between Neural Activity
and Behavior
It is noteworthy that we found no correlation between variance
regressor loading in the ACC and the CE s across participants.
Based on previous work (Brown and Braver, 2007; Fukunaga
et al., 2012), we expected but did not find greater risk-related
activity in the ACC to correlate with reduced valuation of the
gamble and thus lower CEs. One possible reconciliation of this
discrepancy is the idea that ACC variance signals may drive
a devaluation of the reward associated with an option rather
than avoidance of risk per se, consistent with our findings of
reduced expected benefits with greater variance-related ACC
activity. Previous studies found that greater ACC activation was
associated with greater expected loss associated with a reduction
in the expected value of the trial (Krawitz et al., 2010). Here, we
controlled for expected value by holding it constant across all five
gambles. Our design could thus detect signals associated with risk
aversion (i.e., aversion to higher variance gambles), but it could
not detect signals associated with reduced value. Nevertheless, we
cannot strictly rule out the possibility that some brain regions
may represent loss probability or maximum possible loss solely
on the basis of the current null results.

Another possible account of ACC activation is that it may
increase when a decision is made to engage in a suboptimal
choice, whether that involves too much risk or too little risk
(Hewig et al., 2009). As an aside, we attempted to assess this
directly in the present data set with an additional GLM analysis
that modeled the choice of Gamble and “ST” option separately
at the time of choice, for each of the five gambles individually,
and with an additional regressor for each condition that was
parametrically modulated by the value of the ST. We reasoned
that if ACC signaled an impending suboptimal choice, then the
choice of a gamble option should lead to greater activation with
increasing values of the ST, and likewise the choice of a ST option
should lead to greater activation with decreasing values of the ST.
We found no evidence for or against either of these hypotheses,
which we did not consider surprising given the fact that the values
of the ST option were intentionally clustered around the CE value
for each gamble. As a result, this left little variation in the ST
values that could otherwise be exploited to identify correlated
neural activity. Thus our data are not well suited to answer this
follow-up question.

Recent work suggests several alternative theories of ACC
function. One theory suggests that ACC signals the value of
foraging (Kolling et al., 2012, 2016). While ours is not specifically

a foraging task, we analyzed the trials in which subjects chose the
gamble over the ST option. Gambles with larger variances could
be conceptualized as exemplifying foraging behavior, as there is
more certainty with smaller variances (Weber et al., 2004), as
such our results could inform studies of foraging. We would
expect ACC activity to be larger when subjects choose a gamble
with a larger variance (analogous to the greater uncertainty
associated with a decision to forage), which is precisely what
we found in our study. Similarly, we found that subjects with
greater ACC activity generally perceived a lower level of expected
benefits of certain activities as measured by the DOSPERT (See
Supplementary Figure S5). This is consistent with a drive to
forage when the expected benefits of available resources are low.
Another theory suggests that ACC represents the expected value
of control (Shenhav et al., 2013). In our study, we controlled for
expected values, which meant that there was no greater expected
value of gain by virtue of choosing a gamble with a greater
variance. Based on this critical difference in experimental design,
our results are not obviously consistent with an interpretation in
terms of the expected value of control, but neither do they rule
out such an effect that may not have been detectable given our
experimental design.

Another more recent theory suggests that rather than
signaling foraging value, the ACC signals the difficulty of a
decision (Shenhav et al., 2014). Here again, it is not clear that
the ACC loading on the variance regressor is consistent with
this notion, because the choices on both higher and lower
variance gambles were uniformly difficult – participants chose
the gamble option approximately 50% of the time for each of
the gambles due to the staircase algorithm that adjusted the CEs
to maintain the 50% choice probability. What we can conclude
based on our study design is that the ACC signals the variance
of a chosen gamble, which may reflect a drive to forage, and
more indirectly, to avoid loss. We did not find more direct
evidence of control effects here, a point which we return to
below.

Regarding the origin of the variance signal, our results are
consistent with the PRO model of ACC (Alexander and Brown,
2011, 2014). In the PRO model, individual cells predict each
possible outcome of an action, and each prediction is compared
against the outcome to generate a prediction error. The present
results suggest that, in the framework of the PRO model,
prediction-related ACC cells may have a kind of receptive field.
Thus a given cell would be maximally activated by a particular
possible outcome value (the preferred value of the cell), and the
activation would be weaker as possible outcomes differ from
the cell’s preferred value. A wider range of possible outcomes
may lead to activation of more distinct populations of prediction
cells, leading to greater overall summed activation across the
population of cells. Conversely, lower variance gambles may
lead to overlapping activation of the same cell populations to
represent the various possible outcomes, leading to a smaller
set of active cells and hence reduced activation when summed
across the population. If so, then that implies a prediction for
empirical investigation, namely that individual prediction-related
cells in ACC should show receptive fields for particular predicted
outcomes.
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Limitations
There are several main limitations to our findings. First, while
our results shed light on the nature of ACC activity at the time
of decision-making, it is less clear from our results what is the
direct effect of that ACC activation on control of behavior, as our
experiment was not designed to directly address this question.
Second, the gamble outcome distributions were designed to
orthogonalize the loss probability, maximum possible loss, and
variance while maintaining expected value constant. The tradeoff
for doing so meant that the maximum possible win was almost
perfectly correlated with the variance of the gambles (r = 0.998),
which opens us to the possibility that the regions sensitive to
gamble variance may be sensitive to the maximum possible win
value in addition to or instead of the variance. Nevertheless,
such reward sensitivity is less likely given previously reported
results, in which ventromedial prefrontal cortex rather than
dorsal ACC has been shown to be sensitive to the reward value
of the chosen option (McClure et al., 2004; Plassmann et al.,
2008; Fukunaga et al., 2012). In contrast, ACC activity has instead
shown to signal potential losses by increasing its activity when
less valuable options are chosen (Fukunaga et al., 2012), especially
when individuals more often avoid the less valuable options
(Krawitz et al., 2010). Previous literature thus strongly suggests
that ACC activity is specifically associated with avoiding less
valuable options, which is also consistent with anatomical studies
showing a preponderance of inhibitory output signals from the
ACC to lateral prefrontal cortex (Medalla and Barbas, 2009).
A related third limitation is that specifically the fifth gamble has
the largest variance of all the gambles, so we cannot rule out the
possibility that the greater ACC activity associated with gamble
variance is driven strongly by another to-be-determined property
of the fifth gamble specifically (e.g., treatment of the lowest-
probability possible outcome; Kunreuther et al., 2001). Still, even
if this were the case, our results stand in that factors at least related
to the gamble variance more potently elicit ACC activity than
factors related to loss probability or maximum possible loss.

As an aside, we also considered post hoc analyses of whether
the gamble properties might correlate with other formal metrics,
especially entropy and skewness of the gambles. We found that
the entropy of the gambles shared 92.4% of the variance with
loss probability. The skewness of the gambles shared over 99.7%
of the variance with the gamble variance. These correlations
depend only on the structure of the gambles, not on subject
behavior. Given that, we concluded that loss probability and
variance were likely to reflect the properties of entropy and
skewness, respectively, and so we did not consider them further
here. It should be noted that given the strong shared variance
between skewness and gamble variance, we cannot rule out that
the observed effects of gamble variance might be attributed to
skewness as well.

The fourth limitation lies in the fact that having five gambles
that are repeatedly observed may create a non-independence
issue, and specifically in that treating the five gambles as a fixed
effect rather than a random effect may limit the generalizability
of the findings to other kinds of gambles. This limitation is
common to nearly all existing fMRI studies which study a finite

set of experimental conditions and has only recently been pointed
out (Westfall et al., 2016). This potential limitation could be
remedied by random rather than fixed effects modeling, but
random effects for experimental factors are not yet supported
in typical fMRI analysis packages such as AFNI, FSL, SPM
(Westfall et al., 2016). Not accounting for mixed-effects may
result in marginal alpha inflation for fixed, relative to random,
effects, and thus our results can best be understood as inferences
on the formal properties of risk in the specific gambles we
studied.

Fifth, the task design, while targeted toward orthogonalizing
risk formalisms, creates several limitations which are important
to acknowledge. As ST values were titrated such that subjects
chose the gamble in 50% of gambles, it is possible that the lack
of findings in P(Loss) and Max(Loss) were influenced by a lack
of motivation as a consequence of subjects’ risk evaluation being
near the indifference point.

A sixth limitation may the relatively small sample, and that
most of our subjects were risk seeking. Indeed, in separate
analyses that considered potential systematic nonlinearities in
probability and value perception (not detailed here), all but two
of our subjects had best-fit value function exponents greater
than 1 when we fit them to Prospect Theory (Paulus and Frank,
2006), consistent with risk-seeking, and precluding analysis of
only risk averse subjects. Nevertheless, our results highlight
that within a given subject, higher variance was associated with
lower CEs, and not with higher CEs as would otherwise be
expected with risk-seeking subjects. This indicates, incidentally,
that systematic nonlinearities in value and probability perception
may not fully account for subject risk preferences here. Our
argument and conclusions are predicated on the relative
preference of difference variance levels within subjects, and not
on whether the subjects were on average risk seeking or risk
averse.

More generally, it has been said that all models are wrong,
but some are useful (Box, 1976). We show here that certain
brain regions are sensitive to the variance of a gamble, and
that the gamble variance is negatively correlated with preference,
but we hesitate to claim that the brain computes variance in
the mathematical sense. We do not know exactly what the
brain computes, only that it is sensitive to variance and not to
related formal constructs such as loss probability or maximum
possible loss when the expected value of differing gambles
is constant. In particular, we cannot rule out that some yet-
to-be-determined idiosyncratic property of our gambles elicits
a particular preference or aversion. Indeed, even with many
different gambles we cannot rule out that the brain will have
a particular preference for a particular gamble, as there are
potentially infinitely many parameters that could fit (or overfit)
the neural response to particular gambles. Given that, our
question is more circumscribed: given that all models are wrong,
which is more useful? The answer given by our data is that the
gamble variance is a more useful construct.

While our results show effects of risky decisions involving
money, it remains unclear whether our findings will generalize
to other domains and contexts such as social or recreational
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risk taking (Figner and Weber, 2011; Weber et al., 2002). For
our study, we selected risk parameters of monetary loss and
gain. These are ideal because they can be well controlled in
an experimental setting; however, we recognize that decision-
making behaviors within a single risk domain may not generalize
(Gilman et al., 2015), or be explained by existing economic
theories (e.g., CE, risk-taking; Kusev et al., 2009). While this
study focuses specifically on financial risk taking, future work
might assess risk-taking behaviors across domains in order
to understand how risk preferences correspond with task
performance (Finucane et al., 2000) and neurological correlates
(Rudorf et al., 2012).

CONCLUSION

Our study findings directly address the question of how ACC
activity may provide a basis for cognitive control of behavior.
This study provides a unique design not applied elsewhere, such
that we intentionally controlled for the ST alternatives so that
from the participant’s perspective, neither the gamble option nor
the ST option were more or less subjectively valuable than the
alternative. If ACC provides a control signal to bias against less
valuable options, it could be argued that there is no subjectively
less valuable option to bias against based on this study design.
Previous studies arguing for a role of ACC in risk avoidance
did have an objectively less valuable option (Fukunaga et al.,
2012), which was also subjectively less valuable as indicated by
lower choice probabilities (Krawitz et al., 2010). In the case
of choosing between options with differing subjective values,
ACC may well drive loss avoidance as a bias against the less
valuable option. Specifically, where the gamble is less valuable,
ACC activity may bias against the gamble, hence a risk-avoidance
effect as previously observed (Krawitz et al., 2010; Fukunaga
et al., 2012). Where instead the riskier option is more valuable,
the ACC may bias against the safe option, in favor of riskier
options as in foraging (Hewig et al., 2009; Kolling et al., 2012,
2016).

In sum, we conclude that our results are consistent with the
notion of ACC activity guiding decisions toward more valuable
options and against less valuable options. Whether a riskier
(higher variance) option is favored or not may depend more on
whether it is more valuable, regardless of whether it is risker

or not (Walton et al., 2002; Shenhav et al., 2014), thus making
choices more rational (Paulus and Frank, 2006). In the end,
the ACC may reflect a prediction of all possible outcomes,
which serves as a basis for controlling behavior to avoid less
valuable options, whether those options involve more or less
variance. Current computational neural modeling work on ACC
is consistent with these notions (Alexander and Brown, 2010;
Brown and Alexander, 2017). There may also be other facets of
risk that we have not examined here.
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