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Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological

cellular conditions. In particular, it is well known to react in vivo with cysteines

by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible

post-translational modification that exerts a myriad of different effects, such as the

modulation of protein conformation, activity, stability, and biological interaction networks.

We have appreciated, over the last years, the role of S-nitrosylation in normal and

disease conditions. In this context, structural and computational studies can help to

dissect the complex and multifaceted role of this redox post-translational modification.

In this review article, we summarized the current state-of-the-art on the mechanism of

S-nitrosylation, along with the structural and computational studies that have helped

to unveil its effects and biological roles. We also discussed the need to move new

steps forward especially in the direction of employing computational structural biology

to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox

modification has been so far an underappreciated redox post-translational modification

by the computational biochemistry community. In our review, we primarily focus on

S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance

of this redox modification in a cancer setting.

Keywords: S-nitrosylation, (de)nitrosylating enzymes, redox modifications, molecular dynamics simulations,

cysteine, redox cancer biology

INTRODUCTION

Despite being amino acids (Cys) play diverse roles in biology. In fact, they represent a special class
of residues due to the thiol moiety of their side chain (Figure 1). The thiol group can undergo
a plethora of different biological modifications affecting protein structure, reactivity, stability and
function (1). Cysteines are thus unique molecular switches (2). These modifications include, for
example, disulfide bridge formation, high oxidation states, sulfenylation, persulfidation, metalation,
S-nitrosylation, glutathionylation, sulfhydratation, among others. Cysteines can also be impacted
by lipid modifications? including palmitoylation and prenylation or they can be the coordinating
residues for metal ions such as zinc, iron, or copper in metallo-proteins.
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Oxidative modifications of cysteine thiols can be a
reversible or irreversible processes. Examples of reversible
Cys modifications include Cys sulfenylation, S-glutathionylation
and S-nitrosylation (SNO). With regards to the latter, NO is a
reactive gas produced by NO synthases (NOS) 1–3 using the
substrate arginine. NO produced inside the cell can be efficiently
and quickly consumed through reactions with (bio)molecules
that are in proximity to the NO source (3). A significant amount
of the NO signal can be stored and propagated as nitrosyl adducts
at specific cysteine sites of proteins via S-nitrosylation.

In this review, we will focus on computational structural
and chemical studies that helped the understanding of the
complex mechanisms induced by S-nitrosylation, as well as
possible future directions for the computational studies of S-
nitrosylation, which is a rather underappreciated modification
compared to other well-known and more investigated post-
translational modifications (PTMs), such as phosphorylation.

At first, we will provide the general background of what S-
nitrosylation is, what is known on the enzymes regulating this
PTM, as well as which are the biological effects so far discovered
to be triggered by S-nitrosylation. We will then discuss the recent
approaches and findings from bioinformatics, computational
chemistry, and biochemistry methods applied to S-nitrosylation
with particular attention to targets of interest for cancer research.

S-NITROSYLATION OF CYSTEINE
RESIDUES

Among the broad spectrum of cysteine redox modifications
mentioned above, S-nitrosylation (SNO) accounts for the

FIGURE 1 | Most relevant cysteine oxidation states in the context of

S-nitrosylation and possible pathways of interconversion. The figure is meant

to be illustrative and does not depict the complete reaction schemes. R

groups are part of the protein main chain.

oxidative modification of cysteines by nitric oxide (NO) to
form S-nitrosothiols (4). SNO is, by far, the reversible Cys
modification with the most significant prevalence and cellular
functions, providing a ubiquitous mechanism for cellular
signaling mediated by thiols. NO exerts its primary biological
functions through protein S-nitrosylation so that it can be
considered the prototype of redox-based signals (4, 5).

S-nitrosylation is considered a reversible and ubiquitous
PTM and many studies demonstrated its role in protein
activity, stability, localization, and protein-protein interactions
(see section Biological Mechanisms Promoted by S-nitrosylation)
in a myriad of cellular processes (6). S-nitrosylation emerged in
the last decades as a new paradigm in signal transduction and
regulation of proteins (7). More than 3,000 proteins are known
to be affected by this redox PTM (3).

Alterations of S-nitrosylated protein targets or the enzymes
regulating SNO have been also associated with different
pathologies, including cancer, cardiovascular, respiratory, and
neurodegenerative disorders (4, 6, 8, 9).

Protein S-nitrosylation features tight spatiotemporal
specificity for certain protein Cys residue (10, 11). If physiological
amounts of NO are present, only one or few Cys residues of
a protein are targeted. These modifications are generally
sufficient to change the protein function, activity or specificity
for interaction partners (11–13). S-nitrosylation, as well as
other alternative S-oxidative modifications mediated by reactive
oxygen species, can target separated populations of Cys residues.
Thus, depending on the Cys that is modified, the functional
effects that are triggered can be very diverse (14). S-nitrosylation
has also been shown to target distinct Cys residues with the
final goal of exerting a coordinated effect (4). The known
and possible determinants of specificity of S-nitrosylation
toward certain Cys residues are discussed more in details in
section Computational Structural and Chemical Studies of
S-nitrosylation. Computational studies allowed to disclose them
and define sequence or structural motifs around SNO sites.

One major mechanism promoted by S-nitrosylation of
proteins is based on S-transnitrosylation, i.e., the capability of
modifying with SNO other protein targets thus allowing the
propagation of the SNO-based signals (4), similarly to the well-
known kinase-based signaling cascade.

Different degrees of S-nitrosylation can be observed in protein
targets, spanning from cases of mono-SNO (single cysteine) to
multiple cysteines (multi-SNO), depending on the availability of
NO, as well as on the properties of the target proteins in the
proximity of the Cys sites (3). NO production is tightly controlled
in normal conditions, and this leads to a basal S-nitrosylation
level. In this context, a subset of SNO targets (such as CD40
and pro-caspases) is in their resting state. Another subset of
proteins, on the contrary, is constitutively S-nitrosylated. Indeed,
they require this modification to be active, as exemplified by
caveolin-1 or connexin-43. In cases in which these targets have
multiple SNO sites, an incremental degree of S-nitrosylation can
be observed with transitions from mono- to poly-SNO which
allow a progressive activation in response to stress (3). The degree
of SNO and the switch from mono- to multi-SNO can also
strongly depend on the availability and accessibility of cysteines
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in the target protein. Cysteines are, for example, enriched in
proteins that are on the cell surface or actively involved in cell-
to-cell communication and signal transduction, such as CD40,
other TNFRs, receptor tyrosine kinases, integrins, and connexins
(3).

Due to the high SNO reactivity and the propensity for
S-transnitrosylation, to fully appreciate the mechanisms and
consequences of S-nitrosylation in normal and cancer cellular
contexts is particularly challenging. Hence, it becomes crucial
to assess the role of SNO-proteins as both targets of this redox
modification and transducers of the SNO signal.

ENZYMATIC REGULATION OF
S-NITROSYLATION

Cellular S-nitrosylation is dynamically governed by the
equilibrium between S-nitrosylated proteins and low-molecular-
weight S-nitrosothiols, which in turns are tightly controlled
by several enzymes, such as S-nitrosylases and denitrosylases
(4). NO is generally the product of three main isoforms of NO
synthase (NOS) in mammalian cells (see section Nitric Oxide
Synthases). S-nitrosothiols (RSNOs) are initially formed via
different chemical routes that involve a one-electron oxidation,
such as reaction of NO with thiyl radicals, transfer of the NO
group from metal-NO complexes to a Cys thiolate, or the
reaction of a Cys thiolate with species generated by NO auto-
oxidation (4). Recent evidence suggested, however, an important
role for metalloproteins in catalyzing de novo S-nitrosylation [see
ref. (4) for more details]. The NO group is then transferred from
a donor to an acceptor Cys thiol via S-transnitrosylation, (see
section S-nitrosylation of Cysteine Residues). S-nitrosylation
occurs not only in proteins but also in low molecular weight
(LMW) thiols such as glutathione (GSH) and coenzyme A.
SNO-proteins and SNO-LMW thiols exist in thermodynamic
equilibria, which are regulated by the removal of the SNOmoiety
by the direct action of denitrosylases on the protein targets,
as well as by the action of GSNOR on SNO-LMW molecules
(see sections Denitrosylation Systems, Thioredoxin System and
GSNOR System). These enzymes, described in the next sections,
are crucial to control steady-state levels of SNO and to ensure
the regulation of the NO-based signal cascade.

Nitric Oxide Synthases
The compartmentalization of SNO targets with NOS enzymes
favors the interaction between the enzymes and the S-
nitrosylation substrate which can, in turn, occur directly, or
through scaffolding proteins (4). For example, the CAPON
protein acts as a scaffold to mediate the interaction between
nNOS and the S-nitrosylation target Dexras1 (15). Another
example is the complex formed by iNOS and S100A8/A9, for
which targeted S-transnitrosylation is favored by S100A9 on
multiple protein targets that share a short linear motif I/L-X-C-
X2-D/E where C represents the SNO site (4).

Each NOS isoform can also be S-nitrosylated, generally
through an auto-catalytic mechanism, which involves a metal
center. NOSs can then act as S-transnitrosylating partners for

scaffolding proteins with or without the intervention of a LMW-
SNO (4).

The different NOS isoforms are expressed in various organs,
tissues, cells, or even subcellular compartments (16). For
example, the localization of eNOS in the Golgi apparatus allows
the generation of a local NO pool that specifically targets the
compartmentalized proteins for S-nitrosylation (17). An example
of another finely tuned compartmentalization is attested by the
binding of different NOS variants to separate regions of the same
target protein, which result in S-nitrosylation of different Cys
residues (4).

Denitrosylation Systems
As mentioned in section S-nitrosylation of Cysteine Residues, S-
nitrosylation is a PTM consisting of a covalent bond formation
between of nitric oxide (NO) to a cysteine residue to form
a S-nitrosothiol (5). In response to a specific stimulus, S-
nitrosylated proteins (SNO-proteins) can undergo the reverse
reaction of denitrosylation (i.e., reducing SNO back to SH).
Two mechanisms of denitrosylation have been identified (18):
the S-nitrosoglutathione reductase (GSNOR) system, comprising
GSH and GSNOR, and the thioredoxin (Trx) system, comprising
Trx and Trx reductase (TrxR) as shown in Figure 2. Both
mechanisms use intermediate molecules (GSH and Trx) to
remove the NO group from S-nitrosylated proteins. In the next
paragraphs, we will illustrate these two denitrosylating systems
and the cellular processes that they affect.

Thioredoxin System
Thioredoxins (Trx) are a family of small redox proteins involved
in multiple cellular processes.

The Trx system was originally identified as a key player in
the cellular redox homeostasis thanks to its role as a disulfide
reductase (19). There are two distinct mammalian thioredoxins,
Trx1- mainly localized in the cytosol but possibly translocated to
the nucleus-and Trx2, mainly located in the mitochondria.

The thioredoxin system is composed of a thioredoxin (Trx),
a thioredoxin reductase (TrxR), and NADPH. It includes
the dithiol Cys-X-X-Cys active site that is essential for their
oxidoreductase function (20). In the denitrosylation process, the
reduced Trx [Trx(SH)2] denitrosylates S-nitrosylated proteins
forming a reduced protein thiol (-SH) and producing nitroxyl
(HNO) or free NO groups and oxidized Trx [Trx(S-S)]; the latter
is then reduced by TrxR at the expense of NADPH (21). For
example, Trx1 reduces the target protein disulfide bond with
concomitant oxidation of its Cys32 and Cys35 residues. TrxR
then reduces the oxidized Trx1 thanks to NADPH consumption
to regenerate the reduced Trx1 form.

Apart from its canonical role as a disulfide reductase, the Trx
system has an important role in denitrosylation of S-nitrosylated
proteins (21, 22). The Trx-dependent denitrosylation requires
a multi-step process that entails: (i) the formation of mixed
disulfide bridges through the attack of the nucleophilic Cys
(Cys32 in Trx1) on the sulfur atom of the SNO moiety, (ii) the
release of HNO, (iii) the resolution of the mixed disulfide bridge
through the action of the second reactive Cys (Cys35 in Trx1) so
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FIGURE 2 | Mechanisms of denitrosylation. Thioredoxin-system (top): The

reduced Thioredoxin (Trx
(

SH
)

2) denitrosylates the S-nitrosylated protein

(Prot-SNO), releasing Prot-SH and the oxidized Trx (Trx(S2)), which is further

reduced back to (Trx
(

SH
)

2) by Thioredoxin Reductase TrxR in a

NADPH-dependent reaction. GSNOR-system (bottom): Prot-SNO is

denitrosylated by S-transnitrosylation with glutathione (GSH), forming a

reduced protein thiol (Prot-SH) and GSNO. The latter is then reduced by

GSNOR to GSSG at the expenses of NADH and one GSH molecule. The

resulting GSSG is further reduced by the Glutaredoxin enzyme (Grx) to give

back the reduced GSH molecules—this step is not depicted here.

that the oxidized variant of Trx can be formed and (iv) the final
reduction step by the action of TrxR (19). The knowledge of this
mechanism was also exploited experimentally to entrap a protein
target in its S-nitrosylated state mutating the resolving Cys of Trx
(Cys35 in Trx1) (23, 24).

An alternativemechanism for Trx-mediated S-denitrosylation
has also been proposed in which the initial step is postulated to
be a S-transnitrosylation reaction from the target protein to the
active site cysteine of Trx, with the subsequent release of HNO
(24).

Another protein, i.e., the thioredoxin-interacting protein
(TXNIP), regulates the Trx denitrosylating activity. In a feedback
loop, NO controls this inhibition by repressing TXNIP activity,
providing a dynamic regulation of Trx-mediated denitrosylation
in response to NO levels (25).

Moreover, attesting the versatility of the Trx system, Trx1
has been identified as a S-transnitrosylase (26). Trx1, in the
oxidized state, can be modified by S-nitrosylation on its Cys73,

which in turn mediates the S-nitrosylation of caspase-3 and other
protein targets (19). The SNO-Trx form can be then regulated
by either the Trx system or a GSH-mediated denitrosylation
(21). In agreement with the existence of an acid-base motif for
S-nitrosylation (see section S-nitrosylation Sites Specificity), it
has been shown that charged residues in the proximity of Cys73
are required for Trx transnitrosylase activity (27). The stability
of SNO-Trx is regulated by both Trx- and GSH-mediated
denitrosylation (21). Additional Trx1 S-transnitrosylation motifs
have been proposed that involve proximal alanine residues (28).

A thioredoxin-related protein of 14 kDa called Trp14 was also
recently identified to act as a denitrosylase for the other master
regulator of S-nitrosylation, i.e., GSNOR, as well as certain SNO-
proteins, including caspase-3 and cathepsin B (24). Trp14 activity
tightly depends on both TrxR1 and NADPH even if further
studies are needed to better clarify Trp14 role in vivo.

Studies on targets of Trx-mediated denitrosylation allowed to
identify two motifs, C-X5-K and C-X6-K, within the SNO targets
that are modulated by the Trx system (28). These motifs could be
used to predict and identify new targets where the Trx system is
the major regulator of the S-nitrosylated state.

GSNOR System
GSNOR (i.e., the GSNO reductase) is present in all mammals and
ubiquitously expressed across different tissues (29). It is known as
a class III alcohol dehydrogenase and it is encoded by the ADH5
human gene. GSNOR is a homodimer composed by two identical
subunits (chains A and B) containing two bound zinc ions each
(30).

The GSNOR-mediated protein denitrosylation requires the
tripeptide GSH to form a reduced protein thiol (Prot-SH) and
GSNO (18). GSNO is reduced by GSNOR to GSSG in a NADH-
dependent reaction (using NADH as an electron donor) (31)
involving hydride transfer. GSSG is further reduced by the
Glutaredoxin enzyme (Grx) to give GSH back.

GSNOR expression and activity can be regulated by different
biomolecules in a very context-dependent manner. For example,
VEGF or IL-13 can induce GSNOR mRNA expression in lungs.
Sp1 can transcriptionally regulate GSNOR levels in hepatocytes.
MicroRNAs (miRs) such as miR-342-3p can downregulate
GSNOR expression (4). Moreover, as also mentioned above,
GSNOR is post-translationally regulated by S-nitrosylation and
this modification has been suggested to regulate allosterically the
enzyme activity, as attested by an enhancedGSNOR activity upon
S-nitrosylation in mouse models (4).

The S-nitrosylated sites of GSNOR in vivo have not
been identified yet and further studies will be required
to fully understand and appreciate the mechanisms of this
redox modification of the major regulator of S-nitrosylation.
Prediction methods such as the ones described in section
Prediction and Annotation of S-nitrosylated Proteins and the
usage of molecular dynamics (MD) simulations could help
in the identification of GSNO SNO-sites and in unveiling
the determinants of its allosteric regulation. For example, the
integration of computational techniques inspired by network
theory and all-atom simulations hold promise to study long-
range effects induced by PTMs (32–35). These methods could
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thus be translated to the study of GSNOR S-nitrosylation as soon
as accurate physical models for S-nitrosylation will be available
and validated.

As mentioned before, GSNOR has been found in different
kind of tissues, particularly in liver, brain and kidney. GSNOR
deficiency might positively or negatively affect physiology.
GSNOR is the only ADH enzyme in the brain, highlighting its
importance in this organ. As a result of its ubiquitous expression
in different tissues, GSNOR controls several molecular processes
and is likely to be involved in disease conditions onset.

GSNOR in Cancer
Nitric oxide (NO) regulates protein functions, as well as the
activity of many enzymes. S-nitrosylation is a key mechanism
in the transmission of NO-based cellular signals in vital
cellular processes such as DNA repair (36), apoptosis (37), cell
proliferation, and cell cycle regulation. These are all processes
related to cancer onset.

As a key enzyme of denitrosylation, GSNOR controls the
intracellular levels of S-nitrosylated proteins and the reduction
of its expression or stability has been shown to result
in dysfunctional S-nitrosylation signaling and, eventually, in
pathological states such as cancer (38). In particular, GSNOR
deregulation has been observed to be involved in some pathways
representing the hallmarks of cancer like DNA damage repair,
energetic metabolism and cell death. Noteworthy, GSNOR tumor
suppressor role has been recently proposed (38).

It was demonstrated that GSNOR-deficiency is sufficient to
induce spontaneous formation of hepatocellular carcinoma
(HCC) (39) through S-nitrosylation and proteasomal
degradation of the key DNA repair protein O(6)-alkylguanine-
DNA alkyltransferase (AGT). The AGT enzyme removes the
alkyl group from guanine bases, repairing the highly mutagenic
and cytotoxic O6-alkylguanines which can be generated by
carcinogenic compounds such as the diethylnitrosamine (DEN).
Alkylation affects the stability of AGT resulting in its irreversible
inactivation through degradation via proteasome. A similar
effect is induced by S-nitrosylation of AGT on its Cys145;
S-nitrosylated AGT is still degraded via the proteasome, but
in this case before the repair of O6-alkylguanines. By GSNO
catabolism, GSNOR maintains low levels of S-nitrosylated AGT.
Therefore, GSNOR deficiency inactivates AGT-dependent DNA
repair and may critically contribute to hepatocarcinogenesis
(38).

Besides DNA alteration, tumor cells reorganize their core
metabolism to sustain their growth and proliferation and
GSNOR involvement in metabolic pathways has been observed.
In particular, GSNOR deficiency in hepatocytes is characterized
by mitochondrial alteration and by increases in succinate
dehydrogenase (SDH) levels (40). Succinate dehydrogenase - or
respiratory complex II - participates in both the citric acid cycle
and the electron transport chain and catalyzes the oxidation
of succinate to fumarate, regulating the levels of these two
metabolites that are included in the class of “oncometabolites.”
More precisely, the mechanism through which GSNOR ablation
modulates SDH involves the mitochondrial molecular chaperone

TNF receptor-associated protein 1 (TRAP1) which, if S-
nitrosylated at Cys501, undergoes proteasomal degradation and
is not able to interact with SDH, loosing the ability of inhibiting
it (41). Besides, it was demonstrated that GSNOR ablation makes
HCC cells more sensitive to SDH-targeting drugs (40), suggesting
a new potential therapeutic target.

Different subtypes of breast cancers are also linked to
the GSNOR expression modulation. In particular, the HER2
breast cancer subtype—characterized by high human epidermal
growth factor receptor 2 (HER2) expression—is associated with
lower expression of GSNOR which leads to a poor prognosis
(42). Cañas et al. demonstrated that the antiproliferative
effect of trastuzumab, a monoclonal antibody used for HER2
breast cancer, is suppressed by inhibition of GSNOR. Indeed,
GSNOR restores the activation of survival signaling pathways,
representing a possible reason for drug resistance observed in
many patients on whom this treatment was used (43). Due to the
central role of GSNOR in S-nitrosylation regulation and cancer,
more insight will be gained in the future by comprehensive
analyses of genomics and proteomics profiling of samples from
cancer patients using biostatistics and bioinformatics to unveil
the complex interplay between GSNOR, its regulators and targets
in a cancer context.

BIOLOGICAL MECHANISMS PROMOTED
BY S-NITROSYLATION

As mentioned above, S-nitrosylation exerts a plethora of
functions inside the cell. Indeed, S-nitrosylation gained attention
as a PTM, but it is still less understood at the molecular
level compared to other well-known PTMs. In 1992, Stamler
et al. proposed for the first time that the formation of
biologically active S-nitrosothiols—more stable than NO itself—
could represent an important mechanism through which NO is
involved in the regulation of cellular activities (44).

In the context of tumor biology, we know that nitric
oxide (NO) has different effects on cellular ability to survive
and proliferate depending on its concentration. In fact, high
concentrations of NO (>500 nM) appear to be toxic for
cancer cells—causing cytostasis and apoptosis—whereas low
concentrations (<100 nM) are able to induce the activation of
cancer-promoting pathways (45). Thus, NO concentration—
depending on the balance between NOSs activity and de-
nitrosylation (see section GSNOR System)—determines also the
extent of S-nitrosylation inside the cell. Another important
source of NO is nitrite (46), especially in ischemic conditions but
it is not the main focus of this section. In this section, we will try
to summarize the polyhedral/multifaceted consequences of this
PTM on protein function (Figure 3).

Influence of S-nitrosylation on Catalytic
Activity of Enzymes
Probably one of the most common outcomes of S-nitrosylation
is the regulation of catalytic activity of enzymes, whose
modification can have activatory or inhibitory effects. In this way,
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FIGURE 3 | Effects of S-nitrosylation on protein function. For each class, we

reported the examples of the target proteins that we discussed in the main

text.

the cellular redox state—highly variable/deregulated in cancer
cells—exerts its role in controlling enzymatic activity.

S-nitrosylation can alter well-known cancer-related proteins,
such as kinases. It has been observed in breast cancer cells
that estrogens are able to work in synergy with NO to induce
their proliferation and migration. In fact, in MCF7 cells, β-
estradiol induces NOS expression and NO production, thus
promoting the activation of c-Src through S-nitrosylation of
Cys498 (47). c-Src is a tyrosine kinase, whose activation is
responsible for disrupting E-cadherin junctions, promoting cell
invasion and its catalytic activity is well-known to be regulated by
phosphorylation. Recent evidence brought to light the existence
of a tight regulation of c-Src based on S-nitrosylation and its
cross-talk with phosphorylation (47).

The increase of iNOS (inducible NOS, also known as NOS2)
is correlated with a decreased survival of ER negative and basal-
like breast cancer (BC) patients. Indeed, this correlates with high
EGFR phosphorylation levels. A study from 2012 showed that, in
the context of basal-like BC, S-nitrosylation can stimulate EGFR
and Src proteins (both membrane-associated proteins). The S-
nitrosylated variants of EGFR and Src are then responsible for
activating the oncogenic signaling based on c-Myc, Akt, STAT3,
and β-catenin, while inhibiting the tumor suppressor PP2A (48).
Moreover, NO levels required to activate these proteins are the
same levels promoting an aggressive cellular phenotype (49).

More recently, it has been discovered that the NO-dependent
EGFR activation can induce Extracellular signal-Regulated
Kinase (ERK) phosphorylation—whose abnormal elevation has
been described in tumor cells—thus activating it in basal-like
triple negative breast cancer (50). ERK belongs to the MAPK

superfamily and its aberrant upregulation and activation, which
frequently occur in human tumors, are responsible for the
acquisition of a malignant phenotype (51). In particular, there
is a subset of basal-like BC, i.e., the BL2 molecular subtype, that
is highly dependent on growth factor signaling (EGFR included)
(52). In the BL2 subtype, Garrido et al. (50) demonstrated that
NO-mediated activation of both EGFR and ERK was responsible
for the increased migration and invasion abilities of cancer cells,
this being accompanied by NF-kB activation and the increased
secretion of pro-inflammatory cytokines.

ERK S-nitrosylation also links NO signaling to apoptosis.
Indeed, ERK1 and ERK2 exert anti-apoptotic functions and
are able, on the one hand, to induce the activity of other
apoptosis antagonists, as for instance Bcl-2 and IAP. On the other
hand, they can repress pro-apoptotic proteins, such as Bad and
BIM (53). More in details, in a cellular model of NO-induced
apoptosis, it has been demonstrated that NO decreases the levels
of p-ERK, suggesting the S-nitrosylation of the kinase as an
essential way to trigger cell death of tumor cells (54).

Recently, Gupta et al. (55) showed that S-nitrosylation
plays a role also in the PI3K/Akt pathway, which is often
dysregulated in cancer. In conditions of energy deprivation
and in the presence of a signal able to activate the AMPK
kinase, eNOS activation promotes inhibition of PTEN through
its S-nitrosylation and degradation mediated by the ubiquitin-
proteasome system. Intriguingly, PTEN inactivation upon
S-nitrosylation was originally identified in the context of
neurodegenerative diseases (56), whereas Gupta and coworkers,
for the first time, demonstrated the role of this redox-dependent
modification in supporting proliferation and survival of cancer
cells through the activation of PI3K/Akt signaling and the
subsequent stimulation of mTOR activity (55).

Heat Shock Protein 90 (Hsp90)—the cytosolic molecular
chaperone—represents a co-activator of eNOS associating to the
NO synthase together with Akt. Indeed, to exert this role, Hsp90
needs to work as an ATPase, but this activity was discovered to
be inhibited by S-nitrosylation, occurring on Cys597, localized
in the C-terminal domain in the region interacting with eNOS.
In fact, it was proposed that the PTM induces a conformational
change able to disrupt the interaction between eNOS and Hsp90.
This may represent a mechanism to react to overproduction
of NO inside the cells (57, 58). The S-nitrosylation of Cys597
also regulates ATP hydrolysis and chaperone activity of Hsp90
and shifts the conformational equilibrium within the ATPase
cycle (58). Future studies in which the SNO modification of
Cys597 can be properlymodeled, with the related conformational
changes assessed, will provide more details on the mechanism
and interplay between this redox modification and the activation
of the chaperone.

The class of Ras GTPases—HRas, NRas, and KRas, i.e., the
founding members of a large superfamily of small GTPases—
regulates several cytoplasmic signaling networks that govern
cell growth, survival, and differentiation and act upstream to
several pathways mentioned above (59). The three Ras proteins
are over-activated by somatic mutations in 33% of human
cancers, contributing to excessive growth, invasion, and ability
to metastasize (60). The mutated variants of these proteins are
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associated with a constitutively active GTP-bound state, which
makes cancer cells addicted to the expression of oncogenic
Ras proteins. Some years ago, it has been also demonstrated
that HRas undergoes S-nitrosylation on Cys118 with the effect
of stabilizing the GTP-bound HRas form by enhancing the
dissociation of guanine nucleotides (61). For this reason, it
has been proposed that this PTM could represent a way to
diversify the Ras-dependent oncogenic signaling beyond that of
the mutated Ras.

In summary, many examples have been provided of regulation
of enzymatic activity by S-nitrosylation, and they are especially
important in the context of kinases, G-coupled proteins and
chaperones i.e., three usual suspects in a cancer setting.

Nuclear Translocation/Protein
Redistribution
A large body of literature investigates and explains the multi-
faceted role of ion channels, both potassium and chloride, in the
process of tumorigenesis. Indeed, they are involved in many of
the main processes leading the transformation of a normal cell
into a neoplastic one and, among all the ion channels, several
chloride intracellular channels (CLICs) have been demonstrated
to be overexpressed in different cancer types (62). Among the
latter, CLIC4 has been originally identified as a p53- and cMyc-
responsive protein with proapoptotic functions, most of which
are dependent on its translocation to the nucleus. Moreover,
this channel undergoes structural conformational changes upon
cellular redox changes (63, 64). In 2010, Malik et al. (65)
have demonstrated that S-nitrosylation affects CLIC4 nuclear
translocation, enhancing the association of the channel protein
with two proteins responsible for the nuclear import, i.e.,
importin α and Ran, and thus increasing the nuclear levels
of CLIC4. It has been proposed that through this mechanism
CLIC4 would be able to induce apoptosis when NO cellular levels
overcome the denitrosylating capability of the cell. Moreover, this
would explain the mislocalization of CLIC4 in tumor cells where
the redox balance is altered (65, 66).

S-nitrosylation can be responsible not only for the protein
nuclear translocation but also for protein redistribution inside
the cell. This is the case of the Tumor necrosis factor receptor
superfamily member 6 (also known as Fas/APO-1/CD95), a cell
surface receptor able to induce apoptosis when stimulated by the
ligand FasL/CD95L or agonistic antibodies. After stimulation, the
receptor recruits a number of proapoptotic factors - including
caspase-8/10 and procaspase 8/10 to name a few—to assemble
the death-inducing signaling complex (DISC) (67). Cancer cells
evolved several ways to elude the possible apoptotic induction by
CD95, for instance regulating the expression of the receptor (68)
or inhibiting the interactions between the members of the DISC
complex (69). A few years ago, it has been demonstrated that
Fas undergoes S-nitrosylation at Cys199 in the transmembrane
domain and Cys304 in the death domain, with both the
events involved in determining Fas membrane localization, the
latter also favoring Fas aggregation and translocation in plasma
membrane lipid rafts (70, 71). As already mentioned, cancer
cells can lose sensitivity to Fas-mediated apoptosis because of a

decreased Fas expression, but S-nitrosylation (and inducers of
this PTM) may be able to recover this sensitivity (70).

Transcription Factors in NO-Dependent
Signaling
As mentioned above, the Ras family of proteins—that owes
its fame to the fact of being very often mutated in most of
the cancer types—is a known target of S-nitrosylation (see
section Influence of S-nitrosylation on Catalytic Activity of
Enzymes). To fully appreciate the regulation of Ras family
members and Ras-dependent tumorigenesis, another player
needs to be considered, adding an extra layer of complexity
to an already intricate scenario. In 2012 Ras was shown to
activate Ets-1 transcriptional activity in human ER-negative
(ER-) breast tumors (72). Ets-1 is a proto-oncoprotein member
of the Ets family of transcription factors sharing a unique DNA
binding domain. Being expressed in a large variety of cellular
types, Ets-1 has a role both in physiological and pathological
conditions but its role in carcinogenesis is due to its ability to
regulate the expression of angiogenic and extracellular matrix
remodeling factors promoting an invasive phenotype (73, 74).
When performing the promoter region analysis of genes up-
regulated in ER- breast tumors showing high levels of NOS2
expression, Switzer et al. observed that the common denominator
of the promoters of these genes was the presence of the Ets-
binding sequence, pointing at the role of this transcription factor
in the NOS2 (and thus NO)-dependent oncogenic signaling
(72). In fact, Ets-1 activation following phosphorylation by
MEK/ERK—in turn, activated by SNO-Ras—resulted in the
expression of basal-like markers, as P-cadherin and S100A8 to
name a few (75), as well as metastasis-related proteins such as
CTSB and MMP-7 (76). Since breast tumors, differently from
other cancer types, more rarely harbor Ras mutations (77), the S-
nitrosylation of Ras and thus the activation of Ets1 signaling axis
may indeed explain the wild-type Ras-mediated tumorigenesis of
cancers overexpressing NOS2.

Protein Stability
S-nitrosylation can also directly affect protein stability and
turnover in different ways, including cases in which protein
stability and/or the propensity for proteasomal degradation is
enhanced or reduced upon the S-nitrosylation of target cysteines.

An example is the caveolin-1 (Cav-1) protein that is
enriched in 50–100 nm sized cell membrane invaginations with
a structural role. These invaginations are implicated in many
cellular pathways, such as endocytosis, lipid homeostasis, and
signal transduction (78). Cav-1 has been described as having a
controversial role in cancer development, with pro- and anti-
tumorigenic effect depending on the context and the specific
cancer type (79, 80). Interestingly, a relation between Cav-1 and
NO has emerged in the context of anoikis - i.e., the detachment-
induced apoptosis—in lung cancer cells, where it has been
demonstrated that Cav-1 is rapidly ubiquitinated and degraded
by the proteasome after cell detachment and anoikis (81). In the
same work, the authors observed that, upon exposure of the cell
to NO donors, S-nitrosylation of Cav-1 was able to stabilize the
protein—inhibiting its proteasomal degradation—pointing at a
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crucial role of the NO-mediated stabilization of Cav-1 in anoikis
regulation.

Solid tumors are often characterized by a hypoxic (or even
anoxic) microenvironment caused by scarce oxygen supply.
Cancer cells activate a series of pathways promoting angiogenesis
and other survival pathways to overcome hypoxia (82, 83).
The master regulator of the activation response to low oxygen
tensions is represented by the hypoxia-inducible factor 1 (HIF-1),
a transcriptional complexmade up of the constitutively expressed
HIF-1β/ARNT and HIF-1α subunits, continuously synthesized,
and degraded under normoxic conditions to be finally stabilized
by hypoxic conditions (84). Because of this tangled role in
cancer development, HIF-1 has been (and still is) at the heart
of many scientific studies that have highlighted the existence
of a multitude of post-transcriptional and post-translational
mechanisms for regulating the activity of this protein (85). The
degradation pathway of HIF-1α subunit in normoxic conditions
starts with its hydroxylation by prolyl-hydroxylases (PHDs) in
the oxygen-dependent degradation (ODD) domain. This event
then targets the protein for ubiquitylation and the subsequent
rapid degradation by the proteasome (86, 87).With regard to this,
S-nitrosylation plays an active role in controlling the stability of
the HIF-1α subunit. Indeed, in murine cancer cell line models,
Li et al. (88) demonstrated that exposure to ionizing radiation
stimulated NO generation in tumor-associated macrophages
(TAMs). As a consequence, HIF-1α underwent S-nitrosylation on
Cys533 (corresponding to the human Cys520), in turn inhibiting
its binding with the E3 ubiquitin protein ligase part of the
von Hippel-Lindau (vHL) tumor suppressor protein complex
responsible of HIF-1 α degradation. Thismechanism is of interest
not only in relation to the already established role of HIF-1α
in cancer therapy (89) but also for other diseases involving the
immune system and inflammation (90).

We already mentioned the role of molecular chaperones, such
as Hsp90, in cancer development and the regulation of its activity
through S-nitrosylation (see section Influence of S-nitrosylation
on Catalytic Activity of Enzymes). Hsp90 is highly conserved and
with up to four different homologs in higher eukaryotes, such
as the mitochondrial tumor necrosis factor receptor-associated
protein 1 (TRAP1) (91). Recently, TRAP1 has been reported as a
target of S-nitrosylation on its Cys501 with the effect of making
the chaperone more prone to proteasomal degradation (40). In
fact, levels of TRAP1 were reduced in human hepatocellular
carcinoma cell lines depleted of S-nitrosoglutathione reductase
(GSNOR), representing the best documented denitrosylase
involved in regulating the levels of SNO-proteins in the cell
(see section Enzymatic Regulation of S-nitrosylation). TRAP1
degradation was indicated being the causative event underlying
the increase of succinate dehydrogenase (SDH) levels and
activity. A few years ago it has been shown that TRAP1 is able
to support cancer growth decreasing SDH activity, this leading to
HIF-1α stabilization through the increase of succinate levels (41).

Recently, we and others showed that structural computational
methods efficiently predict when mutations are likely to
destabilize the protein in the context of disease-related mutations
(including cancer) (92–95). Our measurements correlate with
the rate of proteasomal degradation (95). In principle, similar

approaches could be applied to predict how S-nitrosylation of
Cys could alter protein stability and proteasomal degradation,
as well as if the effect is likely to be structurally destabilizing
or not. A major bottleneck in this context is the current
lack of proper parameters for this uncanonical modification
(see section Physical Models for S-nitrosothiols). Another
computational approach useful to this scope could be the
estimate of solvent accessibility of the ubiquitination sites for
proteasomal degradation of the target proteins on structural
ensembles collected by molecular simulations of S-nitrosylated
and unmodified protein structures. A SNO-induced propensity
to faster rates of proteasomal degradation might be also
associated with higher solvent accessibility of the ubiquitination
sites induced by the PTM.

Protein-Protein Interactions
An additional way used by S-nitrosylation to regulate protein
function is through the control of protein-protein interactions.
In the context of cancer progression, integrins represent a family
of cell adhesion receptors that are attractive targets due to their
ability to regulate cell morphology, cell-cell interaction, and
signal transduction in the extracellular matrix (ECM). These
processes are potentially linked to all the stages of tumor
development (initiation, progression and, metastasis) (96). In
2012, Isaac et al. have demonstrated that in prostate cancer
(PCs) cell lines several cysteines of integrin α6 (ITGα6)—a
subunit of integrin α6β1, usually overexpressed in PC cells
and the corresponding lymph node metastases - are targets
of S-nitrosylation. Particularly, Cys86 S-nitrosylation of ITGα6
enhances its binding to ITGβ1 (overexpressed in PC cells too),
decreasing the extent of cell adhesion and potentially explaining
the ability of iNOS and NO to promote migration of the cancer
cells (97, 98).

In conclusion, despite the fact that we illustrated separately
the different strategies used by S-nitrosylation to impact on
the cellular proteome, it is important to bear in mind that
many of the processes individually discussed are however highly
interconnected, as well as they can occur for the same SNO target.
The relation between S-nitrosylation and cancer can be seen as
a tangled map of connections, many of which are still poorly
defined.

PREDICTION AND ANNOTATION OF
S-NITROSYLATED PROTEINS

The Database of S-nitrosylated Proteins:
dbSNO
Technical advances in mass spectrometry-based proteomics have
improved the identification of S-nitrosylation sites (14, 99–103)
and contributed overcoming the challenges due to the labile
and highly dynamic nature of the thiol redox forms. This has
been made possible by the availability of chemically-selective
approaches to detect thiol redox modifications in concert with
mass spectrometry-based proteomics (103).
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These advances made now available a large list of
experimentally identified SNO sites that require proper
annotations and curations in publicly available repositories.

dbSNO2.0 (http://dbSNO.mbc.nctu.edu.tw) has been
developed as a freely available resource to collect and explore the
SNO sites of experimentally-identified S-nitrosylated proteins
(104, 105). Moreover, regulatory networks are annotated for the
S-nitrosylated proteins in the database, along with annotation
of relevance in disease. dbSNO is the first manually curated
repository for SNO peptides accounting for more than 4,000
SNO sites in almost 3,000 proteins. Annotation on targets with
known 3D structure are also included together with information
on solvent accessibility, neighboring residues and side-chain
orientation for up to 298 substrate cysteine residues.

dbSNO2.0 can provide a useful framework for the redox
biology community thanks to its availability of structural
annotation for the computational and modeling studies on S-
nitrosylated proteins. The bottleneck will be a regular update
and curation of this research. We could expect that the number
of characterized SNO sites will grow at a fast rate if we
consider that the computational analyses of annotated protein
databases using predicted SNO motifs indicate that up to 70%
of the proteome may be targeted by S-nitrosylation (see section
Prediction of S-nitrosylated Targets and SNO Sites). In the future,
the SNO community could benefit of more collaborative and
interdisciplinary efforts to develop and maintain a broader up-
to-date repository and where also the experimental datasets from
SNO-proteomics can be deposited for re-analysis, inspired by the
efforts that the genomic community already established.

Prediction of S-nitrosylated Targets and
SNO Sites
In the last few years, as the topic of S-nitrosylation gained
importance and recognition among researchers, several attempts
have been made to predict S-nitrosylation sites on proteins
based on experimental data as a reference, using machine-
learning algorithms on protein sequence data. Nonetheless,
predicting SNO-sites has proven challenging for a number of
reasons. First of all, a simple sequence linear motif that clearly
identifies S-nitrosylation sites does not exist, as detailed in
section Computational Structural and Chemical Studies of S-
nitrosylation. The chemical-physical features of the environment
surrounding the SNO site are crucial determinants for SNO
specificity, and the pKa of the thiol moiety of a cysteine greatly
influences its propensity to be S-nitrosylated. Accurate methods
for the prediction of pKa from the 3D structure of proteins are
currently available, such as PROPKA (106). Thus, the prediction
of cysteine pKa would be in principle a viable alternative when
the 3D structure is available, or, even better, when an ensemble
is available and protein flexibility can be taken into account
(107). However, an analysis of structural determinants for S-
nitrosylation showed that, at least in a limited data set of 55
proteins, features such as the acid–base motif flanking NO-Cys,
hydrophobic content, predicted pKa and solvent accessibility
do not distinguish SNO-sites from non-S-nitrosylable cysteines
(108). This study also reports that the presence of a SNO-site

is correlated with the presence in the surrounding area of an
acid-base motif, possibly with different functions than the mere
activation of Cys or stabilization of SNO, such as in facilitating
protein-protein interactions that would, in turn, induce S-
nitrosylation. These results indicate that, while the local chemical
environment around the SNO sites is certainly influencing
reaction rates, predicting S-nitrosylation could benefit from a less
reductionist approach.

Despite what just described, machine learning approaches
tested so far have used protein sequences and sequence-derived
features only; furthermore, even considering these, the set of
experimental data on which machine algorithms can be trained is
limited, at least respect to other PTMs such as phosphorylation,
and typically unbalanced. This problem has been partially
relieved by the publication of curated collections of SNO sites,
such as the dbSNO database (105) and other manually curated
datasets, as for example those by Xue et al. (109) and Li et al.
(110). These resources do not alleviate the issue of using sequence
data exclusively. Approaches based on protein structure would
probably be more viable or at least include features that are more
relevant to the problem at hand.

Given the limitations above, it is not surprising that the
performance of SNO-site predictors has been so far consistently
lower than predictors for other types of PTMs, with a Matthews
correlation coefficient typically between 0.2 and 0.4. It should be
emphasized, however, that no systematic review of performance
on a common and independent test set has been performed so
far. The fact that some of the methods have not been released as
implementation or source code and that some of the web servers
for SNO-site prediction are unreachable at the time of writing
also makes fair comparisons difficult.

The different approaches tested so far for the prediction
of SNO-sites are summarized in Table 1. Most of them relied
on machine learning algorithms such as Support Vector
Machines or (SVM) k-Nearest Neighbours (kNN) to classify
Cys residues as S-nitrosylation sites or not. As feature space,
all the methods considered amino-acid composition of the
residues flanking the putative SNO-cysteine, often together with
more structurally-oriented predictions such as physicochemical
properties of amino acids, predicted secondary structure,
predicted disorder propensity. This led, in turn, to a relatively
high number of features among which the most discriminating
and uncorrelated ones are selected, ranking them using methods
as the minimal redundancy maximal relevance (mRMR) or
the relative entropy selection. From a historical perspective,
computational prediction of SNO sites has been tackled since
2006, when Hao et al. trained a support vector machines (SVM)
classifier on a small dataset of SNO-proteins experimental data.
The model turned out to barely outperform random chance
(111). The first released algorithm designed to classify cysteine
residues is named GPS-SNO (Group-based prediction system)
(109), which uses an optimized scoring function to discriminate
between SNO and not-SNO sites. Another prediction tool named
SNOSite (112) was released in 2011, based on a collection of
SVM models, each derived from sequences clustered according
to a maximal dependence decomposition scheme to obtain
statistically significant conserved motifs. CPR-SNO used a SVM
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TABLE 1 | Summary of current methods for prediction of S-nitrosylation.

Name Year Availability Link Number of citations

(Google scholar,

April 2018)

PMID

GPS-SNO 2010 Webserver, standalone http://sno.biocuckoo.org/ 111 20585580

SNOSite 2011 Webserver http://csb.cse.yzu.edu.tw/SNOSite/Prediction.html 54 21789187

CPR-SNO 2011 Webserver http://math.cau.edu.cn/CPR-SNO/CPR-SNO.htmla 21 21271979

– 2012 None None 54 22178444

iSNO-PseAAC 2013 Webserver http://app.aporc.org/iSNO-PseAAC/ 112 23409062

iSNO-AAPair 2013 Webserver http://app.aporc.org/iSNO-AAPair/ 113 24109555

PSNO 2014 Webserver http://59.73.198.144:8088/PSNOa 42 24968264

– 2014 None None 5 25184139

iSNO-ANBPB 2014 None None 41 24918295

aLink to the website not working at the time we wrote this review article.

classifier in which different encoding schemes for the protein
sequence flanking the potential SNO-Cys were tested (113). In
2012, Li et al. (110) used the minimal-redundancy maximal-
relevance (mRMR) method to determine the importance of
several features of the sequence flanking C-sites to predict SNO-
sites. The features included amino acid type, physicochemical
features and conservation, disorder and secondary-structure
propensity as well as solvent accessibility. Incremental feature
selection was used to determine the set of features that would
give the best performance. In 2013, two different predictors by
Xu and colleagues were also released. The first, iSNO-PseACC
(114) uses position-specific amino acid propensity into the form
of pseudo amino acid composition with conditional random
field models to predict the presence of SNO-sites, while the
second, iSNO-AAPair (115) takes into account the coupling
effects between residues close in sequence. In 2014, a paper
published by Zhang et al. (116) used a scheme similar to Li et al.
(110), in which a subset of features was calculated from the
flanking sequence, feature selection was operated on them using
relative entropy selection and incremental feature selection,
while classification was done through the kNN algorithm. The
final model was made available through the PSNO web server. In
2014 again, a paper by Huang et al. (117) used a similar approach
to Li et al. (110) which also uses the same feature set, using the
kernel sparse representation classification together with mRMR.
Finally, another method has been implemented in iSNO-ANBPB
and released in 2014, which uses an adapted normal distribution
bi-profile Bayes (ANBPB) for feature extraction together with
SVM (118).

COMPUTATIONAL STRUCTURAL AND
CHEMICAL STUDIES OF
S-NITROSYLATION

S-nitrosylation Sites Specificity
Many mechanisms can lead to the S-nitrosylation of proteins:
reaction with NO2, S-transnitrosylation, thyil radical
recombination, and transition metal catalyzed pathways
(see also sections S-nitrosylation of Cysteine Residues and

Enzymatic Regulation of S-nitrosylation). These different
pathways do not necessarily take place in the same cellular and
protein environment. Thus, it is especially difficult to describe
the microenvironment properties driving the specificity of
S-nitrosylation sites (4, 14, 119, 120).

Albeit no systematic environment features have been found
to be predictive descriptors for this PTM, the structural
microenvironment would favor the susceptibility of cysteines
to react with NO or undergo S-transnitrosylation. However,
one has to keep in mind that these features could also favor
cysteine reactivity toward other PTMs, hence it is really difficult
to depict a precise panel of conditions that have to be fulfilled for
S-nitrosylation to take place (4, 119).

Intensive investigations on the subject led to the conclusion
that several environment features might have an influence on
the specificity of cysteine targeting mechanisms associated to S-
nitrosylation. The latter are certain characteristics that are subtler
than a simple primary sequence effect, so that no discernable
consensus sequence to accurately predict Cys SNO sites has
been found so far (14, 28, 111, 121). In the 90’s, Stamler and
coworkers were the first to report the role of basic and acidic
side-chains in the proximity of a cysteine in promoting S-
nitrosylation, highlighted by their work on the S-nitrosylated
hemoglobin protein (122, 123). In Stamler’s model, a histidine
residue proximal to the Cysβ93 in the oxygenated R-state of
hemoglobin facilitates a base-catalyzed S-nitrosylation whereas
a proximal aspartic acid in the deoxygenated T-state favors
acid-catalyzed denitrosylation, coupling the oxygenation status
of the hemoglobin to the SNO formation and release during
the respiratory cycle. In another work, the acid-base motif in
SNO-proteins has been expanded to include residues −6 and
+6 from the target Cys and the notion of hydrophobic regions
surrounding the SNO-Cys (121).

Acid-base motifs have been also reported at the tertiary
structure level, i.e., not as short-linear motifs in the sequence
space. In this case, acidic and basic residues in the proximity of
the SNO site are contributed by different regions of the protein
that are brought together in the 3D structure, as first found in
the methionine adenosyltransferase (MAT) protein (124). The S-
nitrosylation of the Cys121 of MAT is indeed promoted by two
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arginines which are distal in the primary sequence but close in the
tertiary structure and lower the Cys pKa. Similarly, 3D acid-base
motifs have been found in the case of caspase-3 and aquaporin-1
proteins (12).

Since these first works on hemoglobin and MAT, several data
consolidated the hypothesis of a 3D acid-base motif (12, 108,
125–129). Overall, the charged acidic and basic side chains in
proximity of the SNO site regulate S-nitrosylation by influencing
both thiol pKa (and as a consequence their reactivity) and SNO
stability. As a general rule, the presence of an acid-base motif
within 8Å of the target cysteine could facilitate interactions that
make it to S-nitrosylation—e.g., protein-protein interactions in
the case of S-transnitrosylation (130–132).

Besides the acid-base motif, other structural characteristics
appeared to drive the specificity of cysteine reactivity toward
CysNO. For instance, the presence of hydrophobic residues
in the surroundings of the S-nitrosylation sites has also been
proposed. As a matter of fact, S-transnitrosylation and NO
oxidation reactions may preferentially take place on cysteine
residues located in a hydrophobic pocket because of their low
pKa that, in turn, make them prone to react (10, 131, 133–
138). Hydrophobic environments favoring S-nitrosylation are
not limited to hydrophobic residues in the protein target. Indeed,
they can also be contributed by membranes or interactions with
other proteins (12).

This specific environment may also favor interactions
with transition metal nitrosyls (127, 128, 139), as well as
stabilize radical nitrosating species in the case of thiyl radical
recombination (128, 140). Interestingly, studies suggested
that acid-base motifs would be correlated with location
of the target cysteines on α-helices, whereas hydrophobic
environments would be more associated with S-nitrosylation
on Cys sites located in β-sheets (130). Further factors that
govern S-nitrosylation specificity are steric hindrance and solvent
accessibility, that have also been proven to be key-features for
S-nitrosylation promotion (3, 127). These two determinants are
especially important in the case of S-transnitrosylation, in which
protein-protein interactions are crucial. However, bioinformatic
investigations revealed that, surprisingly, around 50% of the S-
nitrosylation and S-glutathionylation sites are actually deeply
buried in the native structure of the protein (141). Several
studies revealed that buried cysteines may still be susceptible
to undergo S-nitrosylation when surrounded by hydrophobic
residues, by channeling of NO to target thiols (6, 10, 131, 133–
138). This might be the case of the recent buried SNO site
discovered in c-Src kinase where S-nitrosylation has a clear
effect on protein activity and relevance in a cancer context
(see section Computational Structural and Chemical Studies
of S-nitrosylation). NO oxidation might also be favored upon
co-localization of the target protein with NOS isoforms (3,
119), indeed enhancement of S-nitrosylation has been observed
especially in the presence of surrounding eNOS in the Golgi
apparatus (17, 142, 143). Compartmentalization of NO is
induced by its quick consumption after production (<0.1 s)
through reaction with molecules that colocalize with NOS
(17). Furthermore, several NOS and NOS-interacting proteins
are well-known to undergo S-nitrosylation—e.g., S100A8/A9,

Dlg-4 and Cav-1. Thus, co-compartmentalization of the target
protein with NOS could be considered as one of the many
factors driving S-nitrosylation specificity, with the nitrosyl
group being transported to a distant cellular zone through S-
transnitrosylation.

In the analysis of cysteine SNO sites, we should also take into
account the capability of the cysteine side chain to be involved in
hydrogen bonds and how the substitution of the SH group with
SNO can affect the native hydrogen bond network. Cys can serve
as a hydrogen bond (HB) donor when protonated (SH) as well as
a HB acceptor in both protonated and deprotonated states (S−)
(144).

Hence, acid-base motif and hydrophobic pocket proximity,
appropriate redox potential, solvent accessibility, steric
hindrance and colocalization with NOS have been highlighted as
significant factors driving S-nitrosylation site specificity. Based
on these considerations, machine learning techniques have been
used in order to investigate S-nitrosylation sites. Several web
servers have been designed to predict cysteines susceptible to be
S-nitrosylated based on the protein sequence, and the dbSNO
database is also available online to probe CysNO environment in
PDB entries and predict potential SNO-proteins that may play a
role in NO signal regulation in cancer cells - see details in section
Prediction and Annotation of S-nitrosylated proteins.

SNO-Induced Long Range and Allosteric
Effects
Little is known about the potential distal effects induced by
S-nitrosylation. Nevertheless, allostery has been proposed
to be an important factor for the promotion of S-
nitrosylation/denitrosylation (128), and allosteric effects due to
S-nitrosylation have been observed to play an important role in
the regulation of the activity of several proteins (97, 145–147).
Allosteric SNO-induced effects have been also postulated for
the denitrosylase GSNOR, pointing out an intriguing feedback
regulatory mechanism of NO signaling (see sections GSNOR
System and GSNOR in Cancer).

Another striking example is the inactivation of the inducible
nitric-oxide synthase (iNOS) upon auto-S-nitrosylation. NOSs
(iNOS, eNOS, and nNOS) are well known to work as
homodimers (148), with—at the interface between the two
monomers—a zinc atom coordinated to four cysteines in a
conserved ZnS4 motif (149, 150). The latter is of utmost
importance for the protein-protein interactions and the integrity
of the homodimer, hence its activity. Therefore, the regulatory
effects linked to the allosteric disruption of the interactions at the
dimer interface have been extensively investigated for the design
of new NOSs ZnS4-related therapeutics (151–155). Interestingly,
this site is specifically S-nitrosylated at the Cys109 position in
iNOS. The latter induces the release of Zn2+, coupled to a
strong destabilization of the dimer, resulting in its disruption
and iNOS inactivation (145). Upon high NO concentration, S-
nitrosylation of iNOS limits its activity (i.e., NO production)
through an allosteric mechanism driving the dimer/monomer
balance (145, 156). Thus, the Cys109 specific S-nitrosylation
plays an important role in the regulation of iNOS activity,
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whose dysfunction has been shown to play an important role
in tumor growth in several cancer types (157). Noteworthy,
eNOS dimer dissociation upon treatment with NO donors
has also been reported (158), suggesting a similar equivalent
autoinhibitory mechanism. Similar structural impact, although
less pronounced, has been reported for the NMDA receptor, for
which S-nitrosylation has been suggested to allosterically regulate
the ligand-binding, regulatory and linker regions (146, 159, 160).
Likewise, the cyclic nucleotide-gated channels (CNGcs), a class of
ionic channels that permeate cations and are especially important
in sensory-receptor cells, might be allosterically regulated by S-
nitrosylation of a specific cysteine located in their ligand-binding
region (147).

Besides, relatively small distal effects of S-nitrosylation have
been observed in certain X-ray structures of SNO-proteins (161–
164). This behavior nicely fits in the context of allosteric effects
that can occur without a marked change in protein shape, as
attested in many other biological cases (33, 165). For instance,
hemoglobin (Hb) S-nitrosylation leads to local reorganization
but no large changes in the quaternary structure of the tetramer
in the crystals (162). However, the authors suggested that larger
effects might occur in solution, with a shift in the balance between
Hb R and R2 states. In a similar fashion, S100A1 S-nitrosylation
leads to distal reorganizations of the linker region and the two
helices III and IV from the C-terminal EF-hand, that are known
to be important for target recognition (164).

Nevertheless, the paucity of experimental structures of SNO-
proteins does not allow to efficiently probe the distal effects that
could be induced by S-nitrosylation. In this context, methods
based on MD simulations using reliable force field parameters
for Cys-NO would constitute a considerable asset to explore
such reorganizations. Indeed, many methods to study distal
conformational changes, including methods based on MD-
derived ensemble, have been proposed and successfully applied
to the study of long-range effects induced by protein PTMs such
as phosphorylation or other perturbation of the protein native
structure (32–35, 166–168) and they can be naturally translated
to the study of allosteric effects promoted by S-nitrosylation.

A Case Study: Effects of S-nitrosylation on
Src Kinases
Kinases are usual suspects in the context of cancer research (169–
171). Intriguingly, S-nitrosylation has been recently pointed out
as regulatory mechanisms for kinases (141, 172), which are
enzymes with the main regulatory role for another PTM, i.e.,
phosphorylation, highlighting an interesting cross-talk between
different PTM cellular signals.

As mentioned in the previous sections, Src kinases are a family
of kinases responsible for cellular proliferation, differentiation
and survival (172). Disregulation of Src kinases has been linked
to different cancer types. They are multi-domain proteins,
including four different domains of which one carries out is the
catalytic activity. Two tyrosines (Tyr416 and 527) are regulated
by phosphorylation and their phosphorylation is responsible of
either activation or deactivation of the kinase, respectively.

Apart from phosphorylation, another layer of post-
translational regulation—relying on S-nitrosylation—has
been demonstrated for the c-Src kinase. The SNO site is the
Cys498, which is one of the nine cysteines of the human Src
kinase (47). c-Src is known to promote cancer cell invasion and
metastasis and its S-nitrosylation enhances the protein activity
but the structural mechanisms behind this have been poorly
understood. Cys498 is also conserved in other kinases of the
Src family, suggesting a common mechanism, as attested by
the fact that the c-Yes kinase activation is also mediated by NO
(47). These data overall link NO-dependent activation of c-Src
to cancer cell invasion and metastasis but the structural and
molecular details are still elusive.

In a recent computational work, Rando and coworkers
applied different computational structural analyses accounting
for electrostatic, steric and hydrophobic properties to compare
the Cys498 selective SNO site with the other three c-Src cysteines
that are not affected by S-nitrosylation. Their data pointed in
the direction of a rather buried and highly nucleophilic Cys
with a highly hydrophobic environment in which NO can be
more prone to undergo decomposition into the electrophilic
intermediates (173).

As a future direction, structural studies to assess
conformational changes in the S-nitrosylated and non-S-
nitrosylated protein could shed new light on the NO-mediated
activation of c-Src and other similar kinases, as well as
properly assess the accessibility of the SNO site in the native
conformational ensemble of the protein. Also, in this context,
the main limitation is related to the poor availability of force field
parameters to describe SNO proteins.

Physical Models for S-nitrosothiols
(RSNOs)
The impact of S-nitrosylation on protein structure, function and
stability can be different from one protein to the other (see
section Biological Mechanisms Promoted by S-nitrosylation).
Therefore, one could not describe a systematic structural and
reactivity behavior of S-nitrosylated proteins. There is a real need
of investigations by both experimental and theoretical means,
which represent a colossal yet of utmost importance work with
the aim at gaining knowledge about the important phenomena
driving RSNOs formation and reactivity.

S-nitrosothiols exhibit a highly complex chemistry, which
represents a real challenge for theoretical studies. In the last
decade, efforts have been dedicated to the development of
an accurate structural and electronic description of the -SNO
group, by both experimental and theoretical means (174–176).
Concerning theoretical investigations, a certain amount of high-
level quantum chemistry studies has been performed on small
RSNOs (mainly with R=H,Me). The main part of the theoretical
studies focused on the description of the thionitrous acid
HSNO, the smallest RSNO (128, 143, 177–180). Indeed, the
high complexity of the -SNO moiety requires the use of time-
demanding calculations. Thus, the size of the system is rapidly
limited by the computational resources. The nature of the S-N
bond is especially challenging to investigate, and lots of efforts
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have been made to gain information about the properties of this
bond. Values of the bond dissociation energy (BDE) and the
activation energy corresponding to the transition between the cis
and trans isomers have been computed using diverse levels of
theory (181–184). One of the most recent computational studies
using high level CCSD(T) coupled to CBS extrapolation methods
(179) suggested that the cis - trans interconversion requires
an activation energy up to ∼9 kcal/mol, with the cis isomer
slightly less stable than the trans one, roughly by 0.1 kcal/mol.
Investigations on larger RSNOs moieties have shown that the
nature of R may have a strong influence on RSNO chemistry,
hence CysNO structure might exhibit different features than
HSNO (128, 185–189). However, there is still a lack of theoretical
studies about CysNO properties, with only few investigations
being reported concerning models structurally closer to the S-
nitrosylated cysteine than HSNO.

Electronic properties of the -SNO group have been highly
investigated by computational means. Especially, a lot of work
is available on HSNO structure description by high-level QM
methods and even Car-Parrinello metadynamics (179, 181, 184,
190–192), which shed light on the multi-reference character
of the -SNO group. Indeed, the complexity of the S-N bond
nature might result from the combination of three different
resonance structures: the neutral -S-N=O, the zwitterionic -
S+ =N-O−, and the RS−/NO+ ion pair. Further investigations
on the larger CH3SNOmodel confirmed this feature, yet it seems
less pronounced for CH3SNO than HSNO (186). Unfortunately,
no further evidences about RSNOs multi-reference character has
been reported for larger models of RSNOs, the computational
cost of such high-level calculations being prohibitive.

Nevertheless, these investigations underlined the difficulty
to obtain an accurate description of S-nitrosothiols structure,
with the S-N bond exhibiting very complex chemical properties.
Hence, one should pay a particular attention while dealing with
such systems, by starting with a careful choice of the level of
theory.

The unusual electronic structure of RSNO and its multi-
reference character makes it a difficult system to accurately
model. Hence, high level ab initioQMmethods should be used in
order to obtain a reliable and accurate description of the complex
electronic density of the SNO moiety. However, the use of such
quantum calculations is computationally very demanding when
it comes to study models larger than HSNO or CH3SNO. Thus,

benchmark studies have been led to assess the capacity of the
less time-consuming DFT and TD-DFT methods to reproduce
structural and electronic features obtained by high level ab initio
methods and experiments. Overall, several of these theoretical
investigations highlighted the reliability and robustness of the
B3P86 functional with large basis sets for the calculation of S-N
bond energy dissociation, spectroscopic and structural properties
of small RSNO (182, 189, 193). Likewise, the PBE0 functional
with large basis sets has also been revealed as a good compromise
between computational time and accuracy in describing RSNO
properties (179, 186, 188, 194). However, it is always strongly
recommended to verify results obtained by DFT methods using
more computationally demanding higher-level methods (186).
Likewise, experimental data on RSNOs characteristics, mainly
from NMR studies, have been reported and can validate values
predicted by computational chemistry (44, 195–197).

The electronic and structural properties of RSNO are highly
modulated by the molecular environment, especially in the
presence of proximal charges (e.g., upon coordination to metal
ions), with large fluctuations of the S-N bond stability being
observed in several experimental and theoretical works (182, 185,
188, 198, 199). Studies of RSNO interacting withmetals especially
highlighted the dramatic influence of surroundings on the S-N
bond nature. For instance, coordination to CuI, which is known
to play important roles in NO-release regulation by catalyzing the
decomposition of RSNOs, tends to weaken the S-N bond upon S-
coordination while N-coordination was predicted to strengthen
it (182, 200).

An interesting property of the -SNO moiety is the multi-
reference character induced by the dramatic difference between
its resonance structures (Figure 4), as highlighted in several
theoretical works published by Timerghazin’s group (184–186,
188, 201). Indeed, the use of an external electric field (EEF)
in QM calculations brought out the high polarizability of the–
SNO moiety, with modulation between two minor resonance
structures, which exhibit opposite charge distribution and
reactivity. The first one exhibits an ionic structure, with the
charge located mainly on the sulfur atom, interacting with
the electrophilic NO+ moiety through a long and weak S–
N bond. Upon opposite polarization of the EEF, the -SNO
adopts a totally different configuration, with the charge located
on the NO double bond, the sulfur atom being in this case
prone to undergo nucleophilic attacks. The balance between

FIGURE 4 | RSNO resonance structures, balanced between the neutral (center), the zwitterion (left) and the ion pair (right) forms. The trans conformer is depicted

here, but the cis is also possible though less stable, as mentioned in section Physical Models for S-nitrosothiols (RSNOs). The neutral form is the most abundant one,

the other ones being only minor conformations with dramatically opposite features—hence the dual reactivity of RSNOs with nucleophiles. The relative abundance of

the three RSNO forms is highly depend on its microenvironment and the nature of the R group. For instance, the neutral/zwitterion/ion pair ratio is 79/11/10% vs.

75/15/10% for HSNO and CH3SNO respectively.
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the zwitterionic, neutral, or ionic conformations might thus be
highly influenced by the electric field induced by the -SNO
chemical environment and lead to a fluctuating reactivity of
this moiety (185). The coexistence of such antagonist structures
brings explanation to the contradictory observations that have
been published concerning RSNO structure and reactivity (193,
202–205).

Nowadays the computational resources available do not allow
to model the dynamics of an entire protein at the QM level
of theory. Thus, investigations about the S-nitrosylated cysteine
electronic structure have been performed on reduced models
only. The largest one reported so far being the portion of
an α-helix S-nitrosylated in silico, on which Talipov et al.
performed QM/MM calculations to probe the effect of proximal
charged amino acids on CysNO electronic structure (188).
Nevertheless, QM/MM calculations are way too time-consuming
to be systematically used to investigate influence of the protein
environment in realistic models, since the dynamics of the system
might also have a strong influence on the cysteine environment.
Furthermore, Talipov et al. suggested that even small allosteric
effects could induce dramatic effects on the CysNO reactivity.
Thus, the dynamics of the system should be taken into account
when studying the S-nitrosylated cysteine behavior in a protein
environment. The use of all-atomMM-MD simulations can help
toward this goal. However, attention should be devoted to the
choice of the force field parameters used to describe the highly
complex S-nitrosylated cysteine structure.

So far, AMBER and GROMOS force field parameters have
been developed to describe CysNO and few case studies of
proteins harboring CysNO by classical molecular dynamics
simulations have been reported. On the one hand, the AMBER
parameters developed by Han et al. have been generated using
quantum mechanics (206) and validated using as a model system
a S-nitrosylated thioredoxin crystal structure on Cys69 (207).
On the other hand, Petrov et al. (208) parameterized CysNO
by deriving GROMOS force field values. Moreover, online tools
have been developed to insert PTMs in silico using GROMOS
force field parameters, including the cysteine S-nitrosylation:
the Vienna-PTM and the Automated Topology Builder (ATB)
servers (209–211). Nevertheless, an in-depth look into the values
of these two different sets of parameters highlights not negligible
differences (Tables 2, 3). Thus, these parameters have to be
extensively validated against experimental data to assess their
efficiency in describing a such complex chemical structure. The
major bottleneck in this field is related to the fact that only a
minority of experimental structures is available by NMR and X-
Ray crystallography (161–164, 207, 212–216) and classical MD
simulations using reliable force fields usually provide predictive
data about structural and dynamical behavior of biosystems.
However, in the CysNO case, it would be difficult to model
with standard force fields using point charges, given that the
polarization of the—SNO moiety is likely to undergo a dramatic
variation of the reactivity depending on its micro-environment.
To overcome this issue, one might consider to use polarizable
force fields, which are undergoing marked improvements (217).

Overall, investigations that have been led so far on small
RSNO models provide a solid basis toward the understanding

TABLE 2 | Comparison between GROMOS and AMBER parameters for

S-nitrosylated cysteine with regards to atomic charges.

GROMOS AMBER

Atomic charges (S) 0.1 −0.0735

Atomic charges (N) 0.35 0.0355

Atomic charges (O) −0.45 −0.1522

of S-nitrosylated cysteines structural properties within a protein
environment. The system size and the simulation time scale are
known to be very rapidly prohibitive while using QM and hybrid
QM/MM (-MD) methods. Besides, classical MD simulations are
nowadays a method of choice for the theoretical investigation
of dynamics of proteins and macro-molecules in general (32,
33, 218), but its reliability relies on the force field accuracy.
Hence, a particular effort should be realized in order to bypass
limitations of standard force fields and find a sustainable solution
in order to unravel the complex mechanisms underlying proteins
S-nitrosylation.

REACTIVITY OF S-NITROSOTHIOLS

The unusual structure of S-nitrosothiols (RSNOs), balancing
between three different mesomeric forms, implies a complex
chemistry of these moieties. The biological relevance of RSNOs
relies on their important role in NO storage and transport, as well
as their function as HNO donors in vivo (219–224). As RSNOs
are relevant to a broad spectrum of diseases, ranging from asthma
to cancer (6, 8, 140, 225–227), extensive works have been reported
with the final goal of developing new SNO-related therapeutical
strategies. Efforts have been made especially for the design of
new RSNO-inspired NO-releasing biomaterials (228–230). In
this framework, a deep knowledge of the mechanisms driving
the RSNOs reactivity is of utmost importance for the design of
therapeutics, with implications for the treatment of a large range
of diseases. Theoretical investigations have been led in order to
unveil the electronic mechanisms ruling RSNO denitrosylation.
The latter can take place through several reaction pathways: S-
transnitrosylation, disulfide bridges formation (S-thiolation), and
homolytic cleavage of the S-N bond—see Figure 5.

RSNO-Thiol Interactions
Albeit the S-transnitrosylation and S-thiolation have been studied
extensively by experimental means (22, 26, 28, 131, 231, 232),
there is only a little amount of theoretical data available.
A proper electronic description of the S-nitrosylated cysteine
requires the use of high-level quantum methods, whereas the
current computational resources do not allow to study such
a reaction in a protein model, meaning that current studies
are limited to small RSNO models. Moreover, only one work
has been published about the electronic mechanisms driving S-
thiolation by Ivanova et al. using MeSNO and MeSH models
(194). According to their DFT calculations on this simplified
model system, the reaction takes place in three phases. First,
the thiol proton is transferred to the—SNO nitrogen atom,
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TABLE 3 | Comparison between GROMOS and AMBER force field (FF) parameters for S-nitrosylated cysteine (i.e., bonds, angles, dihedral angles).

Bonds Angles Dihedral angle

C-S S-N N-O C-S-N S-N-O C-S-N-O

FF NAME

GROMOS gb_31 gb_31 gb_5 ga_30 ga_26 gd_21

AMBER CT SH SH NC NC O CT SH NC SH NC O CT SH NC O

EQUILIBRIUM DISTANCE/ANGLE

GROMOS 0.178 0.178 0.123 121 120 0

AMBER 0.181 0.1755 0.1165 103.96 116.58 180

FORCE CONSTANT (kJ mol−1 nm−1)

GROMOS 5.94E+06 5.94E+06 1.66E+07 685 530 16.7

AMBER 1.98E+05 2.77E+05 6.61E+05 354.8 527.37 22.51

PHASE

GROMOS / / / / / 2

AMBER / / / / / 2

leading to a thiolate MeS− and the MeSNHO+ moiety. The latter
undergoes a strong delocalization of the electronic density on
the oxygen atom, increasing the electrophilicity of the sulfur
group. Meanwhile, the thiol sulfur moves out of plane to initiate
the nucleophilic attack on the -SNO sulfur atom. The second
phase is the formation of the S-S bond, which results in a
zwitterionic species involving a tri-coordinated sulfur. The third
and last phase consists in the release of HNO following the S-N
bond cleavage. A similar reaction mechanism has been proposed
by Moran et al. (233) for the hydrolysis of O-protonated
RSNO.

The addition of explicit water molecules in the model
system highlighted the possibility of a reaction assistance, with
an activation energy decrease up to 20 kcal/mol. The water
molecules participate to the proton transfer, but also have a
stabilizing effect on the charge-separated intermediates. This
stabilization is even more pronounced when moving from gas
phase to a polarizable aqueous environment by using an implicit
solvent model, suggesting that the environment provided by the
protein embedding might also offer a similar stabilization. This
hypothesis is supported by investigations highlighting the effect
of external electric fields on the RSNO electronic density, that
can lead to its dramatic polarization (185, 186, 188). Noteworthy,
the biologically relevant competition between the S-thiolation
and the S-transnitrosylation processes might then be driven by
the polarization of the -SNO by its surroundings. The ionic
conformation would favor thiolate attack on the NO+ (i.e.,
S-transnitrosylation) while its antagonist structure might be
prone to undergo nucleophilic attack of thiolate on the sulfur
atom with release of a HNO molecule—i.e., S-thiolation and
disulfide bridges formation (188). Very recently, a work by
Wolhuter et al. suggested that S-nitrosothiols could be reactive
intermediates leading to disulfide bridges formation and S-
thiolation (234). Their work highlighted the strong propensity of
S-nitrosothiols to induce disulfide bond formation, pointing out
the larger instability of S-nitrosothiols compared to disulfides.
According to their results, S-nitrosothiols might be only transient

FIGURE 5 | SNO reactivity. We here illustrated the main reactions involving

RSNOs. Top: homolytic cleavage of the S-N bond, consisting in the loss of

nitric oxide with a remaining thyil radical species. Left: S-thiolation between

RSNO and a R’SH thiol, leading to the formation of a disulfide bridge RSSR’

and a nitroxyl moiety HNO. Right: S-transnitrosylation process inducing the

transfer of NO from RSNO to a R’SH thiol. The detailed mechanisms of these

reactions are still poorly understood and thus not depicted here.

moieties favoring the formation of S-S bonds, rather than
the putative stable redox regulators. The study of cysteines
nitrosothiols reactivity, involved in the promotion of disulfide
bridges formation, is of major importance for the understanding
of the complex mechanisms ruling the cell redox regulation. We
thus envision that further theoretical and experimental efforts are
still necessary to strengthen our knowledge in this area.

Homolytic Cleavage of RSNO
Theoretical and experimental investigations about the S-
nitrosothiols S-N bond dissociation stressed out the ease of
this reaction, both thermal, and photochemical decomposition
happening at room temperature (199, 235–240). The latter
reaction induces the homolytic loss of NO, eventually leading to
the formation of a stable S-S bond, which involves the reaction
between two newly formed thyil moieties. The weakness of the
S-N bond (values from 15 to 35 kcal/mol) (184, 186, 189, 193,
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203, 219, 241) may favor its rapid decomposition, although the
S-nitrosothiol chemical environment can strongly enhance its
half-life (198, 199, 204).

Recent theoretical work about the S-N photo-dissociation in
model compounds (small RSNOs) shed light on the barrierless
character of the process upon irradiation in the visible and
UV regions as well as upon exogenous photosensitization,
with population of S1, S2, and T1 states respectively (189).
Experimental investigations showed that irradiation of S-
nitrosothiols at UV-visible wavelengths induces the release of
nitric oxide and a thyil radical (236, 242). Likewise, photo-
decomposition of RSNOs has been observed in human skin upon
UVA irradiation (243). Similar wavelengths have been reported
for light-induced release of NO from NO-metal complexes
(mostly iron, but also Mb, Co, or Ru among others), which has
been widely investigated for its biological relevance and has been
observed in the UV-vis-NIR regions depending on the nature of
the complex (244–247).

Thermal decomposition of small RSNOs has also been
investigated using high-level computational methods (184, 186,
201). In the most recent of them, Khomyakov and Timerghazin
underlined the difficulty to obtain accurate values of the S-
N bond dissociation energy, the convergence of the S-N bond
features being especially slow due to the unusual, multi-
reference character of the -SNO moiety (186). Their calculations
suggested a value of 32.2 kcal/mol for the CH3SNO model S-
N bond cleavage in implicit aqueous solvent, with a very small
stabilization of energy when shifting from water to the non-
polar diethylether solvent—often used to mimic the protein
environment. Noteworthy, metal ions and especially copper
ions can efficiently catalyze the S-N bond thermo-dissociation,
making it an ultrafast process (182, 236, 248, 249).

NO transport and storage are mainly provided by iron-
nitrosyl (e.g., in myoglobin and hemoglobin) and nitrosothiols
compounds. These processes are known to be of utmost
importance for the modulation of important cellular
mechanisms such as the mitochondrial respiration (250) or
vasodilation/cardioprotection (251). As mentioned previously
in this review, nitric oxide is also known to have a multifaceted
role in cancer biology, with both tumor-suppressing and tumor-
promoting effects reported (252, 253). The redox chemistry of
S-nitrosothiols is as rich as complex and is related to a large
variety of biochemical processes. It is notably balanced by pH,
temperature, UV-vis irradiations, RSNO micro-environment
(influencing its pKa), chemical nature of RSNO, and presence
of reactive compounds such as metal ions (254, 255). The
dysregulation of NO flux in the tumor micro-environment has
also been found to modulate the redox signaling pathways during
cancer progression (256), which might consequently influence
RSNOs reactivity. Several compounds are known to react with
S-nitrosothiols such as phosphine derivatives, sulfenic acids, and
a large variety of nucleophiles. Some of them have biological
relevance (e.g., thiols and seleno compounds), but an important
aspect of this broad reactivity is to provide perspectives for the
development of efficient RSNOs detection methods and RSNO-
based therapies—e.g., biotin labeling, phosphine compounds,
and metal complexes (257–261). Noteworthy, low-molecular

weight S-nitrosothiols derivatives such as S-nitroso-N-acetyl
penicillamine (SNAP), GSNO and L-/D-CysNO are commonly
used in biological experiments. For an in-depth description of
RSNOs chemistry, very good articles, and reviews are available in
the literature (254, 262, 263).

Considering their high biological relevance, mechanisms
driving RSNO chemistry are matter of intensive investigations,
and the ease of RSNOs dissociation through several pathways at
room temperature, leading to the efficient release of nitric oxide,
is an interesting property very often used in studies aiming at
developing therapies against cancer and other diseases (264–271).

CONCLUSIONS

The discovery of S-nitrosylation opened new venues in the
context of the cellular signaling induced by post-translational
modifications since NO relies on this modification to transmit
its redox signaling. The mechanisms involved in its regulation
and the effects caused by it are very complex and diverse, as
described above. S-nitrosylation has been emerging also as a
key mechanism in many diseases, such as cancer. As a result
of extensive efforts by cellular and proteomics studies, we now
know several enzymatic regulators of S-nitrosylation, as well
as a myriad of protein targets that are modulated by this
post-translational modification. However, structural studies that
can help in understanding the mechanisms induced by this
modification and its reactivity are still not as in-depth as the
investigations carried out so far for other more conventional
PTMs, such as phosphorylation. The complexity of this
redox modification challenges experimental and computational
structural and biophysical studies. Nevertheless, advances in
computational biochemistry hold promise to both generate new
mechanistic hypotheses that can be experimentally tested and
rationalize at the molecular and atom level the experimental
results collected so far. Several efforts are still required to
experimentally solve new structures of S-nitrosylated proteins,
using techniques such as X-ray crystallography and NMR, as
well as to collect experimental data probes the conformational
changes induced by this PTM on both structure and dynamics
at local and distal sites of the proteins. Once more information
will be available, we will be capable of overcoming the limitations
of standard force fields to model the effects induced by S-
nitrosylation on protein structure and dynamics, as well as to
unveil the long-range allosteric effects triggered by this redox
PTM. Similar studies can, for example, shed new light in the
context of identifying and characterizing SNO sites that are
buried in the native structure and that can become available
for modification upon transient conformational changes of
the protein. Moreover, in the context of reactivity, theoretical
studies will need to account for more complete models that
can account for the structural environment of the S-nitrosylated
cysteine. Prediction algorithms for SNO-sites would also largely
benefit from more available experimental and structural data,
hopefully making the current predictions more accurate. The
redox community should also dedicate more comprehensive,
collaborative, and organized efforts toward the development of a
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common publicly available repository for the S-nitrosyloma with
both sequence, structural and experimental information.
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