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Abstract: Let A be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert
space H. We give an upper estimate for the best approximation of the operator A by bounded linear operators
with a prescribed norm in the space H on the class Q2 = {x ∈ D(A2) : ‖A2x‖ ≤ 1}, where D(A2) denotes the
domain of A2.
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1. Introduction

Let H be a Hilbert space with the inner product (·, ·) and the norm ‖ · ‖, and let A be the
infinitesimal generator of a strongly continuous contraction semigroup in H. For the definition
and properties of the infinitesimal generator of a semigroup in a Banach space see, e.g., [6, §14.2].
Note that a strongly continuous contraction semigroup is also called a contraction semigroup of the
class C0 ([8, 9]). For an operator F on the space H, D(F ) denotes the domain of F . We denote
by I the identity operator.

In this paper, we study the so-called Stechkin’s problem of the best approximation of the
operator A by bounded linear operators with a prescribed norm on the class of elements x ∈ D(A2)
such that ‖A2x‖ ≤ 1. We give an upper estimate for the best approximation of the operator A.

The problem we consider is a special case of the general problem of the best approximation of
an unbounded operator by linear bounded ones on a certain class of elements in a Banach space.
This problem first appeared in Stechkin’s work in 1965–1967 [11]. The problem was studied by a
number of authors (see surveys [1], [2], monograph [4], paper [3], and the bibliography therein).

Stechkin formulated this problem in a general setting as follows. Let X, Y be two Banach
spaces, let A be a linear operator (in general, unbounded) from X to Y , and let Q ⊆ D(A) be a
certain class of elements from the domain D(A) of the operator A. We denote by B(N) the set of
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linear bounded operators from X to Y with the norm ‖T‖X→Y ≤ N . The best approximation of
the operator A by linear bounded operators T ∈ B(N) on the class Q is

EN (A;Q) = inf {U(A,T,Q) : T ∈ B(N)},

where

U(A,T,Q) = sup {‖Ax − Tx‖Y : x ∈ Q}

is the deviation of the operator T from the operator A on the class Q.
One of the most important cases of the problem formulated above is when the class Q is defined

in the following way. Let Z be a Banach space and B be a linear operator from X to Z such that
D(B) ⊆ D(A). The class Q is then defined as Q = {x ∈ X : ‖Bx‖Z ≤ 1}.

Stechkin [11] suggested an estimate from below for the best approximation EN (A;Q) in terms
of the modulus of continuity of the operator A on the class Q defined by

Φ(δ) = sup {‖Ax‖Y : x ∈ Q, ‖x‖X ≤ δ}, δ > 0.

Namely, Stechkin showed that

EN (A;Q) ≥ sup {Φ(δ) −Nδ : δ > 0}. (1.1)

In particular, when B = An, the problem EN (Ak;Q) turned out to be closely connected to the
exact constants in the Kolmogorov-type inequalities of the form

‖Akx‖ ≤ C‖x‖n−k

n ‖Anx‖ k

n , x ∈ D(An), (1.2)

with n, k ∈ N, 0 < k < n, and a certain constant C that depends on n and k.
If A is the differentiation operator, inequalities (1.2) are inequalities between the norms of

the derivatives of a function. Such inequalities have been studied by a large number of authors
(see [1], [2], [4] and the bibliography therein). Here we only mention that Hardy, Littlewood and
Pólya [7, Chapter VII, §7.8] obtained the exact inequality

‖f ′‖2 ≤ 2‖f‖‖f ′′‖ (1.3)

in the space L2(0,∞) on the class of functions f ∈ L2(0,∞) such that f ′ is locally absolutely
continuous on (0,∞), and f ′′ ∈ L2(0,∞).

In 1971, Kato [9] proved the following result which can be considered as a generalization of (1.3).
Let A be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert
space H. Then

‖Ax‖2 ≤ 2‖x‖‖A2x‖, x ∈ D(A2).

In this paper, we study Stechkin’s problem of the best approximation of the infinitesimal gen-
erator A of a strongly continuous contraction semigroup by bounded linear operators on the class

Q2 = {x ∈ D(A2) : ‖A2x‖ ≤ 1} (1.4)

in a Hilbert space. Namely, we estimate

EN (A;Q2) = inf{U(T ) : T ∈ B(N)}, (1.5)

where

U(T ) = U(A,T,Q2) = sup{‖Ax − Tx‖ : x ∈ Q2}. (1.6)
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2. The main result

The main result of the paper is the following statement.

Theorem 1. The best approximation (1.5) of the infinitesimal generator A of a strongly con-

tinuous contraction semigroup in a Hilbert space on the class Q2 defined in (1.4) satisfies the

inequality

EN (A;Q2) ≤
1

N
.

It is known that the infinitesimal generator A of a strongly continuous contraction semigroup
in a Banach space possesses the following properties:

1) The domain D(A) of the operator A is dense (see, e.g., [6, Lemma 14.5, p. 411]).

2) The resolvent set ρ(A) of the operator A contains the right half-plane {λ ∈ C| ℜλ > 0}.
Moreover, ‖(A−λI)−1‖ ≤ (ℜλ)−1 for all λ ∈ C with ℜλ > 0 (e.g., [6, Theorem 14.7, p. 412]).

Furthermore, if A is the infinitesimal generator of a strongly continuous contraction semigroup
in a Hilbert space, we have additionally:

3) The operator A is upper semibounded, with the upper bound 0, i.e.,

ℜ(Ax, x) ≤ 0

for x ∈ D(A) [6, Lemma 14.9, p. 416].

The following lemma is not new. However, we will formulate and prove it for the sake of
completeness.

Lemma 1. Let A be the infinitesimal generator of a strongly continuous contraction semigroup

in a Hilbert space H and c > 0. Then the operator

Bc = (cI +A)(cI −A)−1

is densely defined and bounded (and thus can be extended to the whole space H by continuity).
Moreover,

‖Bc‖ ≤ 1.

Remark. The operator Bc is the Cayley transform of the operator A in the terminology of
Kato [9], see also [10, p. 545].

P r o o f. Since c > 0, the operator (cI−A)−1 is defined everywhere on H and bounded. Since
A is the infinitesimal generator of a strongly continuous contraction semigroup, the operator −A
is m-accretive (see [10, Chapter IX, §1.4 as well as Problem 1.18, both p. 485]). Therefore, the
domain D(A) of the operator A is equal to the range R((cI − A)−1) of the operator (cI − A)−1

which is dense in H (see [10, Chapter V, §3.10, p. 279]). Thus, Bc is densely defined.
Now we estimate the norm of Bc. For x ∈ D(A) we have

‖cx+Ax‖2 = c2‖x‖2 + ‖Ax‖2 + 2cℜ(Ax, x),
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‖cx−Ax‖2 = c2‖x‖2 + ‖Ax‖2 − 2cℜ(Ax, x).

It follows immediately that

‖(cI +A)x‖ ≤ ‖(cI −A)x‖. (2.1)

Now take y ∈ D((cI −A)−1). Applying (2.1) to x = (cI −A)−1y ∈ D(A), we obtain

‖(cI +A)(cI −A)−1y‖ ≤ ‖y‖,

and thus ‖Bc‖ ≤ 1. �

Now we are ready to prove Theorem 1.

P r o o f. We will construct a concrete approximating operator T in problem (1.5) and estimate
its norm and its deviation (1.6) from the operator A on the class Q2.

Note that all the operators we consider commute on the set D(A2).

The restriction of the operator A to the set D(A2) (which we will denote by the same symbol)
can be represented as

A =
N

2
(BN − I)− 1

2N
(BN + I)A2.

Put T : H → H,

T =
N

2
(BN − I).

Then, for the restriction of the operator A− T to D(A2), we have

A− T = − 1

2N
(BN + I)A2.

We estimate the norm of the operator T as follows:

‖T‖ =
N

2
‖BN − I‖ ≤ N

2
(‖BN‖+ ‖I‖) = N. (2.2)

For the deviation U(T ) of the operator T from the operator A, we obtain that

U(T ) = sup
x∈Q2

‖(A− T )x‖ ≤ sup
x∈Q2

1

2N
‖BN + I‖ · ‖A2x‖ ≤ 1

N
. (2.3)

It follows immediately from (2.2) and (2.3) that

EN (A;Q2) ≤ U(T ) ≤ 1

N
.

�

3. Approximation of the differentiation operator in the space L2(0,∞)

An important concrete case of problem (1.5) is the problem of the best approximation of the
differentiation operator Df = f ′ by bounded linear operators in the Hilbert space L2(0,∞) of
real-valued functions whose squares are integrable on (0,∞) on the class Q(2) defined as follows:
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Q(2) is the class of functions f ∈ L2(0,∞) such that f ′ is locally absolutely continuous on [0,∞),
f ′′ ∈ L2(0,∞), and ‖f ′′‖ ≤ 1. Problem (1.5) takes in this case the form

EN (D;Q(2)) = inf
T∈B(N)

sup
f∈Q(2)

‖f ′ − Tf‖. (3.1)

It took about 20 years of research to solve the problem completely. Stechkin’s inequality (1.1) and
inequality (1.3) of Hardy, Littlewood and Pólya provide the lower bound

EN (D;Q(2)) ≥ 1

2N
.

One of the first upper bounds for (3.1)

EN (D;Q(2)) ≤ 1√
3N

was obtained by using a concrete approximating operator by the first named author in 1996 [5].
Problem (3.1) was fully solved only in 2014 by Arestov and the second named author [3] . Namely,
they showed that

EN (D;Q(2)) =
1

2N
.

In this section, we discuss what the statement of Theorem 1 means in the concrete case (3.1)
of problem (1.5). The approximating operator T used in Theorem 1 is

T =
N

2
(BN − I) = NA(NI −A)−1. (3.2)

Below we will describe this operator in the special case. We consider and calculate its norm ‖T‖
and its deviation U(T ) from the operator A = D on the class Q(2).

It is not difficult to see that the operator T in the concrete case can be represented as follows.
Let W be the class of functions y ∈ L2(0,∞) such that y is locally absolutely continuous on [0,∞)
and y′ ∈ L2(0,∞). For f ∈ L2(0,∞), we consider the differential equation

−y′ +Ny = f, y ∈ W. (3.3)

For each function f ∈ L2(0,∞), equation (3.3) has a unique solution which is a real-valued function
from L2(0,∞). The operator T is defined as

Tf = Ny′, (3.4)

where y is the solution of the differential equation (3.3).

Integrating by parts and taking into account that lim
t→∞

y(t) = 0, we obtain (see [3] for details)

that

‖f‖2 =
∞∫

0

(−y′(t) +Ny(t))2dt =

∞∫

0

(y′(t))2dt+N2

∞∫

0

(y(t))2dt+Ny2(0).

It follows from (3.4) that ‖Tf‖2 = N2
∞∫
0

(y′(t))2dt. Thus, we immediately obtain

‖Tf‖2 ≤ N2‖f‖2, (3.5)
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which gives the estimate ‖T‖ ≤ N . Now we show that indeed ‖T‖ = N . Consider the family of
functions yK = e−Kt, K > 0. Let fK be the corresponding right-hand side of equation (3.3). Take
an arbitrary 0 < α < 1. We have

αN2‖fK‖2 − ‖TfK‖2 = αN2

∞∫

0

(−y′K(t) +NyK(t))2dt−N2

∞∫

0

(y′K(t))2dt

=
N2

2K
(α(K +N)2 −K2).

This expression is negative for all 0 < α <
K2

(N +K)2
which yields ‖TfK‖2 > αN2‖fK‖2. Let-

ting K go to infinity (with fixed N) we let α approach 1, and thus obtain ‖T‖ ≥ N . Conse-
quently, ‖T‖ = N .

Note that inequality (3.5) is a strict inequality if y 6= 0 and, consequently, f 6= 0. In other
words, the norm of the operator T is not attained.

It can be shown similarly that the norm of the operator V = − 1

2N
(BN + I) is equal to 1/N .

Since the domain D(D2) of the operator D2 is dense in L2(0,∞), it follows that the deviation of
the operator T from the differentiation operator D on the class Q(2) is equal to 1/N .

Thus, the approximating operator (3.2) gives the estimate EN (D;Q(2)) ≤ 1

N
in the general

case (1.5) as well as in the concrete case (3.1).
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