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Abstract. Finite Element Method (FEM) is one of the most commonly used numerical analysis method for 
the structural analysis. The axially symmetric cylindrical shell walls analysis can be made by using FEM or 
similarity of beams on elastic foundation. The Superposition Method (SPM) is a method developed for the 
analysis of beams and can be employed in the analysis of cylindrical shell walls.  
In the analyses using FEM, there are some assumptions and boundaries for preparing mathematical models. 
One of these boundaries for shell walls is aspect ratio. In this study, it is investigated, the aspect ratio fac-
tor for FEM analysis of axially symmetric cylindrical shell walls. For that reason the FEM analysis results 
are compared with the Superposition Method (SPM). In order to obtain exact solution of cylindrical shell 
walls, the effects of loadings is calculated and defined to the computer program, which is developed for SPM 
analysis by using Visual Basic programming language. According to analysis results, aspect ratio has a sig-
nificantly effect on analysis results. Also, it is occurred minor difference in the FEM analysis results even if 
in case of obeying the rules.
Keywords: aspect ratio factor, axially symmetric cylindrical shell walls, beams on elastic foundation, Super-
position method, Finite element method.
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Introduction

The differential equation of axially symmetric cylindri-
cal wall and beams on elastic foundations are similar 
(Timoshenko, Woinowsky-Krieger 1984). By using this 
similarity, it can be made analysis of cylindrical shell 
walls. 

The elastic soil model, which is used beams on 
elastic foundation, is first introduced by Winkler 
(1867). In the Winkler model, soil is defined as infi-
nite number of independent springs. Also, there is a 
ratio between contact pressure and settlement of point 
named modulus of foundation. Winkler used his soil 
model in railway stress analysis by defining rails as 
beams (Wang et al. 2005; Karaşin, Gülkan 2008). By 
using Winkler’s assumption, many studies have made 
on railway stress analysis (Kerr 1976).

Beside the railway analysis, the elastic foundation 
theory has been employed in solving various engineer-
ing problems, including retaining walls, strip- contin-
uous footing and axially symmetric cylindrical shell 
walls. Thus, many researchers from different depart-
ment of engineering science are worked on this subject.

Deflection line equation of beams on elastic foun-
dation is including four constant of integration. Since, 
these constant are changing in each discontinuous 
loading, determining of them is the main difficulty 
encountered during analysis. It is developed various 
alternative methods that can be found in several books 
to overcome this difficulty (Selvadurai 1979; Jones 
1997; Melerski 2000). The initial conditions method 
developed by Umansky (1933) and the superposition 
method developed by Hetenyi (1936, 1946) are the 
most commonly employed methods. 
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Levinton (1947) method consists in representing 
the pressure of the elastic foundation as a series of re-
dundant reactions. Penzien (1960) have used an itera-
tive procedure, which is similar to H. Cross (1930), for 
obtaining discontinuity stress in beams and cylinder. 
The method by Popov (1951) resembles moment-area 
procedure for solving beams. To calculate the influence 
coefficient for beams, a solution in the form of a series 
of characteristic function is presented by Iyengar and 
Anantharamu (1963, 1965). Miranda and Nair (1966) 
is used the initial condition method for solving dif-
ferential equation of beams of finite length. The finite 
difference method has been applied by Beaufait (1977) 
to solve differential equation of a beam- column struc-
ture on elastic foundation. Ting (1982) improved the 
special functions, which is given in initial condition 
method, in order to contact the analysis for different 
boundary condition. Eisenberger and Yankelevsky 
(1984, 1986) are formulated an exact stiffness matrix 
of a beam and beam-column problems on elastic foun-
dation.

By using similarity of beams on elastic foundation 
the analysis of axially symmetric cylindrical shell walls 
has been introduced in several books, written about 
shell structures (Billington 1965; Ghali 1979; Calla-
dine 1983; Kelkar, Sewell 1987; Ventsel, Krauthammer 
2001). In addition, it has been developed some meth-
ods about cylindrical shell walls analysis. 

Öztorun and Utku (2002) are presented a meth-
od based on classical shell theory for the analysis of 
cylindrical water tanks under axisymmetric and post 
tensioning loading. In another study five moment 
equations is employed by Öztorun et  al. (1996) for 
the analysis. An alternative method for the analysis 
of short cylindrical shell walls is presented by Bekdaş 
(2011). Also, Bekdaş developed a computer program 
based on this method. Recent studies on cylindrical 
shell walls also cover optimization, experimental and 
numerical analyses (Barakat, Altoubat 2009; Ansary 
et al. 2011; Shariati et al. 2012; Lakshmia, Rao 2012; 
Yu, Ma 2012; Yas et al. 2011; Aghajari et al. 2011; Kala 
2007).

Also, Finite Element Method (FEM), which is 
a numerical analysis technique, can be used for the 
analysis of cylindrical shell walls. Although FEM is a 
powerful numerical analyses technique, it makes some 
assumptions and has some boundaries for preparing 
mathematical models. It can be occurred big mistakes 
in the analysis results in case of not obey these rules. 
Aspect ratio is one of these boundaries of FEM.      

In the study, it is investigated the SPM and FEM 
for analysis of axially symmetrical cylindrical shell 
walls. It is mentioned about the assumptions and the 
principle of methods, which can significantly affect the 
analysis results. It is aimed to show error rates of FEM 
analysis results, when it is not used properly. Com-
puter programs are developed in Visual Basic, based 
on SPM. In order to obtain exact solution of cylindri-
cal shell walls, the effects of loadings is calculated and 
defined to the program.

1. Methodology

The general expressions for axisymmetric deformation 
in circular cylindrical shell walls, when the thickness 
of the wall is constant, can be written as:
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where D is the flexural rigidity of the wall (Eq. (2)), w 
is inward radial deflection of the wall midsurface, r is 
radius of the wall, q is the radial pressure loading and 
h is the thickness of the cylindrical shell wall. In the 
Eq. (1), by using the term:
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differential equation becomes: 
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This equation is similar to the beams on elastic 
foundation (Timoshenko, Woinowsky-Krieger 1984) 
and general solution of this equation is:
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where f(x) is a particular solution of equation and C1, 
C2, C3 and C4 are the integration constants determi-
ning from boundary conditions of the cylinder shell 
wall. The general expression for the deflection line of 
beams on elastic foundation is:
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In the equation λ is an inserting term that is used 
in simplifying the differential equation and it can be 
written as:

 
λ = 4

4
k
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where k, EI is modulus of the foundation and flexural 
rigidity, respectively. When the equations of walls (Eq. 
(5)) and beams (Eq. (6)) are examined, it is seen that 
the main difference between these equations is β pa-
rameter in the shell walls and λ in the beams.

In the superposition method integration con-
stants are being determined by the help of infinite long 
beam. Thus, we decrease the mathematical operation 
during the analysis. This process provides an advan-
tage to superposition method comparing to the oth-
ers. Also, this procedure is making application easier 
to particular problems.

An infinite beam subjected to concentrated load 
and moment can be seen in Figure 1. It is obvious that, 
in an infinite distance from the application of the load 
displacements, moment and shearing forces values are 
decreasing and approach to zero. By using this behavior 
of infinite beam, the deflection line, which is given in 
Eq. (6), and θ, M and Q expressions, can be written as:
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With similar approach, expressions for infinite 
beam subjected to concentrated moment can be ob-
tained (Fig. 1):
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where the Aλx, Bλx, Cλx and Dλx functions are:
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Decreasing amplitude rapidly is the most signifi-
cant feature of these functions. The value of any four 
functions for λx/π  > 1 is under 0.05. This means, a 
beam length l = 2π/λ subjected a concentrated force 
or moment at the middle point shows approximately 
the same behavior as the infinitely long beam. By using 
this behavior, the beams can be categorized as λl > π is 
long beams and λl > π is short beams. 

As it was mentioned before, the main problem 
encountered in analyzing beams on elastic foundation 
is to determine the integration constants. Since there 
is only two constant of integration that must be deter-
mined, in the long beam it is easier to analyses them 
comparing to short beams.

The superposition method can be explained 
briefly in two steps. In the first step, beam is analyzed 
as infinite long beam and obtained displacement and 
forces at the end of beam. The second step, we find the 
loading combination at the end of beam, which satis-

Fig. 1. Infinite beam subjected to concentrated load (left) and moment (right)

x

� ��

w = APλ

2k

θ = BPλ

k

2

M = CP
4λ

Q = D�x
P
2

_

+

+

+

+

_

__

_

_

x

Q =

+

+

+

+

_

__

_

M

θ =

M0 λ

2
A_� �/2

�x

� �/4

�x
� �/

3 /4� �
�x

P

3 /4� �

� �/2

� �/4

� �/

�x

M =
M0

2
D_

�x

M0 λ

k
C�x

3

� �/

w =
M0 λ

k
B�x

2

0

Engineering Structures and Technologies, 2014, 6(4): 169–177 171



fies boundary condition. By superposing both effects, 
we obtain a solution for beam. 

As an example, a beam subjected to the con-
centrated and distributed loads is given in Figure 2a. 
Beam is solved as infinite beam and obtained forces at 
the end of it (Fig. 2b). And then, we obtain the load 
combination which satisfied the end condition of beam 
(Fig. 2c). Since both end of beam is free, in order to 
obtain analyses results of beam in Figure 2a, we have 
to make the moments and shearing forces zero, which 
is occurred at A and B points in the infinite beam 
(Fig. 2b), by applying the end conditioning forces P0A, 
M0A, P0B and M0B at those points (Fig. 2c). Thus, the 
behavior of the infinitely long beam in Figure 2c will 
be the same as the beam in Figure 2a.

We can determine the end conditioning forces by 
using the equations that is written four conditions at 
two ends (Eqs (17)–(20)):
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where Aλl, Bλl, Cλl and Dλl are the value of these func-
tion at x = l. The Eqs (17)–(20) is obtained for beams 
with free end. If there is another boundary condition 
at the end of beam, the equation must be formed again 
to provide it. 

2. Numerical examples

In this section, there are selected two axially symme-
trical cylindrical shell wall models and they are analy-

zed with superposition method and FEM. Algorithms 
are developed in order to make the analyses with SPM, 
and also computer programs based on these algo-
rithms are developed by using Visual Basic program-
ming language. 

The linear FEM analysis is conducted by using 
SAP2000 program. Cylindrical shell wall model is pre-
pared by using axisymmetric properties, in order to re-
duce analysis and FEM model preparing time (Fig. 3). 
In the both examples, the supports conditions is fixed 
at the bottom and free at the top of the wall. 

Although the required number of element is de-
creased in the axisymmetric model comparing to three 
dimensional models, when thickness of structural 
component is thin, required member increases because 
of avoiding high element aspect ratios.

2.1. Example 1

The radius, thickness, height, elasticity modulus and 
Poisson’s ratio of the first model is 18.25 m, 0.30 m, 
4.0  m, 20601000 kN/m2 and 0.15, respectively. It is 
selected liquid load up to height of wall with specific 
weigh is 9.81 kN/m3, as loading.

In order to investigate effect of changing aspect 
ratio on analyze results, seven different FEM model 
are prepared (Fig. 4).

In models, the thickness of the shell wall is di-
vided into three equal pieces. Thus, thickness of each 
element becomes 0.1 m and aspect ratios are obtained 
by changing height of the members. The member di-
mensions and aspect ratios, which are used in models, 
can be seen in the Table 1.

Longitudinal moment of FEM models can be seen 
in the Figure 5. Also, in the figure the superposition 
method (SPM) analyses result is given for comparing 

Fig. 2. Infinite beam subjected to various loads

Fig. 3. An axisymmetric model of cylindrical shell wall
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is 4) and 50.76% for model g (aspect ratio is 10). The 
longitudinal moment differences is found for model e 
(aspect ratio is 5) and for model g (aspect ratio is 10) 
5.08% and 26.97%, respectively.

It must be note that, in order to obtained reliable 
analyses result aspect ratio of the element must be 
small enough. Also, it can be occurred difference be-
tween the FEM and SPM even if aspect ratio is 1. For 
model a (aspect ratio is 1) 2.81% difference is obtained 
at fixed support moment.

In the Figure 6, the middle and side moment val-
ues for FEM models are given. As seen in the figure, 
difference between middle and side moment values 
increase by high aspect ratio of the element. Slightly 
differences are found especially for 1 and 2 aspect ra-
tios. These results are confirmed from the previously 
obtained results.

Fig. 4. FEM models with different aspect ratios (Ex.1)

a) b) c) d) e) f) g)

Fig. 5. Longitudinal moments for FEM models and SPM (Ex.1)

Table 2. The difference between FEM and SPM for different aspect ratio

Model
Moment value at fixed support point (kNm/m) Maximum longitudinal moment value (kNm/m)

FEM SPM Difference (%) FEM SPM Difference (%)

a 32.150

33.081

2.81 –7.602

–7.659

0.74

b 31.585 4.52 –7.660 0.01

c 30.659 7.32 –7.804 1.89

d 29.397 11.14 –7.878 2.86

e 27.827 15.88 –8.048 5.08

f 21.540 34.89 –9.178 19.83

g 16.290 50.76 –9.725 26.97

Table 1. Member dimensions and aspect ratios

Model Finite element member 
height/thickness (m/m) Aspect Ratio

a 0.1/0.1 1

b 0.2/0.1 2

c 0.3/0.1 3

d 0.4/0.1 4

e 0.5/0.1 5

f 0.8/0.1 8

g 1.0/0.1 10

the FEM results. As seen in the figure, the longitudi-
nal moment differences between SPM and FEM are 
reduced by decreasing aspect ratio of models.       

In the Table 2, the maximum moment values ob-
tained from analyses FEM models and SPM are given. 
The fixed support moment differences between FEM 
and SPM is obtained 11.14% for model d (aspect ratio 
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Fig. 6. FEM models longitudinal moments of middle and side of the element
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2.2. Example 2

As it obtained from the previous analysis it can be oc-
curred difference between the FEM and SPM even if 
aspect ratio 1. In order to investigate the effect of ele-
ment dimensions on the analyses result, it is prepared 
three FEM models which have different dimensions 
but same aspect ratios. These models can be seen in 
Figure 7. The radius, thickness, height, elasticity mo-
dulus and Poisson’s ratio of the first model is 18.25 m, 
0.50 m, 4.0 m, 2060100 kN/m2 and 0.15, respectively. It 
is selected liquid load up to height of wall with specific 
weigh is 9.81 kN/m3, as loading. 

In the models, thickness and height of the shell 
member is defined equal. The member dimensions and 
aspect ratios, which are used in the models, can be 
seen in the Table 3.

In the Figure 8, FEM models analysis results can 
be seen. For comparing these results, SPM moment 
values are given on the same figure. Although all mod-
els have the same aspect ratio, the longitudinal mo-
ment differences between SPM and FEM is increasing 
when increasing the height (or thickness) of the ele-
ments is increasing.

The maximum moment values obtained from 
analyses FEM models and SPM are given in the Table 
4. As it seen in table, significant differences are found 
especially for model c. At longitudinal and fixed sup-
port moments, these differences are 13.36% and 
10.35%, respectively.

For the model a, longitudinal and fixed support 
moments differences are obtained 4.17% and 2.53%, 
respectively. To decrease these differences, FEM model 
must be prepared properly according to the desired ac-
curacy in the results. Although FEM is a powerful nu-
merical analyses technique, it must note that, some dif-
ferences can be occurred in the FEM analyses results. 

Fig. 7. FEM models of Ex.2

Fig. 8. Longitudinal moments for FEM models and SPM (Ex.2)

a) b) c)

Table 4. The difference between FEM and SPM for same aspect ratio

Model
Moment value at fixed support point (kNm/m) Maximum longitudinal moment value (kNm/m)

FEM SPM Difference (%) FEM SPM Difference (%)

a 44.348
46.28

4.17 –5.635
–5.496

2.53

b 43.438 6.14 –5.683 3.40

c 40.099 13.36 –6.065 10.35

Table 3. Member dimensions and aspect ratios

Model Finite element member 
height/thickness (m/m)

Aspect Ratio

a 0.10/0.10 1

b 0.25/0.25 1

c 0.50/0.50 1
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Conclusions

In this study, it is investigated, the aspect ratio factor 
for FEM analysis of axially symmetric cylindrical shell 
wall. In the first example, it is prepared 7 FEM models, 
aspect ratios changes 1 to 10. According to analysis re-
sults, at the fixed support moment differences are ob-
tained between 2.81% (aspect ratio is 1) and 50.76% 
(aspect ratio is 10). Also, when the aspect ratio was 
4, the difference is found 11.14%. For the longitudinal 
moment these differences are occurred between 0.74% 
and 26.97%. This difference basically arises from cal-
culating moment at middle and distributing to the si-
des of the each shell element. To show the difference 
between middle and side moments values, which is 
obtained for different aspect ratios, these values are 
drawn on the same graph. 

In the second example, it is aimed to show the 
effect of element dimensions on the analysis. It is pre-
pared three FEM models, which has same aspect ratio 
but different shell element dimensions, and compared 
the results. In the analysis of model 0.5 m dimension, 
differences are occurred 13.36% at longitudinal and 
10.35% at fixed support moments. For the model with 
0.1 m dimension these differences are found 4.17% 
and 2.53%, respectively.

Analysis results showed that, the assumptions and 
boundaries of FEM can significantly affect the analysis 
results, when it is not used properly. In spite of obeying 
the rules, it is occurred some difference in the FEM 
analysis results. To overcome these problems it can be 
employed an exact solution method. 
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