
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2017, No. 3, pp. 108–129. DOI:10.13154/tosc.v2017.i3.108-129

Practical Evaluation of FSE 2016 Customized
Encoding Countermeasure

Shivam Bhasin1, Dirmanto Jap1 and Thomas Peyrin1,2,3

1 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
sbhasin@ntu.edu.sg,djap@ntu.edu.sg,thomas.peyrin@ntu.edu.sg

2 School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore,
Singapore

3 School of Computer Science and Engineering, Nanyang Technological University, Singapore,
Singapore

Abstract. To protect against side-channel attacks, many countermeasures have been
proposed. A novel customized encoding countermeasure was published in FSE 2016.
Customized encoding exploits knowledge of the profiled leakage of the device to
construct an optimal encoding and minimize the overall side-channel leakage. This
technique was originally applied on a basic table look-up. In this paper, we implement
a full block cipher with customized encoding countermeasure and investigate its
security under simulated and practical setting for a general purpose microcontroller.
Under simulated setting, we can verify that customized encoding shows strong
security properties under proper assumption of leakage estimation and noise variance.
However, in practical setting, our general observation is that the side-channel leakage
will mostly be present even if the encoding scheme is applied, highlighting some
limitation of the approach. The results are supported by experiments on 8-bit AVR
and 32-bit ARM microcontroller.

Keywords: side-channel attacks, software countermeasures, customized encoding,
block cipher implementation, microcontroller

1 Introduction
Side-channel attacks (SCA) have been shown to bypass even a theoretically secure cryp-
tosystem, simply by attacking the vulnerability of a cryptographic implementation on
a real device [Koc96]. They have been widely investigated and are now considered a
serious threat, especially against any security device which solely relies on the theoretical
security. Thus, an ever-increasing need to protect confidential data has motivated research
on side-channel countermeasures that could reduce (or eliminate) the leakage exploitation
of the data.

These countermeasures can be mainly classified into two categories, namely, masking
and hiding countermeasures [MOP07]. In hiding countermeasures [TV04], the designer
tries to hide the dependencies between the processed data and the side-channel leakage,
by altering (or balancing) the side-channel leakage characteristics. Masking countermea-
sures [GP99] use a random number for side-channel protection: the designer tries to mask
the intermediate value by introducing a random element into the sensitive computation
and thus, even if side-channel leakage can be observed, it corresponds to the randomized
computation which makes the sensitive data hard to deduce. This paper focuses on hiding
countermeasures specially designed for software (or microcontroller) environment.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2017-06-01, Accepted: 2017-08-01, Published: 2017-09-19

https://doi.org/10.13154/tosc.v2017.i3.108-129
mailto:sbhasin@ntu.edu.sg, djap@ntu.edu.sg,thomas.peyrin@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 109

1.1 Related Works

Regarding software hiding countermeasures, there have been several novel proposals. The
first hiding countermeasure in software was proposed by Hoogvorst et al. [HDD11]. In their
work, they used the principle of dual-rail precharge logic (DPL [TV04]), i.e. a hardware
hiding countermeasure, and modified it to suit software implementations, in order to
balance the leakage of the data. Then, Rauzy et al. [RGN13] reported the first practical
encoding implementation of PRESENT cipher using bit-slice method on assembly instructions.
In this case, each bit is encoded with its negation (typically 1 will be processed as 01 and 0
will be processed as 10). Later, Chen et al. [CESY14] proposed assembly-level protection
by balancing the number of 1s and 0s in each instruction. For example, if the processed
data is a0a1...an, it will be encoded to a0ā0a1ā1...anān. The difference with previous
approach is that here, multi bits could be used, whereas in previous approach, it is bit-slice
method, processing only 1 bit, and replicated into several bits. Finally, at FSE 2016, it
was shown that previous works on encoding countermeasures have neglected to take into
consideration that each bit processed might not have the same leakage, and thus, there will
be some residual exploitable leakage [MSB16]. They then proposed to perform a stochastic
characterization on the leakage of the device, and based on the leakage characteristics,
construct an optimal encoding scheme which could minimize the variance of the leakage in
general. In fact, authors in [RGN13] and [CESY14] also observed that there are different
leakage characteristics for different bits in a byte. However, their encoding did not take
this imbalance into consideration and this was only dealt with in [MSB16]. Recently, these
encoding schemes were also shown to have good fault resistance properties [BJB16, BH17],
which makes them interesting candidates for combined countermeasures.

Our Contributions: In this paper, we investigate the claims from [MSB16], and we will
refer to their countermeasure as customized encoding. Our investigation is done on the
encoding properties in a simulated setting, followed by a comprehensive analysis with real
measurements from a general purpose microcontroller. Moreover, we also expand this
previous work, which only verified the results on a memory look-up operation, to a full
cipher implementation. The contributions of our paper is therefore as follows:

• We performed the evaluation of the customized encoding countermeasure proposed in
[MSB16]. We have performed the profiling and the implementation of the encoding
countermeasure on practical settings. Our results show that in general, the leakage
can still be observed and in practice, it is hard to implement the customized encoding
countermeasure.

• We highlight the drawbacks of the approach for practical implementations, and in
particular the difficulties in performing accurate profiling of the device which causes
a compromise on the encoding. Besides, the encoding countermeasure is shown to
be restricted on the setup used, which can not generalize to other settings. These
difficulties and restrictions for the encoding countermeasure can be observed from
the results that using different registers, targeting different operations, or different
points in time, that deviates from one used for the profiling can lead to a leakage.

Our paper is structured as follows: in Section 2, we provide a brief summary of the
customized encoding countermeasure. Then, in Section 3, we describe the standard methods
used for side-channel evaluation. In Section 4, we provide the theoretical evaluation results,
followed by practical results on the tweakable block cipher SKINNY in Section 5 and further
investigations on different platforms in Section 6. We eventually discuss our findings in
Section 7 and conclude the paper in Section 8.

110 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

2 Introduction to Customized Encoding
At FSE 2016, Maghrebi et al. [MSB16] proposed a customized encoding countermeasure
built according to the precise leakage model based on a stochastic profiling. This method
takes advantage of the adversary’s knowledge of the physical leakage. In their work, the
main objective is to choose the corresponding optimal encoding that balances (or minimizes)
the variation in the side-channel leakage. This approach contrasts with previous encoding
methods, as they were based on the assumption of the Hamming Weight (HW) leakage
model, which, in practice, might not necessarily hold. Under imperfect HW leakage model,
other encoding countermeasure will leak exploitable side-channel leakage and compromise
the security of the implementation. Thus, the work in [MSB16] aims to address this issue
and the encoding is designed by first estimating the actual leakage model observed from
the device and then optimizing the encoding function selection based on this estimation.

The side-channel leakage is normally dependent on the device and the operations
performed. For the case of software or microcontroller, it can often be observed that there
might be a slight variance when measuring the leakage across different registers (although
in [MSB16] the authors argued that the variance of the leakage in different registers is not
very significant).

In general, the theoretical leakage can be modeled based on the processed intermediate
values and thus the side-channel leakage can be formulated as follows:

T (x) = L(x) + ε, (1)

where L is the device specific leakage function that maps a deterministic intermediate
value (x) processed in the register to its respective side-channel leakage, and ε is the
(assumed) mean-free Gaussian noise (ε ∼ N(0, σ2)). A commonly used leakage function for
microcontrollers is the HW model or, more recently, the n-bit stochastic representation. For
example, in an 8-bit microcontroller, the leakage can be represented as L(x) = β0 + β1x1+
.... +β8x8, where xi is the ith bit of the intermediate value, and βi is the ith bit weight
leakage for a specific register [SLP05]. For the HW model, β1 to β8 are considered to be
unity. However, in reality, due to several physical device parameters, β will deviate from
unity. For the remaining of the paper, we will use the stochastic representation when
dealing with the leakage profiling of the device.

The deterministic part of the leakage can then be determined as L̃ = A · β, where
A = (xi,j)1≤i≤N ;0≤j≤n, with ~xi as a row element of A and N denotes the number of
measurements. Here, A is the matrix of the intermediate value from N measurements.
Taking example from 8-bit microcontroller earlier, the ith row can be represented as [1 x1
... x8], where n = 8. We can then determine β = (βj)0≤j≤8 based on the set of traces T,
as follows:

β = (ATA)−1ATT. (2)

After the profiling phase of the device, the weight leakages β coefficient of the device can
be estimated, and then the encoding function can be computed, based on the method
from [MSB16] shown in Algorithm 1. The algorithm can be summarized as follows: from
the codewords space, calculate the hypothetical leakage based on estimated β coefficients,
sort and determine which set minimizes the leakage difference among the codewords in the
set.

After the algorithm returns the encoding function, the mapping from the original
value to its corresponding codewords can be represented as a look-up table or a memory
look-up in the case of a microcontroller implementation. The encoding function is shown
to be optimum, as it minimizes the variance of the side-channel leakage assuming that
the hypothetical β coefficients are estimated correctly. The hypothetical leakage, based
here on the stochastic profiling, assumes that each bit is processed independently of the
others and might not leak equally. Since different registers might leak differently, it might

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 111

Algorithm 1: Selection of the optimal encoding function [MSB16].
Input :m: the codeword bit-length, n: the sensitive variable bit-length, βi: the

leakage bit weights of the register, where i in [[1,m]]
Output : 2n codewords of m-bit length

1 for X in [[0, 2m − 1]] do
2 Compute the estimated power consumption for each codeword X and store the

result in table D: D[X] = Σmi=1βiX[i];
3 Store the corresponding value of the codeword in the index table I : I[X] = X;
4 Sort the estimated power consumption stored in table D and the index table I

accordingly
5 for j in [[0, 2m − 2n]] do
6 Find the argmin of [[D[j]−D[j + 2n]]];
7 return 2n codewords corresponding to [[I[argmin], I[argmin+ 2n]]]

be necessary to generate different encoding functions for different registers, or to restrict
the usage only to the profiled register.

In Table 1, an illustration is provided to show how encoded memory access is done.
In this case, an operation between two words (could be the XOR operation or a SBox
look-up), each encoded in 7 bits, is performed using the customized encoding. Note that it
might be hard to implement directly an encoding with codewords of longer length, such
as mapping from a nibble to a byte, since the tables will grow quadratically with the
length of the code. Hence, the authors of [MSB16] proposed to encode a n-bit variable as
two separate halves for any operation with two operands. Indeed, the encoding function
does not preserve the algebraic property of the original data, and hence the look-up table
alternative has to be used.

Table 1: Encoded memory access [MSB16]

Instruction
1 // R3 = table_msb, R4 = table_lsb, R5 = shift1_table, R6 = shift7_table
2 // R0 = operand MSB = 0xxxxxxx, R1 = operand LSB = 0yyyyyyy
3 LDRB R2, [R5,R0] // R2 = 00000000xxxxxxx0
4 EOR R0,R0,R0 // Clear R0
5 LDRH R0, [R6,R2] // R0 = 00xxxxxxx0000000
6 EOR R0,R0,R1 // R0 = 00xxxxxxxyyyyyyy
7 EOR R1,R1,R1 // Clear R1
8 EOR R2,R2,R2 // Clear R2
9 LDRB R1, [R3,R0] // R1 =table_msb[operand] (7 bits)
10 LDRB R2, [R4,R0] // R2 =table_lsb[operand] (7 bits)

From [MSB16], it is claimed that the customized encoding countermeasure can reduce
the leakage close to minimal, based on a security evaluation that was conducted by the
authors. This evaluation also indicated that the countermeasure is harder to attack
than first-order masking. Moreover, their practical assessment also confirms the possible
capability of their countermeasure to protect the cryptographic operations.

3 Side-Channel Evaluation Methods
In this section, we quickly recall the side-channel evaluation tools that we will use in the
rest of the paper. As mentioned earlier, if all assumptions hold, the generated customized

112 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

encoding function can minimize the side-channel leakage, and thus increase the difficulty
for the attacker to recover the secret key. To perform the evaluation, we considered the
two most commonly used methods: the Correlation Power Analysis (CPA) and the Test
Vector Leakage Assessment (TVLA). We used TVLA to test presence of any side-channel
leakage, and CPA to verify if indeed the leakge is exploitable or not.

3.1 Correlation Power Analysis (CPA)
In [KJJ99], Kocher et al. proposed a Power Analysis Attacks based on the Difference
of Means (DoM). The attack is done using a divide and conquer approach, where the
attacker chooses one block of the data and performs the attack on this smaller subspace.
In block ciphers, one of the main target is usually the output of a non-linear operation
after the round key addition in the initial stage (for decryption) or the input of non-linear
operation before the post key-whitening in the last stage (for encryption). The attacker
then measures the side-channel leakage corresponding to the operation. Since the key
subspace is smaller (only one round or less is computed from the target), the attacker can
then calculate the hypothetical value based on different key hypothesis. He then computes
one bit of the hypothetical value and computes the mean of different classes (0 or 1) from
the leakage. The correct key hypothesis will then lead to the highest difference, since for a
wrong hypothesis, the means of different classes will be more or less random, and hence
the difference will tend to move towards 0.

This approach was then expanded to different leakage functions with multiple bits, by
Brier et al. [BCO04], called Correlation Power Analysis (CPA). The authors proposed an
improved attack based on a generic leakage model like the hamming weight (HW) model
and using Pearson correlation as a distinguisher. It can be formulated as follows:

r =
∑N
i=1(hi,k − h̄k)(ti,j − t̄j)√∑n

i=1(hi,k − h̄k)2 ∑N
i=1(ti,j − t̄j)2

, (3)

where ~tj = {t1,j ,, tN,j} and ~hk = {h1,k, ..., hN,k} are the side channel measurements at
point in time j and the hypothetical value for key hypothesis k. The values t̄j and h̄k denote
the mean value of ~tj and ~hk respectively. The higher |r| is, the stronger the correlation
coefficient and the linear relationship between the hypothesis and the measurements. Later,
it was also shown that the stochastic model [SLP05] can be used as an alternative leakage
model to HW for CPA, in order to obtain more precise estimations of the leakage.

3.2 Leakage Detection
Feature selection is often done as a pre-processing step before SCA evaluation. It involves
in identifying interesting features (or time-samples) and continue the evaluation only with
selected subset. It helps to accelerate the attack as well as avoid ghost peaks from irrelevant
sections of the trace. We use Normalized Inter-Class Variance (NICV [BDGN13, SGV08,
PRB09]) for feature selection. It is computed as:

NICV = V{E{T |X}}
V{T}

, (4)

where T denotes a side-channel trace and X is the public parameter (plaintext/ciphertext),
used to partition the traces. E{.} and V{.} are statistical expectation and variance. NICV
is bounded in the range [0, 1]. The key advantage of NICV is that it does not depend on
the underlying leakage model but only on public input or outputs.

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 113

3.3 Test Vector Leakage Assessment (TVLA)
Comparing different implementations for SCA resistance is a tricky task. This is even
harder when dealing with protections, as protection schemes are designed to alter the
leakage behaviour. Effectiveness of a CPA (or SCA in general) depends on three principle
components: measurement quality, leakage model and statistical test. In our study, the
measurement quality can be considered constant as the same setup is used. The leakage
model has a very high dependence on the underlying implementation and on the target
platform or device. Countermeasures which modify leakage behavior actually impacts the
leakage model. Any SCA countermeasure tries to invalidate standard leakage models. In
the case of encoding, the countermeasure tries to nullify the leakage by balancing data bits.
The same restriction applies on the statistical test also known as distinguisher. A simple
distinguisher like correlation (CPA [BCO04]) is best when targeting a linear leakage. As
encoding does not modify the leakage moments, CPA can be considered a good choice.
For fair evaluation, the dependence on the leakage model should be carefully dealt with or
rather removed. This brings in leakage detection techniques.

A leakage detection test investigates the presence of data-dependent leakage in side-
channel measurements. We use Test Vector Leakage Assessment (TVLA [GJJR11]) as
a leakage detection technique. TVLA checks for any first-order leakage in the captured
traces without any assumption on the implementation or leakage model. We apply the
non-specific fixed vs random test as proposed in [GJJR11]. The non-specific TVLA checks
if the leakage from a cryptographic implementation depends on the plaintext (i.e. data
dependency), without any assumption on the internal states of the cipher. Measurements
are captured in two groups for the same secret key: fixed plaintext and variable plaintext.
A null hypothesis is assumed to test if the two sets are identical using a Welsh T-test. If
the absolute value of the T-test is >4.5 (i.e. null hypothesis is rejected), then it indicates
the presence of data-dependant leakage in side-channel traces. The measurement procedure
for a device under test is as follows:

• Step 1: Capture N side-channel measurements for a fixed key and variable plaintext.

• Step 2: Compute the mean µr and standard deviation σr for these traces.

• Step 3: Capture N side-channel measurements for a fixed key and fixed plaintext.

• Step 4: Compute the mean µf and variance σf for these traces.

• Step 5: Compute the T-test: T = µr−µl√
σ2
r+σ2

f
N

4 Simulation Analysis on the Impact of Noise on Balance
Encoding

We perform simulation analysis for customized encoding with different variation of β
coefficients and noise variances. The experiments are performed on a standard 8-bit AVR
microcontroller manufactured in 350 nm technology node. An 8-bit stochastic model is
used for profiling [SLP05].

The side-channel traces are captured while running a standard AES assembly implemen-
tation. In general, based on the profiling phase, there are three main sources of leakage in
the look-up table implementation: the loading of the input (8-bit data) from the memory
into the register, the loading of output value from the SBox look-up table and finally,
storing back the output value into the memory (8-bit output). The approximated noise
variances recorded were around 5.5 - 6.8 from multiple different time samples. Similarly,
the variances of β coefficients across different time samples could vary between 0.2 - 0.8.

114 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

For simulation, 2 different β coefficients are chosen such that var(β) are 0.5, and 1.
The variance of the noise is tested in range from 0.1 to 8 with an increment of 0.1. With
the previously mentioned parameters, we tested the effectiveness of customized encoding,
by applying the encoding function on 4 bit input. Codewords with length between 5
to 10 for customized encoding were generated according to Algorithm 1. For sake of
comparison, the software dual-rail equivalent [CESY14] was also implemented. Note that
all the implementations are compared under TVLA methodology.

0 2 4 6 8
0

100

200

300

400

500

600

700
variance of betas: 0.50

Noise Variance

t−
te

st
 v

al
ue

Unprotected
SW−DR
5−bit
6−bit
7−bit
8−bit
9−bit
10−bit

(a) var(β)= 0.5

0 2 4 6 8
0

100

200

300

400

500

600

700

800
variance of betas: 1.00

Noise Variance

t−
te

st
 v

al
ue

Unprotected
SW−DR
5−bit
6−bit
7−bit
8−bit
9−bit
10−bit

(b) var(β)= 1

Figure 1: TVLA results for unprotected and countermeasure (5 to 10 bits encoding and
software dual-rail (SW-DR)) with different β variances.

Fig. 1 highlights the (absolute) TVLA results. An implementation is considered to
be leaking data-dependant information if the t-value crosses the ± 4.5 threshold (as
proposed in [GJJR11] is derived from Student t-test in order to obtain the confidence level
0.99999). From the figure, we can observe that in general, the customized encoding from
[MSB16] perform better than the software dual-rail countermeasure. Moreover, longer
encodings are more effective in reducing the leakage. Software dual-rail worsens when the
β coefficient variance increases (i.e. when the actual leakage model deviates highly from
HW assumption). In order to have a better overview of the performances, we also include
the results for 8-bit and 10-bit encoding separately in Fig. 2. We can observe the trend
that the leakage is highly dependent on the length of the encoding scheme and the noise
trade-off. In order to reduce the effect of the noise, longer codewords are needed, which
might be a limitation for 8-bit architecture. These simulation results are in line with the
results presented in [MSB16].

Based on the figures, the encoding function with 8- to 10-bit length codewords should
theoretically be enough to reduce any exploitable side-channel leakage, under the observed
noise variance from the AES traces. This shows that even for 8-bit architecture, and with
reasonable noise level (around 5.5 - 6.8), the customized encoding is capable of protecting
against the leakage. Thus, if all the assumptions are met, it can indeed prevent exploitable
first order leakage, as highlighted by the TVLA results.

5 Experimental Study on SKINNY

After verifying the theoretical soundness of the customized encoding countermeasure in
simulated setting, we now analyze it on real target. Since we are interested in testing longer
encoding, AES might not be an ideal candidate. Moreover, for the customized encoding
method, not many ciphers can easily be implemented due to some restrictions, such as the
fact that only one register is profiled. Therefore, we decided to use SKINNY [BJK+16] as

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 115

0 2 4 6 8
0

10

20

30

40

50

60

70

80

90

100
design: 8 bit

Noise Variance

t−
te

st
 v

al
ue

beta: 0.05
beta: 0.25
beta: 0.5
beta: 0.75
beta: 1

(a) 8-bit encoding

0 2 4 6 8
0

5

10

15

20

25

30

35

40
design: 10 bit

Noise Variance

t−
te

st
 v

al
ue

beta: 0.05
beta: 0.25
beta: 0.5
beta: 0.75
beta: 1

(b) 10-bit encoding

Figure 2: TVLA results for 8 to 10-bit encoding schemes with different noise levels

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 3: Illustration of one round of SKINNY [Jea16]

testing algorithm owing to its lightweight nature and bit-slice friendly design.

5.1 The SKINNY cipher
SKINNY is lightweight tweakable block cipher proposed at Crypto 2016 [BJK+16], as a
competitor to NSA’s SIMON in terms of performance. For software and microcontroller
situations, it has a good efficiency and outperforms other known ciphers in term of
performance. One round of SKINNY is highlighted in Fig. 3 and consists in the following
operations: SubCells, AddConstants, AddRoundTweakey, ShiftRows, and MixColumns.
For more information about the cipher, one can refer to [BJK+16].

For the SubCells operation, which is the operation that interests us here, if x0, x1, x2 and
x3 represent the four inputs bits of the SBox (x0 being the least significant bit), one simply
applies the following transformation: (x3, x2, x1, x0) → (x3, x2, x1, (x0 ⊕ ((x3 ∨ x2)))),
followed by a left shift bit rotation. This process is repeated four times, except for the last
iteration where the bit rotation is omitted.

5.2 The SKINNY implementation
In our experiments, we applied the customized encoding for implementing SKINNY on a
8-bit AVR microcontroller. We started with a bit-slice implementation of SKINNY written
in AVR assembly language. The code is downloaded on a Arduino UNO microcontoller
board running with a clock frequency of 16 Mhz. The board is modified to allow EM and
power measurements. For measuring the traces, Lecroy WaveRunner 610zi oscilloscope is
used at a sampling rate of 10 GSamples/s. The probe is positioned over the chip with the
package mechanically opened, and the probe position is heuristically determined first by
trial and error, and later verified by some test attack code for measurement correctness.

Since the encoding does not preserve the algebraic structure of the data, all the
operations are implemented using look-up tables. The input length increases with the size

116 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

of the encoding (especially when concatenating 2 encoded inputs, x1||x2, for the look-up
table input). In order to fit it within the frame of a 8-bit microcontroller, we used a
bit-slice implementation where each bit is encoded on 4 bits (hence the concatenation will
only take 8 bits). Note that we also chose the cipher SKINNY because its implementation
only requires two logic operations, XOR and NOR, which makes it easier to apply the
customized encoding.

5.3 Obtaining the β values
Using the stochastic approach, we first profiled the value for the β coefficients at different
points in time. Since, we had already profiled the target 8-bit AVR microcontroller for
an AES SBox look-up in the previous study under simulated setting (see Sec. 4), we use
the same β coefficients. Indeed, any 8-bit operation can be potentially used for profiling.
Since we target a 8-bit microcontroller and the AES SBox look-up table (LUT) is also over
8-bits, it forms a good match for the profiling phase. For the experiments, we focused on
the Load (LD) and Store (ST) operations in the assembly. Thus, we modified our code as
follows:

• trigger starts
• 20 NOPs
• LD from look-up table (X register)
• 20 NOPs
• ST back to memory (Z register)
• 20 NOPs
• end trigger

The measurements are taken using a high-sensitivity electromagnetic emanation (EM)
probe, to capture localised sensitivity activity over a pre-determined target area. Several
No Operation (NOP) instructions were included because in initial observation during the
analysis, even though LD and ST operations are supposed to take only 2 clock cycles each,
the leakage can still be observed several clock cycles later (shown as decaying trend in
Fig. 4a, which might be attributed to the probe used for the experiments). Thus, the
NOPs are added to isolate different operations from each other.

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

Points in Time

N
IC

V

a1 a2

(a) Region of Interest

2000 4000 6000 8000 10000 12000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Points in Time

C
or

re
la

tio
n

(b) CPA results

Figure 4: Feature selection for β.

We have performed a feature selection (NICV) in order to identify the region of interest,
which is highlighted in Fig. 4a. There are two main sources of leakages corresponding

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 117

to SBox output, the loading of the input (8-bit data) from the memory into the register,
and storing back into the memory (8-bit output). To reconfirm this, we performed CPA
and we can see from Fig. 4b that there are some time regions that are highly correlated
with the SBox LUT (which can be the Load and Store from memory to register and
vice versa). Both figures show consistency in the choice of features for constructing the
encoding scheme. We performed the profiling for the LD operation, and measured two
profiling sets, in order to check the consistency of the results.

We then constructed the codewords based on these β values using Algorithm 1. One of
the issues with the encoding scheme is the time selection for the β coefficients. As β values
vary with time, it is not clear which β values to consider. In [MSB16], the authors proposed
to take the average of β values over all time samples where the attack successes. Here, we
first choose two points with the highest correlation (denoted as a1 and a2 respectively)
from Fig. 4. We then took the average of the β coefficients for 2 clock cycles around these
points, generating two independent sets of β coefficients.

We first start by testing the reference implementation. We measured the EM traces
when the device was processing the (x0 ⊕ ((x3 ∨ x2))) operation from the SKINNY SBox.
To compute TVLA, 25k traces for both fixed and variable plaintexts were collected. We
note that since everything is computed using look-up tables, the implementation can be
quite large. For instance, the SKINNY implementation, with 1-bit datapath, reports 6.3 kB
code size and 1.5 kB memory size, and around 400k clock cycle count on AVR architecture.

Another restriction is that since we only did profiling on a single register (r16 in this
case), all the computations will be restricted to and have to be performed on that register.
In Table 1, it uses several registers, but since our profiling is restricted to r16, to deal
with operation with two inputs, we have to keep storing and loading the operand from
the memory. We can use other registers as well, but only for processing non critical data,
such as storing and loading constant values. We also repeated the experiments with r17 to
confirm the consistency of the results.

In Fig. 5a, we show the test result of the unprotected implementation (which is also
based on a look-up table, where the table is based on the identity mapping instead of
encoding function). As can be seen, there are observable leakages at different points in
time (T-test value largely out of the TVLA threshold bounds). The only non-leaking part
is the NOP operation (inserted after the trigger, so the trigger leakage would not affect
the actual operations). For better understanding, the various operations are highlighted in
the figure. Similarly, the results from the constant weight countermeasure, or the software
dual rail, is also presented in Fig. 5b. The software dual-rail does not result in a major
leakage reduction and thus fails in the current scenario. As from previous characterization,
we know that the device does not present a perfect HW leakage, the software dual-rail
countermeasure is thus ineffective.

Next, we test the protected version obtained by customized encoding constructed with
previously determined β coefficients values. In Fig. 6a, we provide the test results on the
encoded implementation on profiled register (r16), which is based on β value approximated
at average around sample a1. A reduction in leakage due to the customized encoding can
be observed, however, the leakage still remains above the ± 4.5 threshold. This confirms
the fact that customized encoding turns out to be more effective than software dual-rail,
by taking the β coefficient into account. The leakage observed is mainly present during the
NOR operation, which leaks during nibble shift operation (when swapping the data from
(encoded) low nibble to (encoded) high nibble in the beginning before the NOR operation).
This is an important observation. As a complex cryptographic algorithm will be composed
of several distinct instructions, it is hard to consider all the instructions in a single
encoding. As the encoding was built on profiled LD instruction, we managed to suppress
its leakage compared to other instructions. These reductions can be observed from LD of
the second operand (x2), from the XOR operation, LD of the second operand (x0) and

118 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

2000 4000 6000 8000 10000

−100

−50

0

50

100

Point in Time

T
−

te
st

 V
al

ue

Unprotected

NOP LD NOR XOR ST

(a)

2000 4000 6000 8000 10000

−100

−50

0

50

100

Point in Time

T
−

te
st

 V
al

ue

Dual Rail

NOP LD NOR XOR ST

(b)

Figure 5: TVLA on unprotected and software dual-rail. The red lines indicate the upper
and lower limits of the TVLA threshold (± 4.5).

LD from the XOR LUT. However, other instructions do not follow this encoding and still
continue to leak.

2000 4000 6000 8000 10000

−100

−50

0

50

100

Point in Time

T
−

te
st

 V
al

ue

Encoding

NOP LD NOR XOR ST

(a) r16

2000 4000 6000 8000 10000

−100

−50

0

50

100

Point in Time

T
−

te
st

 V
al

ue

Other Register

NOP LD NOR XOR ST

(b) r17

Figure 6: TVLA on encoding a1. The red lines indicate the upper and lower limits of the
TVLA threshold (± 4.5).

Using a different register. Another important fact to consider is the use of differ-
ent registers, A microcontroller contains several general purpose registers. Due to the
complexity of the cryptographic operations, it is often hard to limit the code to use a
single register. We analyze the customized encoding under such scenario. The customized
encoding was developed based on profiling register r16. Now, we analyze the impact if
this encoding uses another register for processing the data. Since another register will
have some physical differences from the profiled one, the β coefficient will be different,
leading to incompatibility with the constructed encoding. In Fig. 6b, we show the TVLA
result when encoding is profiled for one register (r16) but used on another register (r17). A
practical setting of such scenario will be when two sensitive operands in different register
are operated upon, and encoding can only abide by one of them. From the figure, we
can see that there are more leakages from r17 version when compared to the profiled
register r16. Hence, we can say that the encoding countermeasure requires a very
specific profiling and for different registers, different encoding functions have
to be constructed. This limits the application of encoding in complex implementations.

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 119

For encoding a1, we can observe that the encoding can help to reduce the leakage, also if
compared to the unprotected version, albeit with still exploitable side-channel leakage.

Using a different point in time. In the next experiment, we highlight the problem of
choosing β coefficient. Recall that two different customized encodings were constructed
from leakage points a1 and a2 for LD using r16. Since LD instruction leaks over several
cycles, we chose a1 and a2 from different cycles and constructed two encodings by averaging
β values over one clock cycle each. Previous experiments showed that encodings built over
a1 provide good leakage reduction. We repeated the same experiment on an encoding
constructed with a2. The TVLA results are given in Fig. 7, which shows a much higher
leakage than the encoding over a1. Thus, it is crucial to select good β values, but the
guidelines for selection are unknown. One dominant reason which makes one encoding
more or less efficient than the others is because when a microcontroller leaks, it leaks from
several resources like registers, data bus, instruction bus, memory etc. The encoding is built
on a single register, so when the leakage is dominant from register r16 and the encoding is
built on it, the leakage reduction is significant. However, in following instructions (a2 in
this case), other resources might be leaking more than the original register, thus preventing
the encoding to be effective. For a perfect encoding countermeasure, one would
need to update the encoding function from one cycle to another. Such encoding
conversion might have sensitive leakage and would come at a significant cost overhead
anyway.

2000 4000 6000 8000 10000

−100

−50

0

50

100

Point in Time

T
−

te
st

 V
al

ue

Encoding

NOP LD NOR XOR ST

Figure 7: TVLA on encoding a2. The red lines indicate the upper and lower limits of the
TVLA threshold (± 4.5).

As the current experiments were unsuccessful to protect the cipher implementation,
for the next experiments in Section 6 we will consider restricting the analysis to each
individual operation. We expect to obtain a better understanding of the information
leakage from the encoding countermeasure.

6 Instruction Specific Evaluation on Practical Setup
The experiments in the previous section show that when a full cipher is implemented, it is
hard to balance the leakage across multiple operations. In this section, we concentrate
on a single instruction to explore the effectiveness of the encoding countermeasure. In
particular, we investigate the LD operation for the encoded SBox output. We use two
target devices, the AVR ATmega328p mounted on a Arduino Uno (8-bit architecture,
used in the previous experiments) and the ARM Cortex M3 on a Arduino Due (32-bit
architecture, for testing longer encoding function). The setup used are same as previous.

120 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

6.1 On AVR 8-bit microcontroller
We investigate the selection method for β coefficient used to generate the codewords for the
countermeasure. In [MSB16], the average is taken among different points in time during
the attack. For our experiments, since we are only concerned about the profiling of LD
operation, we used a similar approach.

6.1.1 Selection of β coefficients

The issues arising with the selection of appropriate β values has been already demonstrated
in the previous section, with different leakages for encoding based on point around a1 and
a2. Additionally, we also consider choosing only a single point for representing the leakage
of the operations, which in our case is the LD operation from the SBox:

• b1: we take the mean value for all the β coefficients for LD instruction from 2 clock
cycles (similar to [MSB16] and previous section), and

• b2: we take the β coefficients value from the highest correlation peak in the LD
instruction.

For evaluation, we considered a simple encoding function, which maps 4 bits to 8
bits codewords. We tested it on the PRESENT SBox LUT (any other non-linear 4x4 SBox
would do, but we had an existing PRESENT implemented in LUT, whereas for SKINNY
it is implemented in terms of algebraic operation). The assembly code for the encoded
implementation is similar to the one used for AES for profiling. However, we add an
additional step: before doing a table look-up, the input is encoded and the SBox look-up
is done on encoded input, while the table is updated with proper encoding to return the
encoded output. The rest of the code is similar to what we did before: after the trigger, we
perform 20 NOPs, LD from the memory (encoded value), 20 NOPs, and ST the (encoded)
value to the memory.

0.5 1 1.5 2
x 10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(a) encoding b1

0.5 1 1.5 2
x 10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(b) encoding b2

Figure 8: CPA on encoded traces, blue line indicating correct key hypothesis and red lines
indicating the wrong key hypotheses

We generate 2 different encoding functions, based on 2 different β coefficient values,
described earlier. These experiments are conducted based on 100k measured EM traces.
For this case, we do not use TVLA for evaluation because we do not implement a sufficient
number of round of the cipher and hence there is no diffusion of the data. Depending on
which input is used as fixed value, the TVLA plot might be biased.

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 121

From Fig. 8, we show the CPA results for both encoding functions, with blue line
indicating correct key hypothesis and red lines indicating the wrong key hypotheses. We
can see that for b1 encoding function, the correct key can not be distinguished from
wrong key hypotheses, whereas for b2 encoding function, the correct key can be clearly
distinguished, even with very few number of traces. Hence, the approach of using the
average of β coefficient seems to be the best that we can get. Although it works
well for one instruction, it was shown in previous section that a full cipher is hard to
protect.

0.5 1 1.5 2
x 10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(a) b1

0.5 1 1.5 2
x 10

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(b) b2

Figure 9: Enhanced CPA on encoded traces, blue line indicating correct key hypothesis
and red lines indicating the wrong key hypotheses

3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Points in Time

C
or

re
la

tio
n

(a) encoding b1

3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Points in Time

C
or

re
la

tio
n

(b) encoding b2

Figure 10: Enhanced CPA on encoded 100k traces, blue line indicating correct key
hypothesis and red lines indicating the wrong key hypotheses

We then considered the enhanced CPA attack, which instead of using a generic HW
model, relies on the β coefficients learned by the attacker using a stochastic profiling. Once
the β coefficients are known, the attacker can estimate the encoding function and the
underlying codewords using Algorithm 1. In this case, the enhanced CPA assumes that the
attacker has knowledge of the correct β coefficients and thus a precise leakage function.

In Fig. 9, the results for enhanced CPA are shown for both encodings. We can see
that the correct key still can not be distinguished from the wrong key hypothesis for b1

122 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

encoding. The results for the enhanced CPA on all 100k traces are shown in Fig. 10. For
the encoding b1, the correct key does not leak during the LD operation, while encoding b2
has a dominant leakage. We do observe some residual leakage for b1, but that is suspected
as some residual leakage after the LD operation.

To further evaluate this result, we performed 10 different experiments for encoding b1.
Each experiment was conducted by modifying the placement of the EM probe. As the probe
position changes, the leakage characteristic changes as well, which impacts β coefficients
and thus the encoding functions. However, the result could not be repeated, as most of the
time (6 out of 10), the correct key can be recovered with sufficient number of traces (under
100k) even if similar procedure is used for determining the β coefficients and generating the
encoding function. In an extreme case, this might be seen as a drawback where designer
protects using encoding derived from one location, which turns out ineffective in another
location.

6.1.2 Evaluation on Different Side-Channel Information

A very common attack scenario is that where the designer deploys encoding based on EM
measurement profiling and the attacker uses power or vice versa. To further investigate,
we now perform a profiling using the same implementation, but with different side-channel
information, namely EM and power, captured in parallel. In Fig. 11c, we can see that
even with same codes and same scope setting, we observe different β coefficients for
different side-channel. Moreover, from Fig. 11, we observe that, even when using proper β
coefficients with respective side-channel leakage, the leakages are still present as indicated
by TVLA. Thus the impact of choice of β coefficients and methodology to choose it remains
an open question.

In this experiment, we used an EM probe with fairly large diameter, making the mea-
surements global in nature. Indeed, the prime objective was to demonstrate that encoding
won’t hold from power to EM measurements. However, a localized EM measurement can
potentially worsen the scenario.

6.1.3 Verification with Leakage Detection Test

To analyse encoding b1 and b2 with TVLA methodology, we switch back to SKINNY.
Further TVLA test are performed with 100k traces each. We target a LD operation in
a chosen middle round during the encryption process (round 12). In Fig. 12, the TVLA
plots for SKINNY LD operation are shown. In this case, similar trends can be seen, both of
the encodings can reduce the leakage, however, we can see that for all the cases, the TVLA
indicates that there is a first-order leakage, which might still be exploitable in different
way.

To summarize, from our experiments, it is shown that the customized encoding counter-
measure might protect against CPA (or enhanced CPA), however, when checking with the
TVLA, the test indicates that there is still leakage. This can be due to several factors as
stated previously, like leakages from other microcontroller resource (bus leakage or address
bit leakage) or the beta coefficients are not properly estimated.

6.2 On ARM 32-bit microcontroller
To further investigate, we analyze the encoding countermeasure on the ARM Cortex M3 on
a Arduino DUE, which is a 32-bit microcontroller. As observed under simulated settings,
longer encoding can further boost up the security. To evaluate the encoding countermeasure
on a longer length of codewords, which was not possible on a 8-bit architecture, we switch
to ARM Cortex M3. We conduct the experiments in similar manner as described earlier.

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 123

1 2 3 4 5
x 10

4

−40

−30

−20

−10

0

10

20

30

40

Points in Time

T
−

te
st

 V
al

ue

(a) TVLA EM

1 2 3 4 5
x 10

4

−40

−30

−20

−10

0

10

20

30

40

Points in Time

T
−

te
st

 V
al

ue

(b) TVLA Power

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

bit

β

power
EM

(c) β profiled EM vs power

Figure 11: Leakage profiling comparison: EM vs Power. (Upper Figures) The red lines
indicate the upper and lower limits of the TVLA threshold (± 4.5). (Lower Figure) The β
coefficients obtained from EM and power under the same setup.

500 1000 1500 2000 2500
−60

−40

−20

0

20

40

60

Points in Time

T
−

te
st

 V
al

ue

(a) encoding b1

500 1000 1500 2000 2500
−60

−40

−20

0

20

40

60

Points in Time

T
−

te
st

 V
al

ue

(b) encoding b2

500 1000 1500 2000 2500
−60

−40

−20

0

20

40

60

Points in Time

T
−

te
st

 V
al

ue

(c) unprotected

Figure 12: TVLA on SKINNY. The red lines indicate the upper and lower limits of the
TVLA threshold (± 4.5).

We first profile the device to obtain the β coefficients by profiling during a non-linear
operation.

To obtain the β for longer bit, we combine 2 SBoxes (PRESENT and AES) to get the β
coefficients for 12 bits. The leakage analysis of the traces is then shown in Fig. 13. In

124 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

the figure, the CPA input denotes the leakage when loading the input from the memory,
the CPA output denotes the loading of SBox output from the LUT into the register, and
NICV denotes model-independent input-based observable leakages.

2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

Points in Time

N
IC

V
/C

or
re

la
tio

n
[0

,1
]

CPA output
CPA input
NICVpos.1 pos.2

Figure 13: Profiling results on ARM, using CPA on the SBox input, CPA on the SBox
input, and NICV

As the size of the codewords increases, the resulting encoding, decoding and the size of
SBox lookup table increase as well. Due to memory limitation, only codes with length up
to 10 bits can be implemented on the device. For comparison, we used an unprotected
implementation, which is a standard 4-bit PRESENT SBox. We then chose a point of interest,
denoted as the peaks in Fig. 13 at NICV peak. The encoding is obtained by averaging the
β values over the clock cycle of the chosen point. We construct the codewords using the
customized encoding for 2 different positions, using similar approach as before.

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

No. of Traces

C
or

re
la

tio
n

(a) position 1

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

No. of Traces

C
or

re
la

tio
n

(b) position 2

Figure 14: Basic CPA with HW model

Fig. 14 illustrate the CPA results on 32-bit ARM microcontroller, with blue line
denoting the correct key and red lines denoting the wrong keys. In this experiment, we can
see that basic CPA using HW model can break most of the encoding scheme, where the
correct key is distinguishable, even with less than 1000 traces. This is less than the traces
required for the previous attack, which is using only 8-bit codewords. As the profiling
was limited to the last 12 bits due to the underlying complexity, the profiling might be

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 125

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(a) unprotected

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(b) customized encoding

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of Traces

C
or

re
la

tio
n

(c) HO customized encoding

Figure 15: Basic CPA with HW model assuming HO leakage, blue line indicating correct
key hypothesis and red lines indicating the wrong key hypotheses

2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Points in Time

C
or

re
la

tio
n

Figure 16: CPA on HO encoding with 100k traces, blue line indicating correct key
hypothesis and red lines indicating the wrong key hypotheses

inaccurate. However, it is hard to perform the exact 32 bits due to high complexity.

6.2.1 Analysis on Higher Order Leakage

In [HKSS12], authors report leakage from higher order (HO) β coefficients, which can
arise from coupling of individual bits. Neglecting such higher-order leakage can reduce
the precision of profiling. To investigate, we perform the stochastic approach with higher
order model, removing the assumption that the leakage for each bit is independent of
each other. Here, we only observe the leakage at the NICV peak, and we construct the
codewords for standard and higher order stochastic (upto degree 5, xi1 ...xi5). Degree
5 means considering impact of individual bits, pair wise, up to coupling of any 3, 4 or
5 bits together. Fig. 15 shows the CPA results, where we can see that in the encoding
based on HO model, the correct key cannot be distinguished, as compared against basic
customized encoding. However, when looking at CPA trace computed with all 80k traces
as in Fig. 16, we can see that there is a ghost peak, but the attacker still only need to
guess 1 more key candidate in order to guess the correct key. Hence, even HO-encoding
based countermeasure cannot necessarily prevent SCA leakage.

126 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

7 Discussion
From our experimental results, the general observation is that the side-channel leakage
will mostly be present even if the encoding scheme from [MSB16] is applied. A basic
CPA with HW leakage model proves to be sufficient for exploiting the leakage. In the
worst case, the correct key may not be top ranked, but it is always observed in the top
key candidates. Hence, key enumeration methods [VCGRS12] can be exploited for key
retrieval. The presence of this side-channel leakage can be explained by a few possible
issues, such as:

• The main problem is the estimation of β coefficients. The initial recommendation
was to take the average of the β from the period where the attack occurs [MSB16].
However, from the experiments, it can be observed that even if the profiling is done
following this advice, the implementation still shows some residual leakage. Thus,
one major question is how to exactly determine the β value when constructing the
look-up table for the operations. It might be attributed to the non-linear leakage, as
highlighted in the experiments earlier, where different bits are affecting each other,
or the bit transitions within the clock cycle may also be affecting the estimation.
Hence, the encoding requires a very strong assumption regarding the leakage, which
might not be practically achievable.

• It is hard to obtain a generic encoding which could protect against side-channel
leakage for different operations from different leakage sources. For a single instruction
such as LD, we show that this might be achievable on the profiled location. However,
from the experiment, we can see that the profiling done on the LD operation can
be broken by attacking other operations, such as NOR. Similarly, based on further
investigations, we show there could be leakage for other cases. It might be that the
β value was changing during different operations (which means that for different
point in time, different look-up tables had to be used). In theory, one could use
a dynamic encoding, which would adjust the encoding based on different leakage
point. However, one will have to design different look-up tables with every change of
instructions, data registers and memory address. Moreover, every conversion from
one encoding to another will have overhead. Thus,this will be very expensive and
inefficient. From the last experiment, we can see that even if the leakage is profiled
correctly using the proposed algorithm in a particular location, simply by moving
the measurement channel (power to EM), the encoding will totally change, rendering
the protection ineffective.

Although the idea of customized encoding is sound and works well under simulated
environment, there are several practical assumptions which are not easily achievable. For
the encoding to be implemented, it needs to be done using look-up table. However, a look-
up table implementation has been shown to be prone against cache timing attack [Ber05].
Similarly, since everything has to be done using a look-up table, with the growing length of
the encoding, the memory required as well as the execution time will be increased as well.
In our experiment with SKINNY (which is supposed to be lightweight), we need around
400k clock cycles for each encryption and 1.5 kB for RAM, which make the implementation
impractical and inefficient for many applications.

One of the advantages of the encoding scheme is explained in [BH17], where the authors
show that the encoding provides resistance against fault attack along with (theoretical)
side-channel protection. They construct efficient codes that are capable of protecting the
underlying computation. They also provide practical experiments, showing noticeably
better fault resistance properties. Another potential application of customized encoding is
to be used as a noise generator for masking countermeasures as in mentioned in [KdSP+16].

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 127

However, at high β coefficients variance, short encoding length or dual-rail might be as
leaky as unprotected (see Fig. 1), due to the hardness to balance the leakage.

In summary, the issues encountered in the customized encoding are based on precise
relation between β coefficients and actual device physics, which is a high-level estimation
at best. The estimation works well for exploitation. However, for protection, one of the
main issue is the selection of β coefficients for the encoding. More understanding in this
direction may help to design better codes in the future.

8 Conclusion
In this paper, we have investigated the customized encoding from [MSB16] proposed as
software countermeasure for side-channel attacks. We shown through simulations that
assuming the leakage is properly characterized, the encoding function can be resistant
against first order attack. However, as shown by our practical experiments, several
assumptions will not hold true rendering the protection ineffective. Some of the issues
identified were related to temporal and spatial variance of β values, due to which an effective
encoding is hard to construct. We have also implemented a full cipher using customized
encoding and demonstrated the practical shortcomings of the countermeasures on two
different microcontroller targets, demonstrating several test cases. Further investigation
on relationships between β values and device physics could help improve encoding based
countermeasures.

Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments. The
third author is supported by Temasek Labs (DSOCL16194).

References
[BCO04] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis

with a Leakage Model. In CHES, volume 3156 of LNCS, pages 16–29. Springer,
2004. Cambridge, MA, USA.

[BDGN13] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Nicv:
Normalized inter-class variance for detection of side-channel leakage. Cryp-
tology ePrint Archive, Report 2013/717, 2013. http://eprint.iacr.org/
2013/717.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.

[BH17] Jakub Breier and Xiaolu Hou. Feeding two cats with one bowl: On designing a
fault and side-channel resistant software encoding scheme. In RSA Conference
Cryptographer Track (CT-RSA 2017), pages 1–18, Feb 2017.

[BJB16] Jakub Breier, Dirmanto Jap, and Shivam Bhasin. Mistakes are proof that
you are trying: On verifying software encoding schemes’ resistance to fault
injection attacks. Cryptology ePrint Archive, Report 2016/932, 2016.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny
family of block ciphers and its low-latency variant mantis. Cryptology ePrint
Archive, Report 2016/660, 2016.

http://eprint.iacr.org/2013/717
http://eprint.iacr.org/2013/717

128 Practical Evaluation of FSE 2016 Customized Encoding Countermeasure

[CESY14] Cong Chen, Thomas Eisenbarth, Aria Shahverdi, and Xin Ye. Balanced
Encoding to Mitigate Power Analysis: A Case Study. In CARDIS, Lecture
Notes in Computer Science. Springer, November 2014. Paris, France.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation, September 2011. NIST
Non-Invasive Attack Testing Workshop.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis.
The "Duplication” Method. In CHES, LNCS, pages 158–172. Springer, 1999.
Worcester, MA, USA.

[HDD11] Philippe Hoogvorst, Jean-Luc Danger, and Guillaume Duc. Software Im-
plementation of Dual-Rail Representation. In COSADE, 2011. Darmstadt,
Germany.

[HKSS12] Annelie Heuser, Michael Kasper, Werner Schindler, and Marc Stöttinger. A
new difference method for side-channel analysis with high-dimensional leakage
models. In Orr Dunkelman, editor, Topics in Cryptology - CT-RSA 2012 -
The Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA,
USA, February 27 - March 2, 2012. Proceedings, volume 7178 of Lecture Notes
in Computer Science, pages 365–382. Springer, 2012.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[KdSP+16] Dina Kamel, Guerric de Streel, Santos Merino Del Pozo, Kashif Nawaz,
François-Xavier Standaert, Denis Flandre, and David Bol. Towards Securing
Low-Power Digital Circuits with Ultra-Low-Voltage Vdd Randomizers. In
Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security,
Privacy, and Applied Cryptography Engineering - 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings, volume
10076 of Lecture Notes in Computer Science, pages 233–248. Springer, 2016.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[MSB16] Houssem Maghrebi, Victor Servant, and Julien Bringer. There is wisdom
in harnessing the strengths of your enemy: Customized encoding to thwart
side-channel attacks. In Thomas Peyrin, editor, Fast Software Encryption -
23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers, volume 9783 of Lecture Notes in Computer
Science, pages 223–243. Springer, 2016.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of
second order differential power analysis. IEEE Trans. Computers, 58(6):799–
811, 2009.

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

Shivam Bhasin, Dirmanto Jap and Thomas Peyrin 129

[RGN13] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally Proved Security of
Assembly Code Against Leakage. IACR Cryptology ePrint Archive, 2013:554,
2013.

[SGV08] François-Xavier Standaert, Benedikt Gierlichs, and Ingrid Verbauwhede. Par-
tition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation
of Statistical Tests for Univariate Side-Channel Attacks against Two Un-
protected CMOS Devices. In Pil Joong Lee and Jung Hee Cheon, editors,
Information Security and Cryptology - ICISC 2008, 11th International Con-
ference, Seoul, Korea, December 3-5, 2008, Revised Selected Papers, volume
5461 of Lecture Notes in Computer Science, pages 253–267. Springer, 2008.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 30–46. Springer Berlin
Heidelberg, 2005.

[TV04] Kris Tiri and Ingrid Verbauwhede. A Logic Level Design Methodology for a
Secure DPA Resistant ASIC or FPGA Implementation. In DATE’04, pages
246–251, 2004. Paris, France.

[VCGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In International Conference on Selected Areas in
Cryptography, pages 390–406. Springer, 2012.

	Introduction
	Related Works

	Introduction to Customized Encoding
	Side-Channel Evaluation Methods
	Correlation Power Analysis (CPA)
	Leakage Detection
	Test Vector Leakage Assessment (TVLA)

	Simulation Analysis on the Impact of Noise on Balance Encoding
	Experimental Study on SKINNY
	The SKINNY cipher
	The SKINNY implementation
	Obtaining the values

	Instruction Specific Evaluation on Practical Setup
	On AVR 8-bit microcontroller
	On ARM 32-bit microcontroller

	Discussion
	Conclusion

