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B-1a cells are mainly generated from fetal liver progenitor cells, peri- and neonatally. The
developmental steps and anatomical sites required for these cells to become mature
B-1a cells remain elusive. We recently described a phenotypically distinct transitional
B cell subset in the spleen of neonatal mice that generated B-1a cells when adoptively
transferred. This, in combination with findings demonstrating that B-1a cells are lacking
in congenitally asplenic mice, led us to hypothesize that the neonatal spleen is required
for B-1a cell development. In accordance with previous reports, we found that B-1a
cell numbers were reduced in adult mice that had undergone splenectomy compared
to after sham surgery. In contrast, neonatal splenectomy led to peritoneal B-1a cell
frequencies comparable to those observed in sham-operated mice until 6 weeks after
surgery, suggesting that an intact spleen is required for B-1a cell maintenance rather
than development. To study the role of the prenatal spleen in generating B-1a cells,
we transferred fetal liver cells from pre-splenic embryos [embryonic age 11 (E11) days]
into splenectomized recipient mice. B-1a cells were generated in the absence of the
spleen, albeit at slightly reduced frequencies, and populated the peritoneal cavity and
bone marrow. Lower bone marrow B-1a cell frequencies were also observed both after
neonatal and adult splenectomy. These results demonstrated that B-1a cells could be
generated in the complete absence of an intact spleen, but that asplenia led to a decline
in these cells, suggesting a role of the spleen for maintaining the B-1a compartment.

Keywords: B-1 cells, transitional B cells, splenectomy, B cell progenitors, fetal liver

inTrODUcTiOn

Congenital asplenia, or splenectomy, leads to increased susceptibility to infections with encapsulated 
bacteria such as Haemophilus influenzae and Streptococcus pneumoniae (1, 2), but the causes for 
this are poorly understood. Antibody responses to the polysaccharide capsule [T-independent type 
2 (TI-2) antigens] on the surface of these bacteria are reduced in the absence of spleen (3–5) and 
lack of certain B cell subsets important in the early anti-bacterial response, including marginal zone 
B (MZB) cells, may be one reason for this (6). In addition, B-1a cells protect against encapsulated 
bacteria by constitutively secreting broadly reactive natural IgM antibodies (7, 8) and it was reported 
that removal of the spleen in adult mice leads to reduced B-1a cell frequencies, demonstrating that 
the spleen is either required for maintenance and/or for development of B-1a cells (3, 9–11). Further 
indications that the spleen is required for B-1a cell development came from analysis of mice with 
congenital asplenia due to absence of the Tlx1 (Hox11) gene since, in these mice, B-1a cells were 
essentially absent. The underlying mechanisms for the lack of B-1a cells under asplenic conditions, 
however, remain unknown (3).
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B-1a cells play non-redundant roles for early protection 
against a number of pathogens (7, 12). B-1a cells participate in 
the antibody response against T-independent antigens (7, 13) and 
secrete poly-reactive natural IgM antibodies with protective and 
immune homeostasis functions (6, 13, 14). B-1a cells, through 
production of IL-10 and other immunosuppressive mediators also 
have important roles in immune regulation and in ameliorating 
inflammatory diseases (15, 16). The peritoneal cavity is the main 
reservoir for B-1a cells, in which they comprise approximately 
50% of B cells (17). B-1a cells are also located systemically and in 
spleen and bone marrow, although at lower frequencies (0.5–2% 
of B  cells) (14). In contrast to B-2 cells, which are continually 
replenished from hematopoietic stem cells in the bone marrow, 
B-1a cells predominantly develop during fetal and neonatal life 
and are maintained by self-renewal (18). Thus, early yolk sac, 
splanchnopleura, and fetal liver mainly give rise to B-1a rather 
than B-2 lineage cells (18, 19).

Developing B  cells migrate to the spleen to undergo tran-
sitional T1 and T2 stages (20). For B-1a cells, the transitional 
window is limited to early life and we recently demonstrated that 
TrB-1a cells are a distinct subset of transitional B cells in neonates 
(21). This identification of TrB-1a in the neonatal spleen led us to 
ask whether the neonatal spleen is required for B-1 cell develop-
ment. To address this, we splenectomized neonatal wild-type (wt) 
mice (neo-splx) and examined B cell development. Compared to 
sham-operated mice, the neo-splx mice displayed a rapid twofold 
reduction in bone marrow and blood B-1a cells, but peritoneal 
B-1a cell frequencies were normal until 6 weeks after surgery. To 
investigate if the fetal spleen is required for B-1a cell development, 
we transferred wt fetal liver (FL) cells into splenectomized or 
sham-operated RAG1−/− mice. For the transfer we used FL from 
embryonic age 11 days (E11), thus prior to the point in develop-
ment where the spleen primordium is developed, which in mice 
occurs at E12.5–13. The mice that had undergone splenectomy 
in conjunction with FL transfer had high frequencies of donor-
derived B-1a cells, demonstrating that cells of B-1a phenotype 
may develop under completely asplenic conditions. Interestingly, 
asplenic conditions, both when modeled from prenatal, neonatal, 
and adult stages led to a reduction in bone marrow B-1a cells, 
which may imply distinct developmental or homeostatic require-
ments for B-1a cells in different compartments.

MaTerials anD MeThODs

Mice and surgery
Mice were maintained in the animal research facility at the 
Department of Microbiology, Tumor and Cell Biology (MTC), 
Karolinska Institutet, or at the University of Texas Southwestern 
Medical Center. Studies were performed in accordance with 
institutionally approved protocols or with Committee for Animal 
Ethics (Stockholms Norra djurförsöksetiska nämnd) approval 
or Institutional Animal Care and Use Committee approval. 
C57BL/6J mice were purchased from the Jackson laboratory, and 
Rag1−/− mice, on C57BL/6J background, were bred at MTC. 
Mice harboring the bumble mutation were described previously 
(21, 22). Adult wt or Rag1−/− C57BL/6J mice were anesthetized 

by isofluorane via a nose cone and shaved. A small incision was 
made in the skin at the left flank right above the spleen. The spleen 
was removed and the splenic arteries and venous supply carefully 
cauterized. The incision was closed with surgical silk-thread 
(Ethicon) and buprenorphine analgesia was administered. For 
neonatal splenectomy, ice was used as anesthetic. Sham-operated 
mice underwent the same procedure as splenectomized mice, 
except removal of the spleen.

cell Preparation
Splenocytes and fetal liver cells were prepared as a single cell 
suspension using a 70  µm cell strainer. Peritoneal cells were 
isolated by flushing with cold PBS/1% FBS (1–10 ml, dependent 
on mouse age). Peritoneal cells were discarded if contaminated 
with blood. Femurs and tibias were flushed with a 26G needle. 
Cell suspensions were diluted in RPMI-1640 supplemented with 
2 mM l-glutamine, penicillin (100 IU)–streptomycin (100 µg/ml),  
5 × 10−5M β-mercaptoethanol (Gibco), and 10% fetal bovine serum  
(complete RPMI). Splenocyte and bone marrow cell suspensions 
were washed once in Ca2+- and Mg2+-free PBS and treated with red 
blood cell lysis buffer before further processing. For reconstitut-
ing B-1 cells in splenectomized or sham-operated Rag−/− mice, 
total embryonic age 11 days fetal liver cells (1.5 × 106 cells) were 
prepared and transferred intravenously (i.v.).

immunization
Mice were immunized with 50  µg NP (40)-Ficoll (Biosearch 
technologies) diluted in PBS and 200 µl was injected intraperi-
toneally (i.p.).

elisa
ELISA was performed by coating ELISA plates (Nunc) with 
unconjugated anti-mouse IgM (Southern Biotech). After incuba-
tion overnight (4°C), washing (PBS + 2% Tween20) and blocking 
for 1 h with PBS containing 2% dry milk (blocking buffer), serum 
was added in threefold serial dilutions in blocking buffer and 
incubated for 1.5 h at room temperature (RT), before addition 
of HRP-coupled anti-IgM or IgG3 (Southern Biotech). The assay 
was developed with 3,3′,5,5′-tetramethylbenzidine (TMB) sub-
strate (KPL) followed by 1M H2SO4 and the OD values were read 
at 450 nm using an Asys Expert 96 ELISA reader (Biochrom).

enzyme-linked immunosorbent spot 
(elispot)
Detection of total IgM-producing cells from bone marrow was 
performed using an ELISpot assay. MultiScreen-IP filter plates 
(Millipore, MAIPSWU10) were pre-treated with 70% ethanol 
and washed in sterile PBS. Plates were coated with 5 µg/ml anti 
mouse IgM (Southern Biotech) in PBS and incubated overnight 
at 4°C. The following day, plates were blocked in complete RPMI 
medium with 50 µM 2-mercaptoethanol and 10 mM HEPES for 
1 h at 37°C and 2.5 × 105 cells added. Plates were incubated for 
16 h at 37°C in 5% CO2. The plates were washed and 0.1 μg/well of 
biotinylated anti-mouse IgM (Mabtech) diluted in PBS was added 
to the wells. After 2 h of incubation at RT, plates were washed 
and steptavidin-ALP (Mabtech) added for 1 h, before the plates 
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FigUre 1 | B-1 cells are found in the spleen but not in the peritoneal cavity 
of neonatal mice. Neonatal mice were stained by flow cytometry for B-1 and 
B-2 cells, defined as CD19hiB220loCD43+CD5+/− and CD19+B220+, 
respectively. (a) Representative staining of C57BL/6 wild type (wt) peritoneal 
cells from 1 to 3 weeks old mice. (B) Number of cells from the different  
B cell subsets in peritoneal flushes from 1 week to 3 weeks old wt mice.  
(c) Representative staining of splenic transitional B-1a (TrB-1a, 
CD93+IgM+CD5+B220lo) and transitional B (TrB, CD93+IgM+CD5−B220+) 
cells at different time points. As negative controls for transitional B-1a cells, 
neonatal mice with the bumble (bmb) mutation in the gene encoding IκBNS 
were included [these were previously demonstrated to lack TrB-1a, (21)].  
(D) TrB-1a, TrB cells (left panel), and mature B-1a and B-2 cells (right panel) 
in the spleen of 1-week-old wt mice. Results are representative of at least 
two independent experiments and graphs display mean ± SD. Statistically 
significant differences are indicated by *, ***, and **** denoting p < 0.05, 
p < 0.001, and p < 0.0001, respectively by unpaired t-test.
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were developed with 100 µl of 5-bromo-4-chloro-3-indolyl phos-
phate/nitroblue tetrazolium chloride (BCIP/NBT)-plus substrate 
(Mabtech). The reaction was stopped by tap water. Spots were 
counted in an ELISpot reader (CTL).

Flow cytometry
Cells were incubated with Fc block (anti-CD16/32, BD) and 
stained with different panels of fluorochrome-conjugated mono-
clonal antibodies in PBS/2% FBS using the following antibodies: 
CD5 BV421 (S3-7.3), CD19 PE (1D3), CD19 FITC (1D3), CD19 
BUV395 (1D3), CD43 APC (S7), B220 AF-700 (RA3-6B2), B220 
PerCP, CD11b BV605 (M1/70) (all BD), CD93 APC (AA4.1), 
CD93 PE (AA4.1), B220 APC-EF780 (RA3-6B2), IgM eFlour450 
(II/41) (all eBioscience), CD5 biotin (Biolegend), and IgM FITC 
(Fab2, polyclonal) (Southern Biotech). In some antibody panels, 
primary staining was followed by addition of streptavidin-AF488 
(Life technologies). Samples were run using a BD LSRFortessa or 
LSR II and data were analyzed in Flowjo v9.6.4 (Treestar).

statistics
Differences between groups were analyzed by a Student’s t-test 
(GraphPad Prism v5.0 or 6.0f).

resUlTs

The perinatal spleen is a Major  
Organ for B-1a lineage cells
The developmental steps from fetal liver (FL) progenitors to 
mature B-1a cells are incompletely understood. The FL gives rise 
to B-1a cells, but IgM+CD43+CD5+B-1a lineage cells constitute 
very few of CD19+ cells in liver perinatally (0.12% at E19) (23), 
suggesting that the FL is not the main site for the final steps of 
B-1a cell maturation. The peritoneal cavity harbors the largest 
frequency of B-1a cells in young and adult mice but B-1a cells 
are lacking in the peritoneal cavity of neonatal mice, constitut-
ing on average <50 cells in 1-week-old compared to 8  ×  103 
cells in 3-week-old wt mice (Figures  1A,B). We previously 
described that neonatal but not adult mice harbor a population 
of splenic TrB-1a cells, that co-express common transitional 
B  cell surface proteins (IgM+CD93+CD19+) and B-1a cell 
markers (CD5+CD43+B220lo) (21). Interestingly, the TrB-1a 
cell population is present already in spleen from 1-day-old mice, 
where they comprise 7% of IgM+CD93+ splenic transitional 
B cells (Figure 1C), which is much earlier than B-1a cells are first 
observed in the peritoneal cavity. 1-week-old wt mice harbor 
approximately 1.2 × 104 splenic transitional B-1a, in addition to 
1.0 × 104 mature B-1a cells (Figure 1D). Thus, immature B-1a 
lineage cells seed the spleen before the peritoneal cavity, suggest-
ing that the perinatal/neonatal spleen constitutes a niche for B-1a 
cell maturation.

splenectomy of adult Mice leads  
to a rapid Decline in B-1a cells
It was previously reported that splenectomy of adult mice leads 
to a rapid and persistent loss of peritoneal B-1a cells (3). We, 
therefore, examined the requirement of the adult spleen for B-1 

cells defined as CD19hiB220loCD43+ and further sub-divided 
based on CD5 expression (CD5+B-1a and CD5−B-1b). Indeed, 
evaluation of B-1a cell frequencies 10  days after splenectomy 
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FigUre 2 | Splenectomy of adult mice leads to a decrease in B-1a cells. Adult 12-week-old wild-type mice were splenectomized or sham-operated and 10 days 
later stained for B-1 and B-2 cells (defined as in Figure 1) in (a) peritoneal cavity, (B) blood, and (c) bone marrow. The experiment was performed once and graphs 
display mean frequencies of the indicated cells in the lymphocyte gate ± SD. Statistically significant differences are indicated by * and **, denoting p < 0.05 and 
p < 0.01, respectively by unpaired t-test.
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revealed an approximately twofold drop in peritoneal B-1a cell 
frequencies compared to in sham-operated mice (statistically sig-
nificant, p < 0.05) (Figure 2A). There was also a tendency toward 
lower numbers of peritoneal B-1a cells, although not statistically 
significant (p = 0.24) (Figure S1A in Supplementary Material). 
We observed no effect of splenectomy on peritoneal B-1b cells, 
while B-2 cell frequencies and numbers were slightly increased 
in splenectomized mice, although not statistically significant 
(p = 0.12). There was also a tendency toward lower blood B-1a 
cell frequencies and significantly lower bone marrow (BM) B-1a 
cell frequencies (p < 0.05, Figure 2C) and numbers (Figure S1B 
in Supplementary Material) in splenectomized compared to in 
sham-operated mice. BM B-2 cell frequencies were also lower in 
the splenectomized group (p  <  0.05). Thus, adult splenectomy 
led to an approximately twofold drop in both bone marrow and 
peritoneal B-1a cell frequencies consistent with previous reports 
(3, 9, 11).

The neonatal spleen is required for 
Maintaining normal Frequencies of  
B-1a cells but is not required for  
Their Development
To examine if the neonatal spleen is required for B-1 cell develop-
ment we performed splenectomy on 1-day-old mice and evaluated 
the frequencies of the different peritoneal B cell subsets at 2, 4, 
and 6 weeks thereafter. We observed no significant differences in 
peritoneal B-1a or B-2 cell frequencies at 2 or 4 weeks after neona-
tal splenectomy compared to after sham surgery (Figures 3A,B). 

Since the peritoneal cavity is not seeded with B-1a cells until after 
1 week of age (Figure 1), and thus after the spleen was removed, 
these data indicate that the neonatal spleen is neither required for 
B-1a cell development nor for their migration into the peritoneal 
cavity. However, the neonatally splenectomized mice displayed 
reduced capacity to maintain peritoneal cavity B-1a cells since, 
at 6  weeks post splenectomy, the B-1a cell frequencies in the 
splenectomized mice were significantly lower (p < 0.05) than in 
the sham-operated mice. This reduction in B-1a cells was paral-
leled by increased B-2 cell frequencies (statistically significant, 
p < 0.001).

neonatal splenectomy leads to  
reduced Blood and Bone Marrow  
B-1a cell Frequencies
Contrary to that observed in the peritoneal washes, blood B-1a 
cell frequencies were twofold lower in neonatal splenectomized 
mice compared to in sham-operated littermates at all the time-
points measured [2, 4, and 6  weeks after surgery (p  <  0.01)] 
(Figures  3C,D). Neonatal splenectomy did not consistently 
affect B-2 cells in the blood, except at 4  weeks post-surgery, 
where splenectomized mice had significantly higher blood B-2 
cell frequencies than mice that had undergone sham surgery 
(Figures 3C,D). To investigate if neonatal splenectomy had an 
impact on B  cell progenitors, we examined these in the bone 
marrow 6 weeks after neonatal splenectomy (Figure 3E; Figure 
S2A in Supplementary Material). Compared to the sham-
operated group, the splenectomized mice had significantly 
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FigUre 3 | The neonatal spleen is not required for B-1a cell development but for maintaining normal B-1a cell frequencies. One-day-old wild-type pups underwent 
splenectomy (neo-splx) or sham surgery. Peritoneal B-1 cells were stained as defined as in Figure 1. (a) Representative staining of 4-week-old mice. (B) Peritoneal 
B-1a, B-1b, and B-2 frequencies at 2, 4, and 6 weeks after neonatal splenectomy. Statistically significant differences are indicated by * and ***, denoting p < 0.05 
and p < 0.001, respectively by unpaired t-test. (c) Representative staining showing blood B-1a cells in 2-week-old mice. (D) Blood B-1a and B-2 cell frequencies at 
2, 4, and 6 weeks after neonatal splenectomy. (e) Bone marrow B-lineage populations defined as B220+CD43+CD19+ (pro-B), B220+CD43−CD93+IgM− (pre-B), 
B220+CD43−CD93+IgM+ (immature B), B220+CD43−CD93−IgM+ (mature B), and CD93−CD19hiB220loCD43+CD5+ (B-1a) (Figure S3 in Supplementary 
Material). Results were pooled from several experiments with at least three mice per group assayed at each time point. Graphs display mean frequencies of the 
indicated cells in the lymphocyte gate ± SD. Statistically significant differences are indicated by *, **, and *** denoting p < 0.05, p < 0.01, and p < 0.001, 
respectively by unpaired t-test.
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lower frequencies of B220+CD43−sIgM−CD93+ pre-B  cells 
(p < 0.001) and increased B220+CD43−sIgM+CD93− mature 
B cells (p < 0.001), while immature B and pro-B cell frequencies 
were similar between the two groups. Approximately 2–3% of 
mature (CD93−) bone marrow B  cells in 6-week-old wt mice 
displayed a CD19hiB220loCD5+B-1a cell phenotype. Notably, 
similar to in the blood, neonatal splenectomy led to an approxi-
mately twofold reduction in BM B-1a cells (1–1.7%) compared to 
the corresponding sham-operated littermate controls (p < 0.001) 
(Figure  3E; Figure S2B in Supplementary Material). In sum-
mary, the neonatal spleen was dispensable for peritoneal B-1a 
cell development, while circulating and bone marrow B-1a cell 
frequencies were reduced after neonatal splenectomy.

B-1a cells Develop in the absence of 
spleen although at reduced Frequencies
Our results so far suggested only a partial requirement for the 
neonatal spleen in maintaining normal B-1a cellularity. Previous 
studies using Hox11−/− mice as a model for congenital asplenia 
found that the spleen is strictly required for B-1a cell development 
(3). Taken together with the neonatal splenectomy results, we 
hypothesized that the spleen is required for B-1a cell development 
pre- rather than postnatally and investigated this possibility by 
using fetal liver cell transfer. It is known that E11 liver cells readily 
reconstitute B-1a cells, while the spleen primordium is only evi-
dent at E12 days (24) and is subsequently seeded by lymphocyte 
progenitors at E12.5–13. To examine B-1 cell development from 
fetal liver progenitors under asplenic conditions, we transferred 
“pre-splenic” E11 fetal liver cells into RAG1−/− mice that were 
subsequently immediately splenectomized. The reconstituted 
RAG1−/− mice were sacrificed 6 weeks later and examined for 
peritoneal B-1 cells (Figure 4A). Similar to that observed in previ-
ously reported fetal liver transfer studies, the vast majority of peri-
toneal B cells generated from E11 FL were of B-1a cell phenotype 
(18). Notably, RAG1−/− mice that had undergone splenectomy 
in conjunction with fetal liver cell transfer had a substantial frac-
tion of peritoneal B-1a cells, although the frequency of these cells 
was lower than in sham-operated mice (not significant, p = 0.06) 
(Figures 4B,C). In adult wt mice, approximately 1–2% of bone 
marrow B cells are B-1a cells. In contrast, on average 10% of bone 
marrow B cells in sham-operated RAG1−/− mice that received 
wt FL displayed a B-1a phenotype, in accordance with the 
increased propensity for FL to give rise to B-1a cells (Figure 4D). 
Splenectomized FL recipient mice had lower reconstitution of 
bone marrow B-1a cells compared to sham-operated controls 
[2.5-fold drop in frequency to on average 4%, (not significant, 
p  =  0.11)]. Mice that had undergone splenectomy conjointly 
with FL cell engraftment also had significantly lower levels of 
bone marrow cells spontaneously secreting IgM (p < 0.01) and of 
serum IgM antibodies (p < 0.01) (Figure 4E).

In a separate experiment we instead performed the splenec-
tomy of RAG1−/− mice 30 days prior to the transfer of wt E11 
FL. By this, the transferred cells would be in a milieu devoid of 
spleen-derived factors, which we speculated could otherwise have 
supported B-1a cell development. Similarly to when the spleen 
was removed in conjunction with FL engraftment, splenectomy 

30 days prior to FL transfer gave rise to peritoneal and bone mar-
row B-1a cells, albeit at reduced frequencies, and lower serum 
IgM antibody levels than in the sham-operated mice, albeit this 
did not reach statistical significance (p = 0.09) (Figures S3A–E 
in Supplementary Material). Overall, these studies suggested 
that although B-1a cell frequencies were reduced upon asplenic 
conditions, the spleen was not absolutely required for B-1a cell 
development from FL progenitors.

DiscUssiOn

The spleen is an important organ for eliciting immune responses 
to blood-borne antigens (24). The risk of sepsis is 10–20 times 
higher in splenectomized individuals than in the general popula-
tion and children born with isolated asplenia often die during the 
first months of life from sepsis ascribed to bacterial infections at 
mucosal sites (25–27). Despite the clear involvement of the spleen 
in protecting against pathogens, it is still unknown if it is the lack 
of certain cell types, such as marginal zone macrophages, MZB, 
or B-1a cells, reduced levels of natural antibodies or other defects 
that lead to the increased susceptibility to infection observed in 
the absence of spleen (3, 28).

How B-1 cells develop and differentiate remains contro-
versial. Putative B-1 progenitors can be seen in the FL from 
embryonic age 11  days (E11), but further differentiated B-1a 
(IgM+CD43+CD5+) cells are only observed at very low fre-
quencies in the FL pre- and perinatally [0.12% at E19 (23)]. In 
neonatal 1-week-old C57BL/6 mice, peritoneal B-1a cells are 
rare. In contrast, B-1a lineage cells comprise a high frequency 
(approximately 10%) of splenic B cells in neonates and most of 
these are CD93+ immature/transitional [Figure  1 (21)]. This 
finding led us to investigate if the neonatal spleen is required for 
B-1a cell development by performing splenectomy on 1-day-old 
mice. We found that, compared to sham-operated littermate 
controls, neonatally splenectomized mice displayed similar peri-
toneal B-1a cell frequencies at 2–4 weeks post splenectomy. This 
finding was unexpected, since splenectomy of adult mice leads to 
a rapid reduction in peritoneal B-1a cell frequencies [(3, 9, 29), 
Figure 2A]. Based on these data, we speculate that the spleen has 
a role in maintenance of peritoneal B-1a cells, but in neonatal 
mice the splenectomy associated B-1a cell loss is masked by de 
novo B-1a cell development (23). Supporting this, we observed 
a significant reduction in peritoneal B-1a cells at 6-weeks post-
neonatal splenectomy. B-1 cell generation wanes during neonatal 
life and, possibly, absence of spleen at or after 6-weeks-of-age 
leads to reduced B-1a cell frequencies, similar to that observed 
in adult mice.

Little is known about the development of the human spleen. 
Recently, haploinsufficiency for the RPSA gene encoding 
ribosomal protein SA was identified as one factor associated 
with isolated congenital asplenia (27). Hox11 (Tlx1) was also 
implicated in human splenic development (30). Mice lacking the 
Hox11 gene are born asplenic, without other detected abnormali-
ties. The spleen primordium develops normally in the absence 
of Hox11 up until E13.5 but fails to expand thereafter (28). Why 
B-1a cells are essentially absent in Hox11−/− mice (3), remains 
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unclear, although it has been proposed that this phenotype can 
be attributed to their asplenia. Indeed, transfer of Hox11-null 
FL cells into SCID mice reconstituted the B-1a compartment 
to normal levels, suggesting that defective B-1a cell generation 
in Hox11-null mice is not due to an intrinsic defect in B-1 cell 
progenitor populations (3). The Hox11-null mice could, however, 
have other unreported defects in supporting B-1 cell development 
or maintenance apart from absence of spleen. We, therefore, used 
another strategy to evaluate the requirement of spleen for B-1 cell 
development where we transferred “pre-splenic” E11 FL cells into 
splenectomized RAG1−/− mice. In this model, asplenia resulted 
only in a slight reduction in peritoneal B-1a cells rather than a 
complete absence of B-1a cells, as observed in Hox11−/− mice. 
Potential limitations of our model of asplenia are that FL cells 
were transferred into immunocompromised mice (RAG1−/−), 
for which lack of competing lymphocytes may compromise 
mechanisms that would otherwise work to control B-1a cell 
expansion. Although in one experiment we waited 30 days after 
splenectomy of RAG1−/− mice before FL cell transfer (Figure 
S3 in Supplementary Material), it is also possible that remnant 
spleen-derived factors would persist for this period of time and 
could have a supportive role in development of B-1 cells from the 
transferred FL cells. Finally, early transcription factors associated 
with spleen development are expressed already at embryonic 
age 11 days (28), and these may have been sufficient to initiate 
peritoneal B-1 cell development from the transferred E11 FL 
cells. Nonetheless, the spleen primordium is not generated before 
E12-13 (24) and since peritoneal B-1a cells were indeed generated 
from E11 FL transferred into splenectomized hosts, our study 
illustrates that an intact spleen is not unconditionally required 
for peritoneal B-1a cell development.

We demonstrated a slight reduction in B-1a cell frequencies, 
in the peritoneal cavity after splenectomy (Figures  2 and 3). 
Interestingly, in neonatally splenectomized mice, the frequencies 
of mature B cells in the bone marrow were increased at the expense 
of pre-B cells and B-1a cells (Figure 3). The reason for the altered 
immune cell composition in the bone marrow after splenectomy 
remains unclear and is a subject for further investigation. It was 
previously reported that bone marrow B-1a cells spontaneously 
secrete large quantities of IgM and thus are a main contributor 
to steady state serum IgM levels (31). We also demonstrated 
a reduction in bone marrow IgM antibody secreting cells in 
splenectomized mice. It is, therefore, possible that the reduction 
in bone marrow B-1a cells was at least partially responsible for 
reduced serum IgM in asplenic mice (29).

In summary, in the study reported here, we demonstrate that 
B-1a cells developed in the absence of an intact spleen, although 
a reduction in B-1a cell frequencies was observed when modeling 
asplenia from prenatal, neonatal, and adult stages of life.
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FigUre s1 | Bone marrow B-1a cell numbers are decreased in splenectomized 
mice. Adult 12-week-old wild-type mice were splenectomized or sham-operated 
and 10 days later stained for (a) peritoneal cavity and (B) bone marrow B-1a and 
B-2 cells (defined as in Figure 1). Graphs display mean ± SD. Statistically 
significant differences are indicated by *, denoting p < 0.05 by unpaired t-test.

FigUre s2 | Representative stainings of bone marrow B-lineage populations. 
(a) Staining of bone marrow pro-B, (B220+CD43+CD19+), pre-B 
(B220+CD43−CD93+IgM−), immature B (B220+CD43−CD93+IgM+), and 
mature B (B220+CD43−CD93−IgM+) cells (B) Staining of mature bone marrow 
B-1a (CD93−CD19hiB220loCD43+CD5+) and B-2 (CD93−CD19+B220+/−) 
cells. Representative plots are from 6 weeks post neonatal splenectomy.
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FigUre s3 | B-1a cell development from fetal liver cells transferred into already 
splenectomized hosts. Wild-type (wt) FL cells were isolated from 11 days old 
embryos (E11) and transferred to adult RAG1−/− mice that had undergone 
splenectomy or sham surgery 30 days earlier. At 6 weeks later the mice were 
sacrificed and analyzed for B-1a cells. Donor-derived B-1a cells were identified 
as IgM+Cd19hiB220loCD43+CD5+. No IgM positive cells were observed in  
the peritoneum of RAG1−/− mice that had not received wt cells (not shown).  
(a) Schematic of the study. (B) Representative plots of peritoneal cavity B cells 
after transfer of E11 cells into splenectomized versus sham-operated recipients. 

(c) Frequency of the indicated B cell subsets in the peritoneal cavity of recipient 
mice as gated from IgM+ (donor-derived cells). (D) Representative plots and 
frequencies of bone marrow B-1a and B-2 cells after transfer of E11 cells into 
splenectomized versus sham-operated recipients. Plots were gated from IgM+ 
cells (donor-derived cells). (e) Total IgM antibody levels at 6 weeks post fetal liver 
cell transfer. Sera were run in threefold dilution with a starting dilution of 1:10 and 
statistics calculated by comparing area under the curve. The experiment was 
performed once. Statistically significant differences are indicated by * denoting 
p < 0.05 by unpaired t-test.
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