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Protein ubiquitination is an evolutionary conserved highly-orchestrated enzymatic

cascade essential for normal cellular functions and homeostasis maintenance. This

pathway relies on a defined set of cellular enzymes, among them, substrate-specific

E3 ubiquitin ligases (E3s). These ligases are the most critical players, as they define the

spatiotemporal nature of ubiquitination and confer specificity to this cascade. Smurf1

and Smurf2 (Smurfs) are the C2-WW-HECT-domain E3 ubiquitin ligases, which recently

emerged as important determinants of pivotal cellular processes. These processes

include cell proliferation and differentiation, chromatin organization and dynamics, DNA

damage response and genomic integrity maintenance, gene expression, cell stemness,

migration, and invasion. All these processes are intimately connected and profoundly

altered in cancer. Initially, Smurf proteins were identified as negative regulators of the

bone morphogenetic protein (BMP) and the transforming growth factor beta (TGF-β)

signaling pathways. However, recent studies have extended the scope of Smurfs’

biological functions beyond the BMP/TGF-β signaling regulation. Here, we provide a

critical literature overview and updates on the regulatory roles of Smurfs in molecular and

cell biology, with an emphasis on cancer. We also highlight the studies demonstrating the

impact of Smurf proteins on tumor cell sensitivity to anticancer therapies. Further in-depth

analyses of Smurfs’ biological functions and influences on molecular pathways could

provide novel therapeutic targets and paradigms for cancer diagnosis and treatment.
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INTRODUCTION

Protein ubiquitination is a major posttranslational modification
that controls a wide spectrum of biological functions, and is
critical in maintaining cellular homeostasis under physiological
conditions and in diseases.

Ubiquitination is a multi-step enzymatic process which is
mediated by the concerted action of three main types of proteins:
(i) ubiquitin-activating enzymes (E1s), which bind, adenylate
and activate cognate ubiquitin molecules using the energy of
ATP hydrolysis; (ii) ubiquitin-conjugating enzymes (E2s), which
accept ubiquitin from E1 in the form of a thioester bond to
their active-site cysteine; and (iii) ubiquitin protein ligases (E3s)
that recruit ubiquitin-charged E2 enzymes and mediate specific
transfers of ubiquitin to protein substrates.

It is estimated that the human genome encodes for more than
630 E3s, ∼40 E2s, and only two E1s. E3 ubiquitin ligases are of
particular interest since they define the spatio-temporal nature
of ubiquitination and, together with other accessory proteins,
provide specificity to the cascade.

E3s tightly control protein stability, localization, and function,
and thereby regulate a plethora of biological processes. This has
instigated intensive investigations of these enzymes as disease
biomarkers and drug targets in a variety of human disorders,
particularly in cancer (1–3).

Depending on the ubiquitin transfer mechanism and domain
characteristics, E3s are classified into three main groups/families:
really interesting new gene (RING) family, which is the most
abundant in the human genome (∼600 family members),
homologous to the E6AP carboxyl terminus (HECT) domain E3s
(∼30 members), and RING-in-between-RING (RBR) E3s (∼12
in humans) (4).

Smurf1 and Smurf2 (Smurfs) are two closely related C2-WW-
HECT domain E3 ubiquitin ligases, belonging to the NEDD4
subfamily of HECT type E3s. Similar to other NEDD4 family

members (nine in total), Smurfs contain: (i) the N-terminal C2
domain, which mediates binding of these E3s to intracellular

membranes; (ii) several tryptophan-containing WW domains,
which are thought to mediate the protein-protein interactions

between the E3s and their interactors and substrates (primarily
through association with proline-containing PPxY or LPxY
motifs in the binding partners); and (iii) the evolutionary-
conserved catalytic HECT domain. Of note, several studies
indicate that the HECT domain of NEDD4 E3s are also involved
in substrate recognition (5–7).

In mammals, Smurf1 and Smurf2 are encoded by two distinct
genes located at chromosomes 7 and 17, respectively (Figure 1).
Three isoforms of human Smurf1, resulting from alternative
splicing, have been reported, and a single protein product has
been confirmed for Smurf2 (9).

Smurfs share a high sequence homology (>70% amino acid
sequence identity) and have similar structural characteristics.
Despite these high similarities and some redundancy in their
substrate repertoire, these proteins exhibit distinct and in some
respects opposite biological functions.

In this review, we will discuss the diverse roles of
Smurf proteins in pleotropic cellular functions, including

cell proliferation and DNA damage response, chromatin
organization, dynamics and genomic integrity maintenance, gene
expression, carcinogenesis, and metastases. We also highlight
studies implicating Smurfs in cellular responses to anticancer
therapies.

REGULATORY ROLES OF SMURFS IN THE
DECISIVE CELLULAR PROCESSES

Smurfs in TGF-β/BMP Signaling
Smurf1 and Smurf2 were originally identified as negative
regulators of BMP/TGF-β signaling pathways. These pathways
play crucial roles in embryogenesis and adult tissue homeostasis,
as well as in the pathogenesis of various human diseases (10, 11).

In cancer, these pathways appear to have a dual role:
operating in both cancer development and suppression (12, 13).
Indeed, the activation and/or inhibition of these pathways are
highly related to various aspects of carcinogenesis including
epithelial-mesenchymal transition (EMT), angiogenesis,
behavior of cancer stem cells, metastases, and tumor cell
chemo-refractoriness.

For example, TGF-β signaling exerts in normal cells
and at the early-stages of carcinogenesis tumor-suppressor
functions, including cell-cycle arrest and triggering of apoptosis.
However, at late-stages of carcinogenesis, the role is reversed
and TGF-β signaling promotes tumorigenesis, metastases and
chemoresistance (13).

Smurf1 has been shown to ubiquitinate and degrade
the BMP receptor-regulated Smad proteins (R-Smads; i.e.,
Smad1 and Smad5), which form heteromeric complexes
with a common-partner Smad (Co-Smad) Smad4. Following
formation, this complex translocates into the nucleus to regulate
transcription of a variety of target genes, also related to
tumorigenesis, cancer progression, and chemoresistance. The
ability of Smurf1 to degrade the BMP-specific Smads as well
as BMP receptors, provides negative feedback to the BMP
signaling pathway. Noteworthy, Smurf1 can cooperate with
inhibitory Smad (I-Smad), Smad6, and Smad7, which repress
the TGF-β superfamily signaling by several different mechanisms
(14–17).

The E3 ubiquitin ligase functions of Smurf2 were primarily
associated with its ability to negatively regulate the TGF-β
signaling pathway. Following receptor stimulation with the TGF-
β ligand, Smurf2 translocates from the nucleus to the cytosol.
For this to occur, nuclear Smurf2 needs to bind to I-Smad,
in particular of Smad7, which facilitates the nuclear export of
Smurf2.

While in the cytosol, Smurf2 interacts with and promotes the
proteasomal degradation of the TGF-β receptor (i.e., TGF-βRI)
as well as TGF-β-specific R-Smads such as Smad2 and Smad3
(18–21). Of note, although the Smurf1 and Smurf2 activities are
primarily attributed to BMP and TGF-β signaling regulation,
respectively, experimental data suggest a model where Smurfs
can truncate both of these pathways.

Despite these proceedings, studies conducted on Smurf1- and
Smurf2-genetically ablated mice question the role of Smurfs in
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FIGURE 1 | Schematic diagram showing the SMURFs’ gene locations, isoforms, and intracellular distribution. Both Smurf1 and Smurf2 possess an N-terminal protein

kinase C (PKC)-related C2 domain (Red), 2-3 WW protein interacting domains (purple, orange, and blue) and the catalytical C-terminal HECT domain (green). Smurf1

transcript variant 1 (NP_065162) is the longest Smurf1 isoform (757 aa), and has a 26-residue linker insert between WW domains (8). Catalytical active site—Cys699.

Smurf1 transcript variant 2 (NP_851994; 731 aa) lacks an in-frame exon in the coding region, compared to variant 1. Smurf1 isoform 3 (NP_001186776) lacks an

in-frame exon in the coding region and uses an alternate in-frame splice site in the 3′ coding region, compared to variant 1. This variant is 728 aa long. Smurf2

(NP_073576) is a 748 aa protein. Catalytical active site—Cys716. Subcellular bio-distributions of Smurf1 and Smurf2 are indicated on the bottom of the figure.

the canonical TGF-β superfamily signaling. Smurf1 knockout
mice revealed no significant disruption in the Smad-mediated
TGF-β/BMP signaling pathways. Instead, these animals exhibited
an age-dependent increase of bone mass due to enhanced
osteoblast activity. This activity was related to activation of the
MEKK2-JNK signaling cascade (22).

Targeted disruption of Smurf2 in mice has also revealed that
the protein levels and stability of the TGF-β receptor and Smad
proteins (i.e., Smad2/3) were unaffected by Smurf2 depletion,
despite the enhanced cellular response to TGF-β stimulation
(23). This phenomenon was explained by the uncovered
ability of Smurf2 to monoubiquitinate Smad3 and inhibit the
formation of Smad3 complexes (23). The activity of these
complexes is required for the TGF-β-mediated transcriptional
response.

Collectively, these findings stipulate that at least in mouse
experimental models, Smurf proteins do not directly regulate the
stability and turnover of the BMP/TGF-β receptors and Smad
transducers. Of note, both murine and human Smurf proteins
share a very high homology and amino acid identity: 95% for
Smurf1 and 99% for Smurf2, suggesting that mouse models
can appropriately investigate the biological roles of Smurfs in
humans.

In addition, experimental evidence shows that Smurfs are not
the only E3 ubiquitin ligases regulating TGF-β signaling. Other
NEDD4 E3 ubiquitin ligase family members, including ITCH,
NEDD2L, WWP1 and WWP2, can also mitigate this cascade
(7). These findings suggest that NEDD4 E3s have overlapping
functions in the TGF-β signaling regulation. Moreover, Smurf2
has been reported to ubiquitinate and promote the degradation
of Smurf1, introducing further complexities in TGF-β/BMP
signaling regulation by Smurfs (24).

Interestingly, a recent study shows that mice deficient for
Smurf2 exhibit decreased bone mass due to severe osteoporosis.
This phenotype is opposite to the phenotype observed in Smurf1-
ablated animals (25). Moreover, the authors demonstrate that
elimination of Smurf2, but not Smurf1, significantly increases
the expression of RANKL, a key regulator in osteoclastogenesis
and bone physiology. Through mechanistic studies, they showed
that this phenomenon is associated with the ability of Smurf2
to monoubiquitinate and inactivate transcriptional activity
of Smad3, as previously reported (23). In the absence of
Smurf2, Smad3 activity remains unrestrained and results in
enhanced transactivation activity of the vitamin D receptor
(VDR) signaling, ultimately leading to elevated expression of
RANKL.
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Smurfs in Carcinogenesis
Smurf2 Acts as a Tumor Suppressor
The most surprising and exciting finding on the involvement
of Smurfs, in particular of Smurf2, in cancer we, and
subsequently another group, obtained using Smurf2-depleted
mice (Smurf2−/− mice). We found that while relatively normal
in their early lives, these mice developed a wide spectrum
of tumors in different organs and tissues as they aged. The
majority of tumors appeared in mice older than 90 weeks (7, 26),
equivalent to ∼70 years of age in humans (27). About 70%
of the uncovered tumors were of epithelial origin including
hepatocellular carcinoma, lung alveolar carcinoma, mammary
gland carcinoma, and others. Hematological malignancies were
also detected, in∼30% of the cases.

To best of our knowledge, there are only a few, if any, mouse
cancer models which so closely mimic two key characteristics
of human cancer: (i) the late cancer onset (∼77% of all cancers
are diagnosed in persons 55 years of age and older); and (ii)
the epithelial origin of tumors. For example, the vast majority of
tumors in p53-null mice are hematological malignancies (mostly
lymphomas), which develop within a few months after the
animal’s birth (28, 29).

These findings suggest that the Smurf2-ablated animals are
highly relevant to human carcinogenesis model, and could be
advantageous when studying cancer-related processes at the
whole organism level.

Moreover, Zhang’s group further demonstrated that mice
heterozygote for Smurf2 (Smurf2+/−) are also susceptible to
spontaneous tumorigenesis (30). Further analysis of tumors
from these animals revealed the loss of heterozygosity (LOH) at
Smurf2. LOH is a common genetic event inactivating residual
wild type allele of genes, in particular of tumor suppressors.

Altogether, these findings establish Smurf2 as a potent tumor
suppressor, preventing the transformation of normal cells into
cancerous ones.

Smurf2 Regulates Chromatin Organization,

Dynamics, and Integrity
Our subsequent studies revealed that inactivation of Smurf2
triggers a series of cascading events in cells, and creates
the “mutator phenotype,” which under the stress of aging
leads to carcinogenesis (26). Mechanistically, we found that
Smurf2 regulates chromatin structure landscape and, thereby,
affects gene expression, DNA damage response (DDR), and
genomic integrity maintenance. We further demonstrated that
these Smurf2 activities were associated with and at least in
part relied on its ability to ubiquitinate and degrade RNF20
(Figure 2), a RING type E3 ubiquitin ligase responsible for
monoubiquitination of histone H2B (ubH2B). The RNF20-
ubH2B module regulates chromatin compaction, DNA damage
response, and gene expression, and acts both as a tumor
suppressor and an oncogene depending on the cellular context
(26, 31–39).

Furthermore, an interesting finding in Smurf2−/− cell genome
was the accumulation of multiple chromosomal abnormalities,
with translocations being the most notable hallmark (26).
Subsequent investigation of this phenomenon showed that

Smurf2 expression is essential in preventing the formation
of pathological chromatin bridges, also known as anaphase
bridges (40). These bridges are a major cause of chromosomal
translocations, and are often an output of the compromised
decatenation checkpoint.

The decatenation checkpoint is normally mediated by
DNA topoisomerase IIα (Topo IIα), a core enzyme in
chromatin organization, dynamics and unaltered chromosome
inheritance (41).

We found that Smurf2 operates as a molecular editor of Topo
IIα, switching its ubiquitination code from the degradation-
promoting K48 polyubiquitination to monoubiquitination, and
stabilizing the enzyme (40) (Figure 2). Unaltered E3 ubiquitin
ligase functions of Smurf2 were indispensable for this regulation.
Moreover, we showed that Smurf2 depletion phenocopied Topo
IIα depletion and increased the formation of anaphase bridges.
Introduction of Topo IIα into Smurf2-depleted cells rescued
this phenomenon. Our studies also uncovered that Smurf2 is
a determinant of Topo IIα protein levels in cancer cells and
tissues, and is a factor affecting tumor cell sensitivity to the Topo
II-targeting drug, etoposide (40).

Collectively, these findings establish Smurf2 as a key cellular
factor governing chromatin organization, dynamics and genome
integrity maintenance. They also indicate Smurf2 as a potent
tumor suppressor.

Other Putative Mechanisms for Smurf2-mediated

Tumor Suppression
In addition to RNF20 and Topo IIα, Smurf2 has been shown
to regulate stability and/or subcellular localization of other
decisive cellular proteins implicated in carcinogenesis and drug
resistance. These molecules include the molecular chaperone
and apoptosis inhibitor HSP27, transcription factors KLF5, YY1,
ID1/ID3, histonemethyltransferase EZH2, and others (Figure 2).

HSP27 (heat shock protein 27) is one of the central
molecules shown to upregulate EMT and affect activities of
the matrix metalloproteinases (MMPs), stimulate tumor cell
proliferation, migration, invasion, as well as to mediate chemo-
and radio-resistance (42). Smurf2 overexpression was reported
to alter HSP27 subcellular distribution and induce its ubiquitin-
dependent degradation in the human lung adenocarcinomaA549
cell model (43). However, it currently remains unknown whether
these Smurf2 activities are pertinent to its tumor suppressor
functions in lung cancer, and/or in other types of tumors.

Smurf2 was also shown to promote the degradation of a
few principal transcription factors whose activities are associated
with carcinogenesis, drug resistance, patient prognosis and
survival. Krüppel-like factor 5 (KLF5) is one of these factors
with cell growth-promoting and pro-survival activities. KLF5 is
also implicated in cell differentiation, migration and stemness
and its expression levels are frequently abnormal in different
types of cancer (44). Smurf2 was shown to polyubiquitinate and
promote the proteasomal degradation of KLF5 in a Smurf2 E3
ligase-dependent manner, thereby inhibiting the transcriptional
and pro-proliferative activities of KLF5 (45). Interestingly, KLF5
levels were specifically reduced by Smurf2, but not by Smurf1.
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FIGURE 2 | Molecular mechanisms underlying Smurf2 tumor suppressor functions. Smurf2 regulates chromatin compaction, DDR, and gene expression through the

ubiquitin-proteasomal degradation of RING-type E3 ubiquitin ligase and histone H2B modifier RNF20. Smurf2 also controls chromatin organization, dynamics and

unaltered chromosomal inheritance through stability regulation of Topo IIα. In addition, Smurf2 could affect carcinogenesis, tumor progression and sensitivity to

anticancer therapies through the ubiquitin-mediated proteasomal turnover of KLF5, ID1/3, YY1, and others. Degradation of YY1, for example, relieves the suppression

of p53 activity by YY1, and decreases the expression of c-Myc. Smurf2-mediated stabilization of the mitotic spindle checkpoint protein Mad2, is also shown in the

diagram. Dotted arrows specify potential mechanisms determined from existing evidence.

Yin Yang 1 (YY1) is another example of the Krüppel-like
zinc finger transcriptional factors negatively regulated by
Smurf2. YY1 is overexpressed in multiple cancer types, and its
overexpression correlates with poor clinical outcomes, although
several studies suggested that in some types of cancer YY1
acts as a tumor suppressor (46). Two research groups reported
that Smurf2 ubiquitinates and promotes the degradation
of YY1 (47, 48). The outcomes of these Smurf2-mediated
effects were a decrease in the YY1-mediated suppression
of p53 activity (47), and a reduction of B-cell proliferation
and lymphomagenesis (48). The latter was supposedly
mediated via the suppression of YY1-c-Myc regulatory axis
(Figure 2).

The ability of Smurf2 to ubiquitinate and degrade two
dominant inhibitors of helix-loop-helix transcription factors
ID1 and ID3 (49) might also be relevant to Smurf2’s tumor
suppressor activities. Overexpression of these IDs was shown
to facilitate tumor growth, angiogenesis, stem cell maintenance,
invasiveness, metastasis, as well as correlating with unfavorable
clinical prognoses (50, 51). Moreover, ID1 has been shown to
confer chemoresistance to different types of cancer (52–55).

In addition, Smurf2 was shown to polyubiquitinate and induce
a proteasome-mediated degradation of EZH2, the catalytic

subunit of the polycomb repressive complex 2 (PRC2) and
histone H3-K27 methyltransferase (56). This was reported
in human mesenchymal stem cells during their neuronal
differentiation. If this finding is corroborated in tumor cell
models it might be highly pertinent to the ability of Smurf2
to interfere with carcinogenesis, as EZH2 was documented as
a pro-oncogenic factor involved in neoplastic transformation,
cancer cell stemness, metastases and immune evasion. However,
it should be mentioned that several studies show that under
some circumstances EZH2 also exhibits tumor suppressive
activities (57).

Smurf2 has also been implicated in the formation of
the functional mitotic spindle checkpoint by regulating the
localization and stability of the MAD2 protein (58). Knockdown
of Smurf2 or overexpression of its E3 ligase-deficient mutant
generated misaligned and lagging chromosomes, premature
anaphase onset, and defective cytokinesis in human cervix
carcinoma HeLa cells (58). Interestingly, in our study, Smurf2
depletion did not affect the formation of lagging chromosomes,
but instead increased the formation of anaphase bridges in
osteosarcoma U2OS cells (40). These discrepancies could be
explained by different types of cancer cell models used in these
studies: HeLa vs. U2OS cells, implying that biological effects of
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Smurf2 should be very carefully interpreted taking into account
cellular context, genetic make-up, and experimental settings.

Altogether, these findings designate Smurf2 as a pleotropic
cellular factor that regulates a wide spectrum of molecular
pathways and networks to control transcription, DNA damage
response and genomic integrity maintenance. When these
pathways are compromised, carcinogenic processes can be set
in motion, leading to cell transformation and the development
of a wide spectrum of tumors, as observed in Smurf2-null mice
(7, 26).

Furthermore, the Smurf2-Smad3-RANKL axis described in
the previous section could also potentially be involved in tumor
formation in Smurf2-deficient animals. This appears to be most
relevant to mammary gland carcinomas developed in Smurf2−/−

mice, as the upregulated RANKL/RANK signaling pathway could
promote mammary stem cell expansion, proliferation and the
formation of hormone-induced breast cancer (59).

Interestingly, genomic studies showed that the SMURF2 gene
is not frequently mutated in humanmalignancies (https://cancer.
sanger.ac.uk/cosmic/gene/analysis?ln=SMURF2). However,
changes in Smurf2 expression are common in many cancers
(7, 26, 40), similar to some other cancer-related genes such as the
two TP53 paralogs, TP63 and TP73 (60), and the members of the
FOXO transcription factors family (61).

The Duality of Smurf2 in Cancer
As described above, evidence points to Smurf2 as a potent
tumor suppressor operating in normal cells to prevent cell
transformation and carcinogenesis. However, results obtained
in established cancer cell models argue that Smurf2 has a dual
role and under some circumstances acts as an oncogene rather
than a tumor suppressor (7, 9, 62). Additionally, the expression
levels of Smurf2 were reported to be significantly elevated in
several types of cancers including esophageal squamous cell
carcinoma tumors (63) and chemo-refractory tumors such as
recurrent hepatocellular carcinomas (64). The data available
in the COSMIC dataset portal also indicate that Smurf2 is
overexpressed in ∼49% of ovarian cancer, about 18% of breast
cancer, and in∼17% of soft tissue neoplasms.

Furthermore, ours and other studies show that subcellular
biodistribution of Smurf2 is prominently altered in cancer
vs. normal cells, with a notable accumulation/sequestration of
Smurf2 in the cytoplasm of tumor cells (7, 26, 65). It is possible
that overexpressed and mislocalized Smurf2 is employed by the
carcinogenic machinery to promote oncogenesis, at least in some
types of cancer.

The possible pro-oncogenic functions of Smurf2 in
genetically-compromised tumor cells could be related to
the reported ability of Smurf2 to interfere with the RAS, Wnt/β-
catenin, and EGFR-mediated signaling pathways, three central
modules in cancer progression and chemoresistance (Figure 3).

It has been reported that Smurf2 together with the E2
ubiquitin-conjugating enzyme UBCH5, stabilize the KRAS
oncoprotein (66), the most frequently mutated transforming
oncogene in human cancers (67). The authors showed that
Smurf2 monoubiquitinates UBCH5 to form an active complex
for degradation of β-TrCP, the F-box protein and a component of

SCF E3 ligase that negatively regulates KRAS (68). Loss of Smurf2
led to the accumulation of β-TrCP, and KRAS degradation.
Interestingly, silencing of Smurf2 mostly affected the mutant
form/s of KRAS. In addition, the authors demonstrated that
knockdown of Smurf2 reduces the clonogenic survival and
prolongs tumor latency in the mutant KRAS-driven tumors
generated in nude mice with either human colon or lung
carcinoma cells (66).

Under the described experimental setting, Smurf2 appears to
act as an oncogene, promoting tumor development. However,
it should be mentioned that the SCFβ−TrCP complex mediates
the degradation of functionally diverse proteins, and it is
capable to downregulate both oncogenes (i.e., RAS, β-catenin,
CDC25A, and others) as well as tumor suppressors (e.g.,
Smad4, IkB, FOXO3 and REST) (69, 70). Thus, the role of
the Smurf2/SCFβ−TrCP module in cancer may vary considerably
depending on the cell type and molecular composition, and
should be determined in a particular context.

Smurf2 was also reported to promote the Wnt/β-catenin
signaling through the degradation of its two negative regulators:
GSK3β (71) and Axin (72). Through this route, Smurf2 could
potentially facilitate the activities of the proto-oncogene β-
catenin.

Interestingly, GSK3β phosphorylates and primes RAS proteins
for SCFβ−TrCP-mediated degradation (73). Inhibition of this
degradation pathway by aberrant Wnt/β-catenin signaling
may contribute to Ras-induced transformation in colorectal
tumorigenesis (68). In this regard, it will be even more important
to investigate the role of the Smurf2/GSK3β/SCFβ−TrCP/Ras
module in animal cancer models and in clinical samples.

Smurf2 has also been shown to ubiquitinate and protect
from c-Cbl-mediated degradation the epidermal growth factor
receptor (EGFR), which is implicated in a wide range of cell
responses ranging from cell division to adhesion, motility, and
death (74). The authors also reported that the loss of Smurf2
destabilizes EGFR, and reduces the clonogenic survival of EGFR-
expressing cancer cell strains. The effects of Smurf2 depletion on
EGFR-negative cancer cells, normal fibroblasts, and on normal
epithelial cells wereminor. In addition, the authors demonstrated
that knockdown of Smurf2 reduces the ability of human head and
neck squamous cell carcinoma UMSCC74B cells to form tumors
in vivo.

Cooperatively, these studies suggest that in immortalized
and established cancer cell models Smurf2 operates as an
oncogene rather than a tumor suppressor. Of note, Wellbrock’s
group reported that Smurf2 depletion can significantly increase
melanoma cell sensitivity to the cytotoxic effects of the MEK
inhibitor selumetinib (AZD6244), both in vitro and in vivo (75).

This finding implies that at least in this type of tumor,
inactivating Smurf2 might overcome tumor cell resistance to
MAPK pathway inhibitors experienced in clinics.

Smurfs in Tumor Cell Proliferation,
Migration, and Invasion
A few studies have shown that Smurf2 is intrinsically involved
in these critical for cancer progression processes. However,
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FIGURE 3 | Smurf2 as an oncogene. Smurf2 monoubiquitinates UBCH5α and forms an active complex for the degradation of the KRAS negative regulator, βTrCP.

This stabilizes KRAS and could potentiate its pro-oncogenic functions. Smurf2 also ubiquitinates EGFR and protects it from degradation. In addition, Smurf2 through

the degradation of GSK3β and Axin could upregulate the Wnt/β-catenin signaling. Through this mechanism, Smurf2 might also increase the pro-oncogenic activities

of this pathway. Dotted arrows specify potential mechanisms determined from existing evidence.

studies from different groups revealed different and in some
respect contradictory results, even when using the same cancer
cell model. For example, Zhang’s group demonstrated that
elevated levels of Smurf2 were required for and promoted
migration, invasion and in vivo metastatic dissemination of
human breast carcinoma MDA-MB-231 cells. Moreover, the
authors demonstrated that Smurf2 E3 ligase-defective mutant
(Cys716Gly) decreases the metastatic behavior of these cells (76).

In contrast, Imamura’s group showed that Smurf2 knockdown
in MDA-MB-231 cells enhances cell migration in vitro and
bone metastasis in vivo, implying that under these circumstances
Smurf2 is a tumor suppressor (24). The same group also
demonstrated that Smurf2 reduces MDA-MB-231 cell migration
via Smurf1 degradation. The authors also provided evidence that
the motility of Smurf2-knocked down cells is independent of
TGF-β-signaling.

In addition, a recent study showed that knock-down of Smurf2
increases the proportion of invasive MDA-MB-231 cell-derived
organoids. This group also demonstrated that PIAS3-dependent
sumoylation of Smurf2 is important in suppressing the invasive
behavior of these cells (77).

The discrepancies in these studies could be explained, at least
in part, by different approaches used to manipulate the Smurf2

expression levels (overexpression vs. knock-down). However, a
more comprehensive investigation is needed to support this
notion. One possible approach is to examine these effects in
SMURF2 genetically-ablated MDA-MB-231 cells, as well as in
other human cancer cell models. These cells were recently
generated by our group using the CRISP/Cas9 gene-editing tool
(78), and are currently under investigation.

Studies conducted using pancreatic cancer cells also suggest
that Smurf2 acts as a tumor suppressor. The authors showed
that Smurf2 is downregulated in pancreatic cancer tissues, and its
overexpression suppresses migration and invasion of pancreatic
cancer cells, while having no effect on cell viability, cell cycle,
and senescence (79). Interestingly, the authors also showed that
Smurf2 promotes mesenchymal-epithelial transition (MET), and
that its expression levels are negatively associated with cancer cell
resistance to gemcitabine treatment.

Smurf1 has also been implicated in cancer cell proliferation,
migration and invasion (Figure 4). Wrana’s group found that
Smurf1 plays an important role in regulating protrusive
activity and the transformed phenotype of HEK293T cells
(80). Mechanistically, the authors demonstrated that Smurf1 is
recruited by PKCζ to cellular protrusions, where it controls the
protein levels of RhoA, a small GTPase implicated in cell shape,
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FIGURE 4 | Smurf1 in cancer cell proliferation, motility, and invasion. Smurf1

promotes ubiquitin-dependent degradation of DAB2IP; and stabilizes ERα,

resulting in accelerating tumor cell replication, migration and invasion. Smurf1

can also affect cancer cell motility and invasion by proteasomal degradation of

RhoA.

FIGURE 5 | Smurfs in selective autophagy of human pathogens and

endogenous cellular proteins. Smurf1 mediates the K48-linked

polyubiquitination of human pathogen M. tuberculosis, targeting it for the

ubiquitin-dependent selective autophagy. Smurf2 oligo-ubiquitinates lamin A

and multi-monoubiquitinates progerin. Smurf2 targets both lamin A and

progerin for the autophagic-lysosomal turnover.

polarity, adhesion, and motility regulation. Smurf2 however, was
not involved in the RhoA stability regulation.

Subsequently, Vial’s group showed that Smurf1
expression is required for lamellipodia formation, tumor
cell plasticity, and motility through the regulation of peripheral
RhoA/ROCK/MLC2 signaling. Silencing of Smurf1 or expression
of its interfering mutants inhibited cell migration (81).
Interestingly, their in vivo studies showed that Smurf1 reduction
induces the mesenchymal-amoeboid transition, facilitates cell

motility and increases invasion and intravasation. However, this
reduction was insufficient to promote metastasis after cells have
entered the vessels.

In another study, induction of Smurf1 expression either
by EGF or by overexpression of MEK1, as well as Smurf1
overexpression, significantly increased migration and invasion
of breast carcinoma MDA-MB-231 cells, whereas knockdown of
Smurf1 suppressed the phenotype (82). These findings are in
agreement with results reported by Imamura’s group (24).

The pro-oncogenic role of Smurf1 was also noted in other
types of cancer. For example, suppression of Smurf1 expression
in human ovary carcinoma SK-OV-3 and OVCAR-3 cells
significantly decreases cell migration and invasion (83). Similar
results were also observed in prostate cancer cell models (84). In
addition, the authors demonstrated that expression of Smurf1 in
prostate cancer cells is regulated through the androgen receptor
(AR) signaling, which is critical for prostate cancer growth and
survival.

Another recently published study shows that Smurf1
expression is also triggered through estrogen signaling (85).
The authors also demonstrated that Smurf1 stabilizes estrogen
receptor alpha (ERα) in breast cancer cells, leading to increased
estrogen signaling and enhanced cell proliferation. These
findings suggest a forward feedback loop in Smurf1-ERα

regulation.
Smurf1 is also overexpressed in human gastric cancer

(GC) tissues (86). Moreover, Smurf1 expression levels were
shown to be positively associated with more advanced
tumor-node-metastasis (TNM) stage of GC, and inversely
correlated with patient survival. Knockdown of Smurf1 inhibited
proliferation, migration and invasion of GC cells, at least in
some GC cell models, while Smurf1 overexpression exacerbated
these phenotypes. Furthermore, the authors reported that
Smurf1-knockdown in GC cells markedly inhibits tumor
growth and liver metastasis in vivo. Mechanistically, they
linked the Smurf1 pro-oncogenic activities with the ability
of Smurf1 to negatively regulate the expression of DAB2IP,
a GTPase-activating protein (GAP) and a suggested tumor
suppressor (86).

The existence of similar Smurf1-regulated tumor promoting
mechanism was also observed in clear cell renal cell carcinoma
(ccRCC) cells (87). This mechanism was associated with the
ability of Smurf1 to promote proliferation, migration, and
invasion of ccRCC cells. In addition, the expression levels of
Smurf1 were found to be elevated both in ccRCC cell lines and
cancer tissues, and associated with worse patient survival.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this review, we highlighted and discussed the cancer related
biological functions of two C2-WW-HECT E3 ligases, Smurf1
and Smurf2. These proteins surfaced as influential, and under
some circumstances, as decisive cellular factors regulating
a plethora of cellular processes pertinent to cancer onset,
progression and therapy.

Frontiers in Oncology | www.frontiersin.org 8 August 2018 | Volume 8 | Article 295

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Koganti et al. Smurfs and Cancer

The currently available data stipulate that Smurf1 acts as an
oncogene, whereas Smurf2 operates both as a tumor suppressor
and a tumor promoting molecule, depending on the tumor stage,
type, molecular binding partners, and other still unidentified
factors.

It is now evident that apart from TGF-β/BMP signaling,
Smurfs regulate different signaling pathways and networks.
Understanding these networks and the Smurfs’ impact on their
components is important and should be further investigated.

Another line of investigation is elucidating the mechanisms
regulating expression, localization and functions of Smurfs.
Currently, these mechanisms remain elusive. Understanding of
these mechanisms is imperative in explaining the dual role of
Smurf2 in cancer and its impact on cancer progression and
treatment. In addition, the full spectrum of mechanisms and
networks operating under Smurf1/2 auspices is also currently
unknown.

Recently, we have shown that Smurf2 in addition to its
ability to control protein homeostasis through the proteasomal
breakdown, targets some cellular proteins for autophagic-
lysosomal turnover (88). Specifically, we found that Smurf2
regulates selective autophagy of nuclear lamins, in particular
laminA, and itsmutant form progerin (Figure 5). The expression
of progerin underlies the pathogenesis of the devastating
premature aging syndrome, HGPS (Hutchinson-Gilford progeria
syndrome). Remarkable, in addition to HGPS, progerin also
accumulates in cells during physiological aging and supposedly in
cancer, where it could promote genomic instability and increase
tumorigenesis (89–91). This association suggests that targeting
progerin through the Smurf2-mediated autophagy might be
a promising direction to eradicate tumor cells, though more
research is needed in this regard.

Smurf1 has also been implicated in selective autophagy, in
particular in eliminating in human cells of Mycobacterium
tuberculosis (92) (Figure 5). Whether Smurf1 can also mediate
the autophagic degradation of endogenous cellular proteins is
currently unknown.

Both the ubiquitin-proteasome and autophagic-lysosomal
degradation pathways are intrinsically involved in cancer
initiation, progression and cure. Thus, understanding
mechanisms operating in the intersection of these protein
turnover machineries could provide novel therapeutic targets
and paradigms in cancer diagnosis and treatment. Further efforts
should be directed to characterize the involvement of Smurf
proteins in these processes. Another important direction that
we believe should be investigated is elucidating whether and
how targeting of Smurfs by pharmacological intervention (e.g.,
by Smurf catalytic inhibitors) affect the ability of tumor cells to
escape the destructive impact of anticancer drugs and therapies
used in clinics. This is a more long-term goal as such compounds
are currently unavailable.
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