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Fat mass and obesity-associated protein (FTO) single-nucleotide polymorphisms (SNPs)

have been linked to increased body mass and obesity in humans by genome-wide

association studies (GWAS) since 2007. Although some recent studies suggest that the

obesity-related SNPs in FTO influence obesity susceptibility likely through altering the

expression of the adjacent genes such as IRX3 and RPGRIP1L, rather than FTO itself,

a solid link between the SNP risk genotype and the increased FTO expression in both

human blood cells and fibroblasts has been reported. Moreover, multiple lines of evidence

have demonstrated that FTO does play a critical role in the regulation of fat mass,

adipogenesis, and body weight. Epidemiology studies also showed a strong association

of FTO SNPs and overweight/obesity with increased risk of various types of cancers.

As the first identified messenger RNA N6-methyladenosine (m6A) demethylase, FTO has

been shown recently to play m6A-dependent roles in adipogenesis and tumorigenesis

(especially in the development of leukemia and glioblastoma). Given the critical roles of

FTO in cancers, the development of selective and effective inhibitors targeting FTO holds

potential to treat cancers. This mini review discusses the roles and underlying molecular

mechanisms of FTO in both obesity and cancers, and also summarizes recent advances

in the development of FTO inhibitors.

Keywords: fat mass and obesity-associated protein (FTO), obesity, cancer, mRNA N6-methyladenosine (m6A),

m6A demethylase, AML, GBM, FTO inhibitors

INTRODUCTION

As the first genome-wide association studies (GWAS)-identified obesity susceptibility gene, the
fat mass and obesity-associated gene (FTO) has been well known for the strong association of
the multiple single-nucleotide polymorphisms (SNPs) located in its intron 1 with risk of obesity
(1–10). Although there are some controversial reports regarding the association between FTO
SNPs and FTO expression (11–13), mouse model studies have shown the pivotal role of FTO
in the regulation of fat mass, adipogenesis, and body weight (14–20). The link between the
SNP risk genotype and increased FTO expression in human fibroblasts and blood cells has
also been demonstrated (21–23). Studies have demonstrated that a strong association exists
between FTO SNPs and/or overweight/obesity with the increased risk of various types of cancers
(24–29), implying a role of FTO in the pathogenesis of cancers. Indeed, the oncogenic role of
FTO has been reported in leukemia and glioblastoma (GBM), where FTO is highly expressed (30–
32). More importantly, FTO was reported as the first N6-methyladenosine (m6A) demethylase
of eukaryotic messenger RNA (mRNA) (33), and the functions of FTO in adipogenesis and
tumorigenesis have been linked to its m6A demethylase activity (30–32, 34). As the most abundant
internal modification in eukaryotic mRNAs, m6A usually occurs at the consensus motif of
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RRm6ACH ([G/A/U][G>A]m6AC[U>A>C]); enriched in 3′

untranslated region (UTR), gene coding regions, and especially
near stop codons (35, 36). The m6A modification is deposited
by the METTL3-METTL14-WTAP methyltransferase complex
(i.e., writer) (37–39) and can be removed by m6A demethylases
(i.e., erasers) such as FTO and ALKBH5 (33, 40). The m6A
modification functions as a post-transcriptional modulator of
gene expression by decreasing or increasing mRNA stability, or
promoting mRNA translation efficiency through its recognition
of different m6A reader proteins (41–48). The roles of m6A
modification and the associated machinery in the pathogenesis
of various types of cancers have been reported recently (30–
32, 48–59). This review focuses on the functions of FTO in
both adipogenesis and tumorigenesis and on the underlying
m6A-dependent mechanisms, along with a brief discussion of
recent advance in the development of FTO inhibitors and their
therapeutic potential to treat cancers.

ASSOCIATION OF FTO WITH
OVERWEIGHT/OBESITY AND ITS ROLE IN
ADIPOGENESIS

Obesity and overweight populations have become a global
crisis, with the numbers increasing every year in adults and
children. In 2015, there were 603 million adults and 108
million children who were diagnosed obese in 195 countries,
and the population suffering with obesity has increased two-
fold in over 70 countries during 25 years (60). Obesity is
commonly caused by inherited or behavioral factors (food intake,
physical activities, etc.), and it may induce other chronic diseases:
diabetes, heart disease, chronic kidney disease, bone disorders,
and many types of cancer (10, 26, 60). SNPs of FTO in intron
1 was first found to be associated with human obesity in
European populations in 2007 (1–3), and subsequently validated
by different groups in other populations including Asians (4–
6), Africans (7), Hispanics (8), and Native Americans (9, 10),
demonstrating a strong association between FTO SNPs in intron
1 (rs9939609, rs17817449, rs3751812, rs1421085, rs9930506,
and rs7202116) and overweight or obesity (61) (see Figure 1).
People carrying FTO risk alleles typically have a high body
mass index (BMI), which may be due to a higher food intake
(62, 63) and diminished food satiety (64), but not related to
energy expenditure (62). Meta-analysis studies (65–67) have
validated and confirmed that the influence of FTO variants
on obesity risk is attenuated through physical activities as well
as dietary and drug-based interventions (68, 69), although the
underlying mechanism remains elusive. Some recent studies have
suggested that the association between FTO SNPs in intron
1 and obesity might be owing to their potential influence on
expression of IRX3, IRX5, and RPGRIP1L, rather than on their

Abbreviations: FTO, the fat mass and obesity-associated protein; SNP, single-

nucleotide polymorphism; GWAS, genome-wide association study; mRNA,

messenger RNA; m6A, N6-methyladenosine; GBM, glioblastoma; UTR,

untranslated region; BMI, body mass index; CSCC, cervical squamous cell

carcinoma; AML, acute myeloid leukemia; R-2HG, R-2-hydroxyglutarate; GSCs,

glioblastoma stem(-like) cells; ATRA, all-trans-retinoic acid; AZA, azacitidine;

αKG, α-ketoglutarate; MA, meclofenamic acid.

expression of FTO (11–13). However, there is also compelling
evidence showing that such FTO SNPs are associated with
increased expression of FTO (21–23, 70, 71). Moreover, animal
model studies have shown that FTO plays a critical role in
regulating fat mass, adipogenesis, and total body weight (14–
20). For instance, FTO-deficient mice develop postnatal growth
retardation and show a reduction in both adipose tissue and
lean body mass (14). Conversely, overexpression of FTO in mice
develops obesity by increased food intake (15), demonstrating the
pivotal role of FTO expression itself in obesity (58). Therefore,
there is no doubt that there is still a robust association of the
FTO expression level/function with obesity and increased body
mass, though the underlying mechanism has yet to be fully
elucidated.

The recent discovery of FTO acting as an m6A eraser paved a
novel way to reveal themolecularmechanism that links FTOwith
the increased susceptibility to overweight and obesity. A study in
2013 showed that the FTO obesity-risk allele (rs9939609 T/A) is
associated with increased FTO expression, reduced m6A ghrelin
mRNA methylation, and increased ghrelin expression (22).
Ghrelin, the “hunger hormone,” is a key mediator of ingestive
behavior, and its increased expression results in increased food
intake and a preference for energy-dense foods, tending to lead
to overweight and obesity (22, 72). A later study also reported
that the FTO genotype (the AA (risk) genotype at the rs9939609
locus of FTO) impacts food intake and corticolimbic activation
(73).

Excessive accumulation of adipose tissue under obese
condition is a main mechanism for storage of excess energy (61).
It has been reported that a positive correlation exists between the
FTO level in subcutaneous adipose tissue and BMI, with a higher
FTO mRNA level in adipose tissue from obese individuals than
that in control populations (61, 74, 75). Zhao et al. demonstrated
that FTO-mediatedm6Ademethylation regulatesmRNA splicing
and plays a critical role in the regulation of adipogenesis (34).
They showed that FTO expression is inversely correlated with
the m6A level during adipogenesis, and FTO depletion blocks
differentiation and wild-type FTO (but not FTOmutant) restores
adipogenesis; mechanistically, FTO mediates differentiation
through the regulation of m6A levels around splice sites, thereby
controlling the exonic splicing of the adipogenic regulator
factor RUNX1T1 (34, 76). Similarly, another study also revealed
that the demethylase activity of FTO is functionally required
for pre-adipocyte (3T3-L1) differentiation (77). Furthermore,
Merkestein et al. showed FTO regulates adipocyte differentiation
in vivo, and further revealed that FTO enhances adipocyte
numbers during mitotic clonal expansion at an early stage of
adipogenesis (19). The compelling evidence of these studies
supports FTO-mediated m6A demethylation playing a pivotal
role on adipogenesis regulatory.

ASSOCIATION OF FTO WITH CANCERS
AND ITS ONCOGENIC ROLE IN BOTH
TUMORIGENESIS AND DRUG RESPONSE

Epidemiology studies show that FTO SNPs (including rs9939609,
rs17817449, rs8050136, rs1477196, rs6499640, rs16953002,
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FIGURE 1 | FTO SNPs associated with obesity. FTO SNPs in intron 1 (rs9939609, rs17817449, rs3751812, rs1421085, rs9930506, and rs7202116) have a strong

association with overweight or obesity (61).

rs11075995, and rs1121980) and overweight/obesity are
strongly associated with an increased risk of various types
of cancers, including breast cancer, prostate cancer, kidney
cancer, endometrial cancer, pancreatic cancers, lymphoma, and
leukemia (24–29). For instance, several SNPs of intron 1 of FTO
(including rs7206790, rs8047395, rs9939609, and rs1477196) are
all significantly associated with breast cancer risk, and rs1477196
shows the strongest association (29). Notably, SNPs outside of
intron 1 of FTO could also be associated with cancer risk. For
example, rs16953002 of intron 8 of FTO has been identified to
be significantly associated with melanoma risk (28). It is possible
that the obesity-associated SNPs lead to increased expression
of FTO, which in turn contributes (at least to some extent) to
an increased susceptibility to overweight and obese, as well as
an increased risk of cancer development (30). Indeed, several
recent studies have suggested that FTO plays an oncogenic role
in various types of cancers such as leukemia, brain tumor, breast
cancer, gastric cancer, endometrial carcinoma, and cervical
squamous cell carcinoma (CSCC) where it is overexpressed
(30–32, 78–82). Li et al. provided the first in vivo animal model
study demonstrating a critical oncogenic role of FTO in cancer
(30). They reported that FTO is highly expressed in certain
subtypes of acute myeloid leukemias (AMLs) such as those
carrying t(11q23)/MLL-rearrangements, t(15;17)/PML-RARA,
FLT3-ITD, and/or NPM1 mutation (30). They further showed
that forced expression of FTO significantly promoted human
AML cell survival and proliferation and inhibited human
AML cell differentiation and apoptosis, and forced expression
of FTO significantly promoted leukemogenesis in mice (30).
The opposite was true when endogenous expression of FTO
was depleted (30). Subsequently, Su et al. reported that by
the inhibition of FTO’s oncogenic role, R-2-hydroxyglutarate
(R-2HG), a previously well-recognized oncometabolite (83–90),
actually exhibits a broad and intrinsic antitumor activity in AML
and GBM (31). Cui et al. reported that targeting glioblastoma
stem(-like) cells (GSCs) with a FTO inhibitor in mice could

significantly inhibit the development of GSC-initiated tumor
in vivo (32). It was also reported that the depletion of FTO
expression significantly inhibited cell proliferation, migration,
and invasion of human gastric cancer cell lines, and the opposite
phenomenon was observed when FTOwas forced expressed (80).

FTO has also been reported to affect the response of cancer
cells to drug treatment. Li et al. showed that a knockdown of FTO
could significantly enhance the response of human AML cells to
all-trans retinoic acid (ATRA) treatment and promote ATRA-
induced AML cell differentiation (30). Su et al. reported that
analogous to FTO depletion, R-2HG treatment also sensitized
human AML cells to standard chemotherapeutic agents such
as ATRA, azacitidine (AZA), Decitabine, and Daunorubicin
in vitro (31). They further showed that R-2HG treatment also
sensitized human AML cells to Decitabine and Daunorubicin
in vivo in immunodeficient xenotransplantation recipient mice
(31). Similarly, Zhou et al. reported that FTO enhanced the
resistance of CSCC cells to chemo-radiotherapy (82). Consistent
with the function of FTO in drug resistance, it was reported
that overexpression of FTO is a marker for poor prognosis
in cancers such as gastric cancer and endometrial carcinoma
(80, 81).

Mechanistically, the roles of FTO in tumorigenesis and drug
response have been linked to its m6A demethylase activity.
Li et al. reported that FTO negatively regulates expression of
a set of tumor suppressor target genes, such as ASB2 and
RARA [two genes implicated in leukemia cell proliferation
and drug response (91–93)], through post-transcriptionally
modulating m6A abundance of the target mRNA transcripts
and thereby affecting their stability (30). Su et al. further
reported that FTO also positively regulates expression of a
set of oncogenic targets such as MYC and CEBPA through
an m6A-dependent mechanism (31). The suppression effect of
the FTO inhibitor on GSC growth/proliferation and survival
is also believed to be owing to the inhibition of the m6A
demethylase activity of FTO (32). In CSCC, FTO has been
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reported to enhance chemo-radiotherapy both in vitro and
in vivo through positively regulating expression of β-catenin
(CTNNB1) via an m6A-dependent mechanism (82). Collectively,
evidence is emerging that FTO plays critical oncogenic roles
in various types of cancers as an m6A demethylase, and
post-transcriptionally regulates expression of a number of
functionally important target genes through m6A-dependent
mechanisms.

IDENTIFICATION OF SMALL MOLECULE
INHIBITORS TARGETING FTO

Since the discovery of FTO as an m6A demethylase in 2011
(33), efforts have been made to identify selective small-molecule
inhibitors targeting FTO’s m6A demethylase activity (94–98).
FTO belongs to the AlkB family, and the crystal structure of
FTO resolved in 2010 (99) shows a strong Fe (II) and α-
ketoglutarate (αKG) dependent activity as a dioxygenase, at N-
terminals. Chen et al. reported in 2012 that rhein, a natural
product, competitively binds to an FTO active site, and exerts
an inhibitory activity on FTO-dependent m6A demethylation
in cells, through directly disrupting the bindings between FTO
and the m6A substrate (94). In 2014, Zheng et al. developed
a selective FTO inhibitor that also selectively inhibits the m6A
demethylase activity of FTO and increases the m6A levels
in cells (95); a later study showed that this FTO inhibitor
(i.e., MO-I-500) could significantly inhibit the survival and/or
colony formation of human SUM149 cells, a triple-negative
inflammatory breast cancer cell line (97). Meclofenamic acid
(MA), a nonsteroidal anti-inflammatory drug, was discovered
to specifically inhibit FTO’s m6A demethylase activity, while
paring ALKBH5 (96). MA has been further proved to
effectively inhibit the survival and growth of GBM cells through
suppression of the m6A demethylase activity of FTO (32).
In addition, Compound 12 has been developed based on a
α-KG tethering strategy, which could selectively inhibit FTO

over other AlkB subfamilies (including ALKBH5) and α-
KG oxygenases (98). Su et al. showed that R-2HG is also
an inhibitor of FTO that binds direct to FTO protein and
significantly inhibits the m6A demethylase activity of FTO in
a dose-dependent manner, leading to a significant increase of
global m6A abundance in R-2HG-treated sensitive leukemia
cells (31).

DISCUSSION AND CONCLUSIONS

A growing body of evidence suggests that FTO plays critical
roles in both overweight/obesity and cancers. As the first
m6A demethylase identified, FTO has been shown to regulate
expression of a number of important target genes through post-
transcriptionally reducing their m6A levels and thereby affecting
the stability and/or splicing of target mRNAs, in turn leading to
promoting adipogenesis, tumorigenesis, and drug resistance of
cancer cells. Therefore, although FTO may regulate expression
of distinct sets of target mRNAs in different cell types, it
affects overweight/obesity and cancers likely through similar,
m6Ademethylase activity-dependentmechanisms (see Figure 2).
The strong association between FTO SNPs or overweight/obesity
with an increased risk of cancers suggests that the obesity-
associated function of FTO in metabolism may also contribute
to its effects in cancers (Figure 2). Indeed, the FTO gene variant
related to cancer risk is unlikely independent of adiposity
(100). In addition, it was reported that by targeting the
PI3K/AKT signaling, FTO influences breast cancer cell energy
metabolism including lactic acid, ATP, pyruvate kinase activity,
and hexokinase activity (79).

Given the essential role of FTO in cancer development and
drug resistance, targeting FTO holds therapeutic potential in
treating cancers in which FTO is overexpressed. Thus far, FTO
inhibitors have been tested in vitro and in vivo, and show
potent antitumor effects in treating both GBM and breast
cancer (32, 97). Similarly, Su et al. showed that by targeting

FIGURE 2 | Schematic illustration of the roles of FTO in RNA m6A modification, overweight/obesity, and tumorigenesis/drug response. As an m6A demethylase, FTO

post-transcriptionally regulates expression of its critical target genes and thereby contributes to overweight/obesity (likely through affecting adipogenesis, food intake,

and energy metabolism) and cancers (including tumorigenesis and drug response). The obesity-associated function of FTO in metabolism may also contribute to

cancers. Inhibition of FTO-mediated m6A demethylation by various inhibitors holds therapeutic potential to treat FTO-overexpressing cancers. MA, meclofenamic

acid; 2HG, 2-hydroxyglutarate; C12, Compound 12 (98).
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FTO directly, R-2HG exhibits a strong antitumor effect in
both leukemia and GBM, especially when in combination with
standard chemotherapeutic agents (31). These studies provide
proof-of-concept evidence demonstrating that FTO is a realistic
druggable target in treating cancers. In the near future, when
more effective and selective inhibitors of FTO are developed,
they could be applied, especially in combination with other
therapeutic agents, into the clinic to treat various types of cancers.
On the other hand, although FTO also plays a role in obesity, it
was argued that FTO might not be a good pharmaceutical target
to treat obesity, because the factors leading to obesity might be
more complex (101, 102). Thus, a deeper understanding of the
factors contributing to obesity could lead to the development of
therapeutics targeting obesity.
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