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Abstract
Traditionally, genetic abnormalities detected by conventional karyotyping,
fluorescence   hybridization, and polymerase chain reaction dividedin situ
childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into
well-established genetic subtypes. This genetic classification has been
prognostically relevant and thus used for the risk stratification of therapy.
Recently, the introduction of genome-wide approaches, including massive
parallel sequencing methods (whole-genome, -exome, and -transcriptome
sequencing), enabled extensive genomic studies which, together with gene
expression profiling, largely expanded our understanding of leukemia
pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been
described. Exact identification of recurrent genetic alterations and their
combinations facilitates more precise risk stratification of patients.
Discovery of targetable lesions in subsets of patients enables the
introduction of new treatment modalities into clinical practice and stimulates
the transfer of modern methods from research laboratories to routine
practice.
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Introduction
Traditionally, B-cell precursor (BCP) acute lymphoblastic leuke-
mia (ALL) has been classified into several distinct genetic 
subtypes defined by recurrent structural or numerical chromo-
somal alterations detected by cytogenetic methods (karyotyping  
and fluorescence in situ hybridization [FISH]), polymerase 
chain reaction (PCR), and flow cytometry (measurement of 
DNA content corresponding to ploidy)1. Six major genetic sub-
types, altogether accounting for 70% to 75% of BCP-ALL, have 
been defined by high hyperdiploidy (51 to 67 chromosomes per 
leukemic cell), hypodiploidy (fewer than 45 chromosomes per 
leukemic cell), and ETV6-RUNX1, TCF3-PBX1, BCR-ABL1, 
and KMT2A gene-involving fusions. These genetic aberra-
tions have been characterized as first leukemogenic hits which 
are present in all cells comprising the leukemic clone, defin-
ing its key biological features as well as impacting the clinical  
character of respective BCP-ALL subtypes. Their identification 
has remained important until today for diagnosis specification  
and, in some of them, for risk classification and targeted therapy2.

Rapid progress of modern genetic techniques yielded impor-
tant discoveries in various human diseases, including BCP-
ALL. Genome-wide profiling using array-based comparative 
genomic hybridization, single-nucleotide polymorphism arrays, 
and massive parallel sequencing (MPS) of whole genomes, 
whole exomes, and whole transcriptomes (RNA sequencing, 
or RNA-seq) resulted in the identification of novel recurrent  
genetic aberrations and patterns. Among them, several prog-
nostically significant and druggable aberrations which have 
started to be implemented into risk-stratification algorithms 
and targeted therapy have been described3. Moreover, together 
with genome-wide gene expression profiling on microarrays 
and by RNA-seq, modern genomic studies led to the identifi-
cation of novel biologically and clinically relevant BCP-ALL 
subtypes4. The so-called B-other ALL, a genetically and clini-
cally heterogeneous subset of leukemias accounting for up 
to 30% of BCP-ALL (herein defined by negativity for all six 
above-mentioned classifying aberrations), was further dissected 
and better characterized. This review focuses on recent find-
ings related to five novel BCP-ALL subtypes and selected  
clinically relevant genetic aberrations/patterns.

New BCP-ALL subtypes
Similar to the above-mentioned “classical” BCP-ALL subtypes, 
the five novel subtypes are distinguishable by their gene expres-
sion signatures; however, only three of them are also defined by the  
presence of a subtype-specific genetic aberration.

The first subtype, BCR-ABL1-like/Philadelphia chromosome-like 
(Ph-like) ALL (hereafter BCR-ABL1-like ALL), was already 
described in the “pre-MPS” era thanks to gene expression pro-
filing on microarrays5,6. It is defined by a gene expression 
signature similar to that of BCR-ABL1-positive ALL. This 
gene expression signature likely results from the activation 
of kinase signaling pathways, which, however, is not trig-
gered by a single specific genetic aberration as in the case  
of BCR-ABL1-positive ALL. On the contrary, a very wide  
spectrum of different genetic aberrations likely inducing this 

signature has been described in BCR-ABL1-like ALL7–11. The 
aberrations affect genes encoding kinases (for example, JAK1, 
JAK2, JAK3, ABL1, ABL2, and TYK2), cytokine and growth  
factor receptors (for example, CRLF2, PDGFRB, EPOR, IL7R, 
CSF1R, NTRK3, and FLT3), and signaling mediators and  
regulators (KRAS, NRAS, BRAF, PTPN11, NF1, and SH2B3).  
These aberrations can be of various types, including both 
small-scale (deletions, insertions, substitutions, and complex 
mutations) and large-scale (chromosomal translocations and 
deletions) mutations which may generate fusion genes; of note, 
the majority of kinase/cytokine-receptor genes (JAK2, ABL1, 
and so on) can be fused to several different fusion partners. 
Such “kinase-signaling aberrations” can be found in 39% to 
91% of BCR-ABL1-like ALL10,12,13; however, some of them also  
occur in B-other ALL not classified as BCR-ABL1-like9,14,15.

This ALL subtype was discovered independently by two stud-
ies. Although BCR-ABL1-like and Ph-like ALL, described by 
Dutch and American investigators, respectively, are now con-
sidered a single subtype, their definition is not fully consistent5,6. 
Some patients can be classified discordantly on the basis  
of classification approaches used by these two studies15. Sev-
eral factors may contribute to this discrepancy, including 
methodological differences in gene expression data analysis, 
different composition of discovery cohorts (with respect to  
representation of various BCP-ALL subtypes, risk groups, and  
ethnicities), and the limited specificity of BCR-ABL1 gene  
expression signature.

BCR-ABL1-like ALL is the only novel subtype that was already 
added as a provisional entity into the 2016 update of World 
Health Organization (WHO) ALL classification16. It occurs 
in about 10% to 15% of pediatric BCP-ALL and accounts for 
about 15% to 35% of the B-other ALL group and its frequency 
increases with age. Both above-mentioned BCR-ABL1-like 
discovery studies reported its inferior outcome5,6. Although  
recent studies demonstrate that the overall survival of children 
with Ph-like ALL treated according to protocols employing 
minimal residual disease (MRD)-based risk stratification is not 
significantly inferior to that of non-BCR-ABL1-like cases, such 
patients commonly exhibit inferior early response to therapy 
requiring treatment intensification13. Of note, it has been shown 
that outcome depends on the genomic context: the type of 
“kinase aberration” or presence of the IKZF1 gene deletion 
(which has been recognized as an unfavorable prognostic  
factor in BCP-ALL as detailed below)10,17.

The ETV6-RUNX1-like subtype was described within B-other 
ALL on the basis of tight co-clustering of some ETV6-RUNX1-
negative cases with ETV6-RUNX1-positive ALL according to 
gene expression profiling18. All cases belonging to this ALL  
subtype which have been described so far have a common 
genetic denominator: aberrations of the ETV6 gene18,19; however, 
these are not specific for the ETV6-RUNX1-like ALL and occur  
in other subtypes as well18,19. The ETV6 aberrations are  
usually deletions, but other gene-disrupting structural aber-
rations that may result in fusion genes were also described.  
Various alterations of IKZF1 are also frequently detected within 
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this subtype18,19. Biological proximity to ETV6-RUNX1-positive 
ALL is further supported by a similar expression pattern of two 
cell surface markers—CD27 and CD44—which can be measured 
by flow cytometry. Unlike the vast majority of other BCP-ALL 
subtypes, both ETV6-RUNX1-like and ETV6-RUNX1-positive 
ALL express CD27 but are negative or only partially or weakly 
positive for CD4419,20. Such genotype–phenotype correlation 
is rather rare in BCP-ALL. Two studies describing this subtype 
so far indicate that it represents 5% to 12% of B-others 
and 1% to 3% of all BCP-ALL cases18,19. ETV6-RUNX1-like 
ALL does not appear to be associated with inferior prognosis;  
however, additional studies on larger cohorts are needed to  
reliably determine whether the prognosis of this novel subtype is as 
favorable as that of ETV6-RUNX1-positive ALL18,19.

DUX4-rearranged ALL was originally described as a B-other 
ALL subset with specific gene expression profile and fre-
quent deletions of the ETS transcription factor gene ERG21,22. 
Only recently, these leukemias have been characterized by a 
unique genetic aberration: rearrangements of the gene encoding  
transcription factor DUX4 (DUX4r)18,23–25. These rearrange-
ments are most frequently insertions of DUX4 into the IGH gene,  
resulting in the IGH–DUX4 fusion. The expression of DUX4, 
which is physiologically silenced in somatic tissues, is acti-
vated in DUX4r-ALL by its juxtaposition under the control 
of an ectopic regulatory element. The deletions of ERG can 
be detected in about 50% to 63% of cases18,25. Although the  
rearrangement of DUX4 is an early, leukemia-initiating event24,25, 
the ERG deletion is frequently a subclonal, thus secondary,  
aberration26,27. It has been demonstrated that DUX4 binds to 
and deregulates the transcription of ERG in DUX4r-ALL; it 
induces the expression of alternative ERG variant and perhaps 
also renders the ERG gene prone to deletions25. Owing to 
the small size of the inserted chromosomal fragment18,24, the  
IGH–DUX4 fusion (and other DUX4r) cannot be easily screened 
by FISH. Similarly, high variability of genomic breakpoints 
makes a potential fusion screening by PCR challenging. Thus, 
so far, this ALL subtype has been determined on the basis of its  
unique expression signature or presence of DUX4 fusion  
transcripts detected by RNA-seq18,23–25. DUX4r-ALL represents 
4% to 8% of BCP-ALL and 15% to 30% of B-others. Before 
the DUX4r-ALL discovery, it had been shown that, despite 
the association with slow early treatment response and with  
prognostically unfavorable IKZF1 deletions, ERG deletions 
were associated with favorable outcome26,27. Two recent studies 
reported favorable outcome also for DUX4r-ALL18,25. How-
ever, although the favorable outcome of BCP-ALL with 
ERG deletions seems to derive from that of the DUX4r-ALL  
subtype, the outcome of DUX4r-ALL and potential prognostic  
impact of ERG deletions within this subgroup should be  
further studied in larger and uniformly treated cohorts of 
patients. Interestingly, ERG deletions have been associated with 
an aberrant expression of CD2 and the tendency of leukemic 
blasts to switch immunophenotype from BCP to monocytoid 
at the beginning of treatment27,28. During this lineage switch, 
B lineage or progenitor markers such as CD19 and CD34  
(or both) are lost, possibly hampering B-cell-oriented flow 
cytometric detection of minimal residual disease. Similar to 

the outcome, the likely association of lineage switch with the 
DUX4r-ALL subtype and impact of the ERG deletions on this  
association remain to be elucidated by future studies.

ALL with the ZNF384 gene-involving fusions (ZNF384r) 
represents another novel subtype of BCP-ALL23,24,29,30. The 
ZNF384 gene, encoding transcription factor zinc-finger protein 
384, can be fused to at least nine different partners (most fre-
quently TCF3, EP300, or TAF15) in BCP-ALL. ZNF384r-ALL  
represents 1% to 5% of BCP-ALL and 5% to 10% of B-others. 
The unique gene expression signature of this ALL subtype is 
enriched for hematopoietic stem cell and immature myeloid line-
age features and reflects upregulation of the JAK-STAT signaling  
pathway30,31. ZNF384r-ALL also frequently displays a distinct 
immunophenotype compared with the majority of other BCP-
ALL subtypes; the immunophenotypically distinct ZNF384r-
ALL cases do not express (or only weakly express) CD10 
marker but express myeloid markers CD13 or CD33 (or both) 
and may be even classified as mixed-phenotype acute leukemias 
on the basis of EGIL (European Group for the Immunological 
Characterization of Leukaemias) or WHO criteria30,32–34. The  
clinical features of ZNF384r-ALL may vary depending on 
ZNF384 fusion partner30. However, based on published studies  
reporting relatively small numbers of patients so far, ZNF384r- 
ALL does not appear to be a high-risk subtype in children30,34.

The last of the five novel ALL subtypes is defined by rearrange-
ments of the MEF2D gene (MEF2Dr)23,24,29. So far, at least 
six distinct MEF2D-involving fusion genes (with BCL9 gene 
being the most frequent fusion partner) have been described in 
this ALL subtype18,23,29. MEF2D encodes a transcription factor 
that plays a role in muscle and neuronal cell differentiation 
but is also expressed throughout B-cell differentiation35. The 
specific gene expression signature suggests a later differen-
tiation stage of MEF2Dr-ALL compared with other BCP-ALL  
subtypes29. Immunophenotyping by flow cytometry may also 
reveal specific features pointing toward this ALL subtype; 
MEF2Dr-ALL cells typically have relatively weak expression 
of CD10 and high expression of CD3829. MEF2Dr-ALL rep-
resents 1% to 3% of childhood BCP-ALL and 2% to 5% of 
B-others and is diagnosed more often in adolescents than in  
children. The outcome of MEF2Dr-ALL seems to be inferior 
to that of other ALL subtypes29,36. Alternative therapy employ-
ing histone deacetylase (HDAC) inhibitors which target HDAC9 
(one of the MEF2Dr-ALL signature genes) and which were 
already successfully tested in vitro could potentially improve  
its outcome in the future29.

About 40% of B-other ALL cannot be classified into any of 
the five novel BCP-ALL subtypes. Various recurrent genomic 
aberrations can be found in patients belonging to this subset; 
some of them were already identified decades ago and others 
more recently. These include, for example, intrachromosomal 
amplification of chromosome 21 (iAMP21)37, dic(9;20)38,  
IGH–MYC39 and TCF3–HLF40 fusions, CRLF241,42, NUTM129, or 
PAX518,23,29 gene-involving fusions, and intragenic amplification 
of PAX5 (PAX5amp)43. Although some of them likely repre-
sent primary lesions and could be considered subtype-defining 
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aberrations, others frequently represent secondary aberra-
tions or co-occur with established primary lesions or across 
established BCP-ALL subtypes. Consequently, certain hetero-
geneity exists in the classification of BCP-ALL into genetic/ 
biological subtypes throughout the literature as well as in 
the definition of B-other ALL, which thus should always be 
explicitly described when used. One example of a potentially  
confusing situation is the classification of ALL with iAMP21. 
This ALL subset was added provisionally into the WHO 2016 
ALL classification together with BCR-ABL1-like ALL16,  
although it has been shown that these two ALL subsets partly 
overlap15. Moreover, though it has been suggested to represent 
a primary lesion44, iAMP21, in a minor proportion of patients, 
co-occurs with other primary aberrations such as BCR–ABL1 
or ETV6–RUNX1 fusions. Similarly, CRLF2 rearrangement 
(CRLF2r) that is sometimes used to define the subset of patients 
within B-other ALL45 is frequently a secondary aberration46  
and also occurs across several BCP-ALL subtypes (BCR-ABL1- 
positive ALL, BCR-ABL1-like ALL, and hyperdiploid and hypodip-
loid ALL)11,41,47,48. Nevertheless, identification of these aberra-
tions is clinically relevant, as some of them were proven to have 
unfavorable prognostic impact and thus influence risk stratifica-
tion and therapy (for example, iAMP2149,50 and TCF3–HLF51) 
whereas in others the suggested prognostic impact needs  
further validation (for example, PAX5amp52). Importantly, vari-
ous aberrations may qualify patients for a targeted therapy  
(for example, CRLF2r) as further discussed below.

New therapeutically relevant aberrations/categories
A variety of novel druggable lesions, especially of kinase- 
activating aberrations, have been described thanks to the intro-
duction of MPS in recent years. As already mentioned above, 
the kinase-activating lesions are highly enriched in the BCR-
ABL1-like ALL subtype9,10,15. A large proportion of these  
aberrations can be assigned into one of two functional classes 
according to the affected signaling pathway: JAK/STAT class 
and ABL class10,17,53. The more frequent JAK/STAT class aber-
rations comprise aberrations affecting CRLF2, JAK1, JAK2, 
JAK3, EPOR, IL7R, and SH2B3 genes and can be targeted by the 
JAK inhibitor ruxolitinib. The most frequently affected CRLF2 
gene encodes one of two subunits of heterodimeric receptor 
for thymic stromal lymphopoietin. In addition to constitutively 
activating F232C mutation54,55, two types of CRLF2-involv-
ing fusion have been described: IGH–CRLF2, which results  
from interchromosomal translocation, and P2RY8–CRLF2, which 
is caused by deletion in the PAR1 region on gonosomes41,42. 
Both fusions lead to an overexpression of intact CRLF2 pro-
tein on the cell surface, which can be reliably detected by flow 
cytometry42,56. Thus, with the use of anti-CRLF2 antibody, 
CRLF2r-positive patients (who represent up to 17% of B-other 
ALL18 and who might be considered for targeted therapy by rux-
olitinib) can be easily identified during diagnostic immunophe-
notyping. The second class of kinase-activating aberrations, the  
ABL class, comprise ABL1, ABL2, PDGFRB, PDGFRA, and 
CSF1R gene-involving fusions. These aberrations can be inhib-
ited by tyrosine-kinase inhibitors (TKIs) such as imatinib or 
dasatinib10, both of which have already become an inherent  
component of the treatment of pediatric BCR-ABL1-positive  

ALL57. Aberration of additional receptor and non-receptor 
kinase genes (for example, NTRK3, TYK2, DGKH, and PTK2B) 
that do not belong to these two classes but that at least in some 
cases can be targeted by known inhibitors can be also detected, 
though rarely, in BCR-ABL1-like ALL10. In addition to these 
lesions associated with the BCR-ABL1-like phenotype, aber-
rations resulting in the activation of the Ras/Raf/MAPK  
pathway (hereafter, Ras pathway) occur frequently across  
various BCP-ALL subtypes58–62. Activating point mutations 
of the KRAS and NRAS genes are the most abundant, whereas 
mutations of the FLT3, PTPN11, NF1, and BRAF genes occur 
less frequently. It has been shown that leukemic cells with Ras  
pathway mutations are sensitive to MEK inhibitors in vitro63,64.

Sensitivity tests performed in vitro and in patient-derived 
xenografts provided a solid rationale for prospective clinical 
testing of TKIs in BCP-ALL with novel kinase-activating 
aberrations17,53. However, a relatively limited number of such  
children already treated by TKIs have been reported in the  
literature so far10,14,65–73. Although several case reports described 
good response to ABL class inhibitors in patients with  
ABL1/ABL2 or PDGFRB gene-involving fusions10,66,67,70–72,74 and  
overall results are generally encouraging, in some patients the  
TKI-involving treatment failed to induce long-term remis-
sion. This can be at least partially due to the fact that TKIs 
were added to treatment only upon diagnosis of disease  
resistance/relapse. Additionally, cases of secondary TKI resist-
ance caused by mutations in targeted kinase (that is, by the  
most common mechanism of resistance known in BCR-
ABL1-positive leukemias) have already been described75,76. 
The first clinical trials have been initiated recently which 
use frontline TKIs added to chemotherapy backbone for 
selected groups of patients with kinase-activating lesions  
(ClinicalTrials.gov Identifier: NCT03117751 sponsored by 
St. Jude Children’s Research Hospital, Memphis, TN, USA; 
ClinicalTrials.gov Identifier: NCT02420717 sponsored by MD 
Anderson Cancer Center, Houston, TX, USA; ClinicalTri-
als.gov Identifier: NCT02883049 sponsored by the National  
Cancer Institute, Rockville, MD, USA; and ClinicalTrials.gov 
Identifier: NCT03020030 sponsored by the Dana-Farber 
Cancer Institute, Boston, MA, USA). Importantly, several  
clinical and biological aspects should be considered in the  
strategies for prospective TKI testing in newly diagnosed  
BCP-ALL. It should be discussed carefully whether it is  
justified to use TKIs in all children with any targetable kinase- 
activating aberration, whether they should be used only in  
children harboring a lesion unambiguously associated with  
unfavorable outcome (similar to BCR–ABL1 fusion), or 
whether the TKIs should be reserved for patients with worse 
early response to treatment or with resistant disease, where the  
potential benefits most likely outweigh an increase of treatment 
toxicity77. Moreover, it is important to consider that while some 
of the kinase and cytokine-receptor gene alterations are supposed  
to represent founding lesions present in all leukemic cells 
and essential for their survival10,78–80, some aberrations 
may be either founding or secondary lesions (for example, 
CRLF2r) and others are typically secondary subclonal lesions  
(for example, JAK/RAS gene mutations), possibly without a 
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resistance- or relapse-driving role, thus probably representing  
less-suitable therapeutic targets46,81.

Deletions of the IKZF1 gene (IKZF1del) encoding lymphoid 
transcription factor Ikaros occur in 9% to 15% of BCP-ALL and 
more frequently in B-other, BCR-ABL1-positive, and hypodiploid 
ALL compared with remaining subtypes17,43,59,82,83. In 2009, the 
IKZF1del was associated with poor outcome6; subsequently, 
multiple studies confirmed its negative prognostic impact in 
BCP-ALL82–92. These findings stimulated the incorporation  
of IKZF1del into risk-stratification algorithms as a factor  
qualifying for treatment intensification in some ALL trials 
(ClinicalTrials.gov Identifier: NCT03020030 sponsored by the 
Dana-Farber Cancer Institute and ClinicalTrials.gov Identifier: 
NCT02716233 sponsored by Assistance Publique - Hôpitaux 
de Paris, France). However, partially discrepant findings of indi-
vidual studies showed that the prognostic impact of IKZF1del  
(its strength and independence on other known risk fac-
tors) depends on, for example, risk-stratification algorithms, 
applied therapy, and early treatment response. Moreover,  
it was revealed that it is modified by the presence of other 
genetic lesions. First, it was shown that deletions in the ERG 
gene (ERGdel) attenuate the negative prognostic impact of 
IKZF1del26,27; a subsequent study demonstrated that other recur-
rent deletions may have the opposite effect93. These findings 
led to the establishment of the IKZF1plus category93, defined 
as IKZF1del with concurrent deletion of PAX5 or CDKN2A or  
CDKN2B genes or deletion of PAR1 region (resulting in 
P2RY8–CRLF2 fusion gene) or with a combination of these, 
in the absence of ERGdel. The IKZF1plus genomic pattern 
occurs in 6% of BCP-ALL, is associated with inferior outcome 
in patients with detectable minimal residual disease at the end 
of induction treatment, and will be used for risk stratification in  
the upcoming AIEOP-BFM (Associazione Italiana di Ema-
tologia ed Oncologia Pediatrica–Berlin-Frankfurt-Münster) 
ALL trial93. IKZF1plus occurs predominantly in B-other 
ALL; although we can assume its enrichment in subtypes with 
higher frequency of IKZF1del, such as BCR-ABL1-like ALL,  
its distribution and prognostic role across novel BCP-ALL  
subtypes remain to be elucidated by future studies. These studies 

could also help to clarify the strong association between  
IKZF1plus prognostic value and the early therapy response.

Conclusions
Herein, we briefly reviewed some of the most important recent 
findings in pediatric BCP-ALL, demonstrating that the use of 
modern high-throughput technologies not only advanced our 
insight into the genetics and biology of BCP-ALL but also paved 
the way for novel treatment options. However, with growing 
knowledge, we have begun to recognize more extensively  
that the significance (for example, clinical relevance) of  
individual factors may vary substantially depending on addi-
tional genetic/biological contexts. Enormous effort will still 
be needed to further improve our understanding of the consid-
erably complex relationships between genetic/biological and  
clinical aspects of BCP-ALL and to better translate this knowledge 
into further improvements in patient outcome.
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