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Abstract. We investigate the existence and representation of transmutations, also known as
transformation operators, for strings. Using measure theory and functional analytic methods we
prove their existence and study their representation. We show that in general they are not close
to unity since their representation does not involve a Volterra operator but rather the eigenvalue
parameter. We also obtain conditions under which the transmutation is either a bounded or a
compact operator. Explicit examples show that they cannot be reduced to Volterra type operators.
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1. Introduction

We are concerned with the existence and representation of transmutation operators between
two strings S1 and S2 which are respectively defined by

(1.1)

{
S1(f) = − d

dM1(x)
d+

dx+ f(x), 0 ≤ x < L

bf ′(0)− af(0) = 0

and

(1.2)

{
S2(f) = − d

dM2(x)
d+

dx+ f(x) 0 ≤ x < L

bf ′(0)− af(0) = 0

where dMi(x), for i = 1, 2, are Stieltjes measures, i.e. Mi(x) is a real valued function, continuous
from the right, nondecreasing and normalized by Mi(0+) = 0. The string Si models the vibration
of a string and Mi(x) can be seen as its mass between 0 and x, while L is its total length. The
constants a, b are real with a2 + b2 6= 0, and describe how the strings are tied down at the origin.
Observe that Mi can include jumps and d+

dx+ f(x) denotes the usual right derivative at a point x.
Recall that Si, defined by (1.1) and (1.2), are symmetric operators, acting in the Hilbert spaces,
see [15, 13]

L2
Mi

=

{
f measurable: ||f ||2Mi

=
∫ L

0

|f(x)|2 dMi(x) < ∞
}

.

Let us denote by ϕ and y the normalized solutions, which we call eigensolutions, of the initial value
problems

(1.3)
{

S1(ϕ(x, λ)) = λϕ(x, λ)
ϕ(0, λ) = b, ϕ′(0, λ) = a

and
{

S2(y(x, λ)) = λy(x, λ)
y(0, λ) = b, y′(0, λ) = a.

If ϕ(., λ) ∈ L2
M1

, then λ is an eigenvalue of S1 and ϕ(., λ) is an eigenfunction and in case λ belongs
to the continuous spectrum then ϕ(., λ) is an eigenfunctional, see [10]. Since an eigenfunction is
not unique, the initial condition in (1.3) provides a simple normalization.
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We recall that an operator V : L2
M1
→ L2

M2
is said to transmute the strings S1 and S2, see [3, 4, 17],

if

(1.4) S2V = VS1.

Applying ϕ to both sides of (1.4) formally yields

S2Vϕ(x, λ) = VS1ϕ(x, λ)
= λVϕ(x, λ).

which means that Vϕ is an eigensolution of S2, and so if it is unique, we should also have

(1.5) y(x, λ) = Vϕ(x, λ).

One should emphasize that (1.4) does not imply that S1 and S2 are similar operators, since their
spectra may be different and usually ϕ(x, λ) /∈ L2

M1
and y(x, λ) /∈ L2

M2
, see[10]. Nevertheless the

Gelfand-Levitan theory uses (1.5) and (1.4), to compare and express one operator in terms of the
other. This simple idea is at the heart of the Gelfand-Levitan inverse spectral theory, which we
now briefly outline. The relation (1.5) in the 1951 Gelfand and Levitan theory, [9], reads

(1.6) y(x, λ) = cos
(
x
√

λ
)

+
∫ x

0

K(x, t) cos
(
t
√

λ
)

dt,

where y(x, λ) is the eigensolution of the Sturm-Liouville problem

(1.7)
{ −y′′(x, λ) + q(x)y(x, λ) = λy(x, λ), 0 ≤ x < ∞,

y(0, λ) = 1, y′(0, λ) = h.

A necessary condition for the existence of the transmutation in (1.6) is the asymptotic behavior of
the spectral function at infinity, [9, 17]

(1.8) Γ(λ) ≈ 2
π

√
λ+ as λ →∞.

A year later, M. G. Krein came up with a completely new direct method for the inverse spectral
theory for the string. Surprisingly, it used no transmutations or perturbation techniques, but
function theory, continued fractions and moments problem, [6]. To reconstruct the mass M of a
string, the spectral function is required to satisfy

(1.9)
∫ ∞

0

1
1 + λ

dΓ(λ) < ∞.

Observe that (1.9) covers a larger class of spectral functions than (1.8). Using a set of rules, on
how simple operations on M would affect the spectral function, M.G. Krein could in some special
cases reconstruct the mass of the string explicitly. In 1966, at the Moscow international congress,
M.G. Krein mentioned the open problem regarding the uniqueness of the inverse spectral problem
for the string which was then solved few years later by de Branges using Hilbert spaces of entire
functions. In 1976, Dym and McKean summarized the inverse spectral theory for the string in
their book [6].

How to extend the Gelfand–Levitan theory to strings? As a first step, this paper is to address
the question of existence and representation of the transmutation between two strings. In [7, 8],
Dym and Kravitsky studied the existence of the transmutation under the assumption of a small
perturbation of the mass. Their method starts with the spectral functions and then solves a
nonlinear integral equation through the Gokhberg-Krein special factorization theorem, see also
[1, 11, 24]. Basically for the transmutation to be close to unity, one needs the measures to be
close enough.

Here the treatment is different. We use direct methods, where only the transforms of the
strings are used, which avoids the heavy machinery of partial differential equations used in the
Gelfand-Levitan theory [9].
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Note also that in general, a string such as S1 cannot be reduced to a Sturm-Liouville equation
such as (1.7), for the simple reason that the growth condition (1.8) may not be valid, see [13].
Also the Liouville transformation cannot be used unless Mi is C3 and is strictly increasing. For
applications and numerical methods of the string we refer to [2, 4, 5, 6, 16, 17, 21, 23].

2. Notation

Recall that dMi is in fact a Lebesgue-Stieltjes measure [20], which vanishes when Mi is
constant and its support supp dMi ⊂ [0, L]. The differential expression − d

dMi(x)
d+

dx+ defines then a
symmetric operator in the Hilbert space L2

Mi
. To avoid any ambiguity about the division by zero,

M.G. Krein interpreted the initial value problem −d
dMi(x)

d+

dx+ y(x) = f(x), y(0) = b, y′(0) = a, when
f ∈ L2

Mi
, as an integral equation

(2.1) y(x) = ax + b−
∫ x

0

∫ t

0

f(ξ)dMi(ξ)dt.

For a self-adjoint extension, we need to examine the right end point. In case the length is infinite,
L = ∞, it is well known that operator Si is in the limit point case at x = ∞ if and only if∫∞
0

x2dMi(x) = ∞, see [15, p. 70]. In that follows we assume that we are in the limit point case,
otherwise we must add a boundary condition at x = ∞ to make S1 in (1.1) self-adjoint. In case
the length is finite, L < ∞, the type of a boundary condition to be added at x = L depends on
the presence of a jump of the mass at x = L, which is called “heavy mass”, see [6]. M.G. Krein
allowed the boundary condition at x = L to be a function of λ, which led to a family of spectral
functions. He then defined a principal spectral function when the associated transform was onto,
[15]. Since finite length strings can be extended to the right, without loss of generality we can
assume that L = ∞ and that Si are self-adjoint in L2

Mi
.

When S1 is self-adjoint, its eigensolutions, (1.3), form the kernel of the transform associated
with S1

L2
M1

Fϕ→ L2
Γ1

where

Fϕ(f)(λ) =
∫ ∞

0

f(x)ϕ(x, λ)dM1(x).

The inverse transform is given by

f(x) =
∫

Fϕ(f)(λ)ϕ(x, λ)dΓ1(λ)

where the spectral function Γ1 is non decreasing, right continuous, supp dΓ1 is the spectrum of S1

and the Parseval relation, for any f, g ∈ L2
M1

yields
∫ ∞

0

f(x)g(x)dM1(x) =
∫

Fϕ(f)(λ)Fϕ(g)(λ)dΓ1(λ).

We now introduce a notation used to compare Stieltjes measures

dΓ1(λ) = O (dΓ2 (λ)) as λ →∞,

if for all measurable functions with respect to dΓ1, and dΓ2∫ ∞

N

|f(λ)| dΓ1(λ) ≤ c

∫ ∞

N

|f(λ)| dΓ2(λ) holds for large N.

The fact that dΓ1 is absolutely continuous with respect to dΓ2, is denoted by dΓ1 ¿ dΓ2 and
means there exists g ∈ L1,loc

Γ2
such that dΓ1(λ) = g(λ)dΓ2(λ). Similarly dΓ1 ¿2,loc dΓ2 means that

g ∈ L2,loc
Γ2

while dΓ1 ¿∞ dΓ2 means esssup
λ∈suppdΓ2

g(λ) < ∞ and finally the cut-off function is defined
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by x+ =
{

x if x ≥ 0
0 if x < 0 . When integrating functions of two variables with respect to one of the

variable, we shall indicate it by labeling the measure. For example f(x, t) ∈ L2
M1(t)

means

||f(x, t)||2M1(t)
=

∫ ∞

0

|f (x, t)|2 dM1(t) < ∞.

The measures Γi are always associated transforms and so with the variable λ.
In all that follows we assume that the strings in (1.1) and (1.2) have infinite lengths, Mi(0+) =

0, L = ∞, and are self-adjoint. To this end we need either
∫ ∞

0

x2dMi(x) = ∞ for i = 1, 2 ( LP case at x = ∞)

or
∫∞
0

x2dMi(x) < ∞, limit circle case at x = ∞, but then we must add a boundary condition
there.

3. Preliminaries

The normalized eigenfunctions of S1, see (1.1) and (2.1), satisfy the integral equation

ϕ(x, λ)− ax− b = −λ

∫ ∞

0

(x− t)+ϕ(t, λ)dM1(t).

For any fixed x, we have (x − t)+ ∈ L2
M1(t)

, and so − 1
λ (ϕ(x, λ)− ax− b) , as its Fϕ transform,

belongs to L2
Γ1

. Therefore by the Parseval relation we get

(3.1)
∫

1
λ2
|ϕ(x, λ)− ax− b|2 dΓ1(λ) =

∫ x

0

(x− t)2dM1(t) for 0 ≤ x.

Similar relations hold for the transform Fy associated with operator S2 and its spectral function
Γ2. Using the above relation we have

Proposition 1. For all x ≥ 0 we deduce

(i) 1
λ (ϕ(x, λ)− ax− b) ∈ L2

Γ1

(ii)
∫

1
λ2 |ϕ(x, λ)− ax− b|2 dΓ1(λ) =

∫ x

0
(x− t)2dM1(t)

(iii) The set 1
λ (ϕ(x, λ)− ax− b) is complete in L2

Γ1

Proof. (i) and (ii) follow from (3.1). To see (iii), we first show that the set
{
(x− t)+

}
x≥0

is
complete in L2

M1
that is for any g ∈ L2

M1
, if

(3.2) G(x) :=
∫ x

0

(x− t) g(t)dM1(t) = 0 for all x ≥ 0 then g = 0 dM1 − a.e.

Note that the function G(x) is continuous and differentiable and so

0 =
d+

dx+
G(x) =

∫ x

0

g(t)dM1(t).

Differentiation with respect to M1 leads to

0 =
d

dM1(x)
d+

dx+
G(x) = g(x),

which means that the family
{
(x− t)+

}
x≥0

is complete in L2
M1(t)

. The image of a complete
set in L2

M1
by the Fϕ− transform remains complete in L2

Γ1
and so {Fϕ

(
(x− t)+

)}0≤x<∞ =
{ 1

λ (ϕ(x, λ)− ax− b)}0≤x<∞ is also complete in L2
Γ1

.¤
Similar result can be also stated for the string S2 . We now prove the existence of a transmu-

tation between eigensolutions of S1 and S2
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Proposition 2. Assume that dΓ1(λ) = O (dΓ2 (λ)) as λ → ∞, then for each x > 0 there
exists H(x, .) ∈ L2

M1
such that

(3.3) y(x, λ) = ϕ(x, λ) + λ

∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t).

Proof. We only need to prove that for any given x > 0

(3.4)
∫ ∞

0

∣∣∣∣
1
λ

(y(x, λ)− ϕ(x, λ))
∣∣∣∣
2

dΓ1(λ) < ∞.

Observe that since 1
λ (y(x, λ)− ϕ(x, λ)) is continuous in λ, and y(x, 0)− ϕ(x, 0) = 0, then

∫ N

0

∣∣∣∣
1
λ

(y(x, λ)− ϕ(x, λ))
∣∣∣∣
2

dΓ1(λ) < ∞

for any finite N . For large N, use the fact that dΓ1(λ) = O (dΓ2 (λ)) as λ →∞ to write
∫ ∞

N

∣∣∣∣
1
λ

(y(x, λ)− ax− b)
∣∣∣∣
2

dΓ1(λ) ≤ c

∫ ∞

N

∣∣∣∣
1
λ

(y(x, λ)− ax− b)
∣∣∣∣
2

dΓ2(λ) < ∞,

thus (3.4) holds. Using the inverse Fϕ− transform, (3.4) implies the existence of H(x, t) ∈ L2
M1(t)

such that
1
λ

(y(x, λ)− ϕ(x, λ)) =
∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t).

i.e.

(3.5) y(x, λ) = ϕ(x, λ) + λ

∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t).¤

So far the transmutation operator (3.5) has been defined over a family of solutions only, namely
ϕ(., λ) and its range is also a family of solutions y(., λ). Unfortunately these solutions cannot be in
the Hilbert space L2

Mi
, when λ is not an eigenvalue, see rigged spaces, [10]. Next in order for (3.5)

to define a linear operator, its action must be independent of λ, thus we must remove the spectral
parameter λ. To this end use the fact that

dϕ+(x, λ) = −λϕ(x, λ)dM1(x)

to recast (3.5) into an operator form

(3.6) y(x, λ) = ϕ(x, λ)−
∫ ∞

0

H(x, t)dϕ+(t, λ).

To find the domain of the integral operator in (3.6) that maps ϕ(., λ) → y(., λ), we need to
examine the integrability of the kernel H. For that purpose we prove the following proposition,
which by itself is of independent interest.

Proposition 3. Let Γ1 and Γ2 be two nondecreasing functions defining Stieltjes measures.
Then

dΓ1 ¿∞ dΓ2 if and only if L2
Γ2
⊂ L2

Γ1
.

Proof. It is enough to prove the converse, that is the assumption L2
Γ2
⊂ L2

Γ1
leads to bound-

edness of the identity mapping L2
Γ2
→ L2

Γ1
. Otherwise there exists a sequence {fn}n≥1 ⊂ L2

Γ2
such

that fn

L2
Γ2→ 0 but fn

L2
Γ19 0. Thus there exists ε > 0 and a subsequence of fn, which we denote

again by fn, such that

‖fn‖2Γ2
≤ 1

n2
but ‖fn‖2Γ1

≥ ε > 0.
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Define by ψ =
√ ∑

n≥1

|fn|2 . It is readily seen that ψ ∈ L2
Γ2

since ‖ψ‖2Γ2
=

∑
n≥1

‖fn‖2Γ2
≤ ∑

n≥1

1
n2 < ∞.

However
‖ψ‖2Γ1

=
∑

n≥1

‖fn‖2Γ1
≥

∑

n≥1

ε = ∞,

which means that there is ψ ∈ L2
Γ2

such that ψ /∈ L2
Γ1

, which contradicts L2
Γ2
⊂ L2

Γ1
. Thus the

identity mapping L2
Γ2
−→ L2

Γ1
must be bounded, i.e.

(3.7)
∫
|f(λ)|2 dΓ1(λ) ≤ c

∫
|f(λ)|2 dΓ2(λ).

Thus a negligible set with respect to dΓ2 is also negligible with respect to dΓ1(λ) by (3.7). By the
Radon-Nikodym theorem [20] dΓ1 is absolutely continuous with respect to dΓ2, i.e. there exists
a locally dΓ2 integrable function g(λ) such that

dΓ1(λ) = g(λ)dΓ2(λ) dΓ2 a.e.

We now show that g is essentially bounded. To this end use (3.7) to obtain
∫
|f(λ)|2 g(λ)dΓ2(λ) ≤ c

∫
|f(λ)|2 dΓ2(λ).

Thus the mapping h → ∫
h(λ)g(λ)dΓ2(λ) is a bounded functional on L1

dΓ2
which implies that

g ∈ (
L1

dΓ2

)′ = L∞dΓ2
.¤

We now prove:

Theorem 1. Let dΓ1 ¿∞ dΓ2 then

(3.8) ‖H(x, t)‖M1(t)
≤ c

∥∥(x− t)+
∥∥

M1(t)+M2(t)
.

In all that follows by c we denote a universal constant, that can be distinct in different places.
Proof. Observe that (3.8) is a uniform bound on the kernel H. ¿From (3.3) it follows that

‖H(x, t)‖M1(t)
=

∥∥∥∥
ϕ(x, λ)− y(x, λ)

λ

∥∥∥∥
Γ1

≤
∥∥∥∥

ϕ(x, λ)− ax− b

λ

∥∥∥∥
Γ1

+
∥∥∥∥

y(x, λ)− ax− b

λ

∥∥∥∥
Γ1

.

The fact dΓ1 ¿∞ dΓ2, see Proposition 3, implies
∥∥∥∥

y(x, λ)− ax− b

λ

∥∥∥∥
Γ1

≤ c

∥∥∥∥
y(x, λ)− ax− b

λ

∥∥∥∥
Γ2

and Proposition 1, but stated for S2, then yields

‖H(x, t)‖M1(t)
≤

∥∥(x− t)+
∥∥

M1(t)
+ c

∥∥∥∥
y(x, λ)− ax− b

λ

∥∥∥∥
Γ2

≤ ∥∥(x− t)+
∥∥

M1(t)
+ c

∥∥(x− t)+
∥∥

M2(t)

≤ c
∥∥(x− t)+

∥∥
M2(t)+M1(t)

.¤

In terms of integrals (3.8) means that
∫ ∞

0

|H(x, t)|2 dM1(t) ≤ c

∫ x

0

(x− t)2 d [M1 + M2] (t).

Corollary 1. If dΓ1 ¿∞ dΓ2 and dM1 ¿∞ dM2 then

(3.9) ‖H(x, t)‖M1(t)
≤ c ‖(x− t)+‖M2(t)

.
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Proof. Observe that if esssup
x>0

dM1
dM2

< ∞ then
∥∥(x− t)+

∥∥
M1(t)

≤ c
∥∥(x− t)+

∥∥
M2(t)

and (3.8)

yields (3.9).¤

Since M2(0+) = 0 we have

‖(x− t)+‖2M2(t)
=

∫ x

0

(x− t)2 dM2(t) ≤ x2

∫ x

0

dM2(t) = x2M2(x).

Thus the norm of H(x, ·) satisfies the inequality

‖H(x, t)‖M1(t)
≤ cx

√
M2(x).

We now prove the converse of Theorem 1.

Theorem 2. Assume that
i) y(x, λ) = ϕ(x, λ) + λ

∫∞
0

H(x, t)ϕ(t, λ)dM1(t),
ii)‖H(x, t)‖M1(t)

≤ c ‖(x− t)+‖M2(t)

iii) dM1 ¿∞ dM2

then dΓ1 ¿∞ dΓ2.
Proof: From i) it follows that

1
λ

(y(x, λ)− ϕ(x, λ)) =
∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t)

then by Fϕ-transform 1
λ (y(x, λ)− ϕ(x, λ)) ∈ L2

Γ1
since by ii) H(x, ·) ∈ L2

M1
. Recall that from

Proposition 1 we also have
1
λ

(ϕ(x, λ)− ax− b) ∈ L2
Γ1

and so we deduce that
1
λ

(y(x, λ)− ax− b) ∈ L2
Γ1

.

Hence,∥∥∥∥
1
λ

(y(x, λ)− ax− b)
∥∥∥∥

Γ1

≤
∥∥∥∥

1
λ

(y(x, λ)− ϕ(x, λ))
∥∥∥∥

Γ1

+
∥∥∥∥

1
λ

(ϕ(x, λ)− ax− b)
∥∥∥∥

Γ1

(3.10)

= ‖H(x, t)‖M1(t)
+ ‖(x− t)+‖M1(t)

≤ c ‖(x− t)+‖M2(t)
+ c ‖(x− t)+‖M2(t)

≤ c

∥∥∥∥
1
λ

(y(x, λ)− ax− b)
∥∥∥∥

Γ2

Let Co be the set of continuous functions with compact support. Since Co ⊂ L2
Γ2
∩L2

Γ1
the identity

operator L2
Γ2

→ L2
Γ1

is always densely defined. Observe that (3.10) means that the identity
operator L2

Γ2
→ L2

Γ1
being uniformly bounded on the complete set

{
1
λ (y(x, λ)− ax− b)

}
λ∈σ2

,

whose convex hull is dense in L2
Γ2

, is therefore bounded. This means that ‖f‖Γ1
≤ c ‖f‖Γ2

for all
f ∈ L2

Γ2
, or L2

Γ2
⊂ L2

Γ1
. Thus by Proposition 3, dΓ1 ¿∞ dΓ2.

Combining Proposition 2, Theorems 1, 2 and Corollary 1 we arrive at

Theorem 3. Let dM1 ¿∞ dM2 then

y(x, λ) = ϕ(x, λ) + λ

∫ ∞

0

H(x, t)ϕ(t, λ) dM1(t), with ‖H(x, t)‖M1(t) ≤ c‖(x− t)+‖M2(t),

if and only if dΓ1 ¿∞ dΓ2.

Under the assumption that Γ1 grows slowly at λ = 0, we can prove the square integrability of
H (·, t) with respect to dM1(x).
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Proposition 4. Let dΓ1 ¿∞ dΓ2 and dM1 ¿∞ dM2. If moreover,
∫ ε

0
1
λ2 dΓ1(λ) < ∞ for

some ε > 0, then
∫∞
0
|H(x, t)|2 dM1(t) ∈ L2

M1(x)

Proof. From (3.5) and the inverse Fϕ-transform we deduce that

H (x, t) =
∫

1
λ

(y(x, λ)− ϕ(x, λ))ϕ(t, λ)dΓ1(λ)

=
∫

y(x, λ)
ϕ(t, λ)

λ
dΓ1(λ)−

∫
ϕ(t, λ)

λ
ϕ(x, λ)dΓ1(λ)

= I1(x, t)− I2(x, t).

To examine I2(x, t), recall that any spectral function Γ1 of the string satisfies
∫∞
0

1
1+λdΓ1(λ) <

∞, see [6]. The assumption
∫ ε

0
1
λ2 dΓ1(λ) implies that

∫∞
0

1
λ2 dΓ1(λ) < ∞. Since S1 has at most a

finite number of negative eigenvalues, then
∫∞
−∞

1
λ2 dΓ1(λ) < ∞ which means that

(3.11)
1
λ

(at + b) ∈ L2
Γ1

,

which combined with 1
λ (ϕ(t, λ)− at− b) ∈ L2

Γ1
see Proposition 1, imply that 1

λϕ(t, λ) ∈ L2
Γ1

, i.e.

(3.12)
∫ ∣∣∣∣

1
λ

ϕ(t, λ)
∣∣∣∣
2

dΓ1(λ) < ∞.

For every fixed t > 0, I2(·, t) being the inverse F(ϕ)-transform of 1
λϕ(t, λ) ∈ L2

Γ1
belongs to L2

M1(x).

Now use the fact that dΓ1 ¿∞ dΓ2 to recast the function I1 in the form

I1(x, t) =
∫

y(x, λ)
1
λ

ϕ(t, λ)dΓ1(λ)

=
∫

y(x, λ)
1
λ

ϕ(t, λ)
dΓ1

dΓ2
(λ)dΓ2(λ).

It remains to see I1(·, t) as the Fy−inverse transform of a function from L2
Γ2

. To this end we
estimate the function ϕ(t,λ)

λ
dΓ1
dΓ2

(λ) using (3.12)
∫ ∣∣∣∣

ϕ(t, λ)
λ

dΓ1

dΓ2
(λ)

∣∣∣∣
2

dΓ2(λ) ≤ esssup
λ

dΓ1

dΓ2
(λ)

∫ ∣∣∣∣
1
λ

ϕ(t, λ)
∣∣∣∣
2

dΓ1(λ) < ∞.

Thus I1(x, t) ∈ L2
M2(x) ⊂ L2

M1(x) which means that H (x, t) = I1 (x, t)− I2 (x, t) ∈ L2
M1(x).¤

4. The transmutation operator H

¿From Proposition 3, we have the existence of the kernel H. Now observe that

f(x) →
∫ ∞

0

H(x, t)f(t)dM1(t)

defines a continuous functional on L2
M1

,

∣∣∣∣
∫ ∞

0

H(x, t)f(t)dM1(t)
∣∣∣∣ ≤

√∫ ∞

0

|H(x, t)|2 dM1(t)

√∫ ∞

0

|f(t)|2 dM1(t)

≤ ‖H(x, t)‖M1(t)
‖f‖M1

.

Thus we have proved

Proposition 5. Assume that dΓ1 = O (dΓ2) as λ → ∞ then for each fixed x > 0, f →∫∞
0

H(x, t)f(t)dM1(t) defines a bounded functional on L2
M1

.

We now show that (3.3) can be used to define an integral operator in L2
M1

. More precisely we
have

36



Proposition 6. Assume dΓ1 = O (dΓ2) as λ →∞, dΓ1
dΓ2

∈ L2,loc
Γ2

, dM1 = O (dM2) as x →∞
then the operator L2

M1
→ L2

M1

g →
∫ ∞

0

H(x, t)S1g(t)dM1(t)

is densely defined in L2
M1

.

Proof. From Proposition 2, H(x, t) ∈ L2
M1(t)

and Parseval identity and (3.3) imply that for
any f ∈ L2

M1 ∫ ∞

0

H(x, t)f(t)dM1(t) =
∫ ∞

0

Fϕ (H(x, ·)) (λ)Fϕ (f)) (λ)dΓ1(λ)(4.1)

=
∫ ∞

0

(y(x, λ)− ϕ(x, λ))
1
λ
Fϕ (f) (λ)dΓ1(λ).

Now choose f = S1g, which means

Fϕ (f) (λ) = Fϕ (S1g) (λ) = λFϕ (g) (λ).

Thus (4.1) can be written as
∫ ∞

0

H(x, t)S1g(t)dM1(t) =
∫ ∞

0

(y(x, λ)− ϕ(x, λ))Fϕ (g) (λ)dΓ1(λ)

=
∫ ∞

0

y(x, λ)Fϕ (g) (λ)dΓ1(λ)−
∫ ∞

0

ϕ(x, λ)Fϕ (g) (λ)dΓ1(λ)

=
∫ ∞

0

y(x, λ)Fϕ (g) (λ)dΓ1(λ)− g(x),

which holds for all g ∈ DS1 , that is when Fϕ (g) , λFϕ (g) ∈ L2
Γ1

.

The range of the operator g → ∫∞
0

H(x, t)S1 (g) (t)dM1(t) depends on the set of functions

γ(g)(x) :=
∫ ∞

0

y(x, λ)Fϕ (g) (λ)dΓ1(λ).

In order to see γ(g) as an inverse Fy−transform we first restrict γ to the following dense set in
L2

M1
: {

g ∈ L2
M1

: Fϕ (g) ∈ Co

} ⊂ DS1 .

We deduce that γ(g) is a continuous function and so γ(g) ∈ L2,loc
M1

. Furthermore since dΓ1
dΓ2

∈ L2,loc
Γ2

we have Fϕ (g) (λ)dΓ1
dΓ2

(λ) ∈ L2,
Γ2

and

γ(g)(x) =
∫ ∞

0

y(x, λ)Fϕ (g) (λ)
dΓ1

dΓ2
(λ)dΓ2(λ) ∈ L2

M2
.

¿From the condition dM1 = O (dM2) as x →∞ it follows that for large N
∫ ∞

N

|γ(g)(x)|2 dM1(x) ≤ c

∫ ∞

N

|γ(g)(x)|2 dM2(x)

and since γ(g) ∈ L2,loc
M1

we deduce that γ(g) ∈ L2
M1

which means that
∫ ∞

0

H(x, t)S1g(t)dM1(t) = γ(g)(x)− g(x) ∈ L2
M1

.

Thus the operation g → ∫∞
0

H(x, t)S1g(t)dM1(t) is densely defined in the space L2
M1

.¤
We now obtain a sufficient condition for the operator H to be compact.
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Proposition 7. Assume that dΓ1 ¿∞ dΓ2, then H is a compact operator from L2
M1

into L2
M1

if

(4.2)
∫ ∞

0

∫ x

0

(x− t)2 dM2(t)dM2(x) < ∞ and
∫ ∞

0

∫ x

0

(x− t)2 dM1(t)dM2(x) < ∞.

Proof. From Theorem 1 it follows∫ ∞

0

|H(x, t)|2 dM1(t) ≤ 2 esssup
λ

dΓ1

dΓ2
(λ)

∫ x

0

(x− t)2 dM2(t) + 2
∫ x

0

(x− t)2 dM1(t),

which leads to∫ ∞

0

∫ ∞

0

|H(x, t)|2 dM1(t)dM2(x) ≤ 2 esssup
λ

dΓ1

dΓ2
(λ).

∫ ∞

0

∫ x

0

(x− t)2 dM2(t)dM2(x)

+2
∫ ∞

0

∫ x

0

(x− t)2 dM1(t)dM2(x).¤

A sufficient condition for the realization of (4.2) would be
∫ ∞

0

x2M2(x)dM2(x) < ∞ and
∫ ∞

0

x2M1(x)dM2(x) < ∞.

Once an operator is densely defined, we can ask for its adjoint.

5. The adjoint operator H∗.

Proposition 8. Assume that dM1 ¿2,loc dM2 and dΓ1(λ) = O (dΓ2) as λ → ∞. Then
H∗ : L2

M1
→ L2

M1
, which is defined by

H∗(f)(t) =
∫ ∞

0

H(x, t)f(x)dM1(x),

is densely defined, and for any f ∈ Co, we have

(5.1) Fϕ(f)(λ) + λFϕ (H∗f) (λ) = Fy

(
f(x)

dM1

dM2
(x)

)
(λ).

Proof. Multiply (3.3) by f ∈ Co, supp f ⊂ [a, b] say, to obtain
(5.2)

λ

∫ b

a

f(x)
∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t)dM1(x) =
∫ b

a

f(x)y(x, λ)dM1(x)−
∫ b

a

f(x)ϕ(x, λ)dM1(x)

Observe that from proposition 4,
∫∞
0

H(x, t)ϕ(t, λ)dM1(t) ∈ L2
M1

and so

f(x)
∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t) ∈ L1
M1

,

from which it follows that
∫ b

a

f(x)
∫ ∞

0

H(x, t)ϕ(t, λ)dM1(t)dM1(x) =
∫ b

a

∫ ∞

0

f(x)H(x, t)ϕ(t, λ)dM1(t)dM1(x)

=
∫ ∞

0

∫ b

a

f(x)H(x, t)dM1(x)ϕ(t, λ)dM1(t)(5.3)

= Fϕ

(∫ b

a

f(x)H(x, t)dM1(x)

)
(λ).

On the other hand the right-hand side of (5.2) is equal to
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∫ b

a

f(x)y(x, λ)dM1(x)−
∫ b

a

f(x)ϕ(x, λ)dM1(x) =
∫ b

a

f(x)y(x, λ)
dM1

dM2
(x)dM2(x)− Fϕ(f)(λ)

= Fy

(
f(x)

dM1

dM2
(x)

)
(λ)− Fϕ(f)(λ).(5.4)

Since f ∈ Co and dM1(x) ¿2,loc dM2, then f(x)dM1
dM2

(x) ∈ L2
M2

and thus Fy

(
f(x)dM1

dM2
(x)

)
∈ L2

Γ2
.

Because dΓ1(λ) = O (dΓ2) as λ →∞, then

(5.5)
∫ ∞

N

∣∣∣∣Fy

(
f(x)

dM1

dM2
(x)

)
(λ)

∣∣∣∣
2

dΓ1(λ) ≤ c

∫ ∞

N

∣∣∣∣Fy

(
f(x)

dM1

dM2
(x)

)
(λ)

∣∣∣∣
2

dΓ2(λ) < ∞.

But

Fy

(
f(x)

dM1

dM2
(x)

)
(λ) =

∫ b

a

f(x)y(x, λ)dM1(x)

is continuous with respect to λ, therefore, for any N

(5.6)
∫ N

0

∣∣∣∣Fy

(
f(x)

dM1

dM2
(x)

)
(λ)

∣∣∣∣
2

dΓ1(λ) < ∞.

We deduced from (5.5) and (5.6) that Fy

(
f(x)dM1

dM2
(x)

)
∈ L2

dΓ1
and since Fϕ(f) ∈ L2

Γ1
, it follows

Fy

(
f(x)

dM1

dM2
(x)

)
− Fϕ(f) ∈ L2

Γ1
.

Observe

1
λ

(
Fy

(
f(x)

dM1

dM2
(x)

)
− Fϕ(f)

)
=

∫ b

a

f(x)
1
λ

(y(x, λ)− ϕ(x, λ)) dM1(x)

is bounded as λ → 0, it follows that

1
λ

(
Fy

(
f(x)

dM1

dM2
(x)

)
− Fϕ(f)

)
∈ L2

Γ1

and so
∫ b

a
f(x)H(x, t)dM1(x) ∈ L2

M1
for any f ∈ Co. As Co is dense in L2

M1
, the operator H∗ :

L2
M1

→ L2
M1

defined by

H∗(f)(t) =
∫ b

a

H(x, t)f(x)dM1(x)

is densely defined. Furthermore from (5.3) and (5.4) it follows (5.1).¤

6. Adding a potential

We now extend the above construction to include operators such as

(6.1)

{
S1q(φ)(x) := − d

dM1(x)
d+

dx+ φ(x, λ) + q1(x)φ(x, λ) = λφ(x, λ), 0 ≤ x < ∞
φ(0, λ) = b, φ′(0, λ) = a.

where the potential q1 ∈ L2,loc
M1

(0,∞). The classical Sturm-Liouville problem corresponds to par-
ticular case when M1(x) = x, i.e. S1q(φ)(x) := − d2

dx2 φ(x, λ) + q(x)φ(x, λ) = λφ(x, λ).
Similarly define the second generalized string by

{
S2q(ψ)(x) := − d

dM2(x)
d+

dx+ ψ(x, λ) + q2(x)ψ(x, λ) = λψ(x, λ), 0 ≤ x < ∞
ψ(0, λ) = b, ψ′(0, λ) = a.
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where the potential q2 ∈ L2,loc
M2

(0,∞). Equation (6.1) is equivalent to

(6.2) φ(x, λ) = ax + b +
∫ x

0

(x− t) q1(t)φ(t, λ)dM1(t) + λ

∫ x

0

(x− t)φ(t, λ)dM1(t).

The addition of a potential changes dramatically the spectrum from being mainly positive to
possibly covering the whole real line. Thus the support of the spectral function is a subset of the
real line.

We now show that a transmutation between the strings S1q and S2q exists under minimal
conditions dΓ1(λ) = O (dΓ2(λ)) as λ → ±∞.

Proposition 9. Assume that dΓ1(λ) = O (dΓ2(λ)) as λ → ±∞, then there exists Hq(x, t) ∈
L2

M1(t)
such that for x ≥ 0

ψ(x, λ) = φ(x, λ) + λ

∫ ∞

0

Hq(x, t)φ(t, λ)dM1(t).

Proof. For λ → ±∞, we can recast (6.2) into

1
λ

(φ(x, λ)− ax− b) =
1
λ

∫ x

0

(x− t) q1(t)φ(t, λ)dM1(t) +
∫ x

0

(x− t)φ(t, λ)dM1(t)

and since (x− t)+ q1(t), (x− t)+ ∈ L2
M1(t)

, we use Parseval equality to deduce successively that
∫ x

0

(x− t) q1(t)φ(t, λ)dM1(t),
∫ x

0

(x− t)φ(t, λ)dM1(t) ∈ L2
Γ1

(N,∞)

and since the mapping F → 1
λF is bounded in L2

Γ1
(N,∞) , it also follows that

1
λ

∫ x

0

(x− t) q1(t)φ(t, λ)dM1(t) ∈ L2
Γ1

(N,∞)

and so

(6.3)
1
λ

(φ(x, λ)− ax− b) ∈ L2
Γ1

(N,∞) .

We repeat the same argument for the second solution ψ to obtain
1
λ

(ψ(x, λ)− ax− b) ∈ L2
Γ2

(N,∞)

and since dΓ1(λ) = O (dΓ2(λ)) as λ → ±∞, we deduce that

(6.4)
1
λ

(ψ(x, λ)− ax− b) ∈ L2
Γ2

(N,∞) ⊂ L2
Γ1

(N,∞) .

Subtract (6.3) from (6.4) then yields
1
λ

(ψ(x, λ)− φ(x, λ)) ∈ L2
Γ1

(N, ∞) .

Repeat all the above arguments using L2
Γ1

(−∞,−N) instead of L2
Γ1

(N, ∞) leads to 1
λ (ψ(x, λ)− φ(x, λ)) ∈

L2
Γ1

(−∞,−N) which means

(6.5)
1
λ

(ψ(x, λ)− φ(x, λ)) ∈ L2
Γ1

[(−∞,−N) ∪ (N, ∞)] .

To finish we observe that
1
λ

(ψ(x, λ)− φ(x, λ))

as a function of λ is continuous for λ ∈ [−N, N ] for any large N > 0, and so

(6.6)
1
λ

(ψ(x, λ)− φ(x, λ)) ∈ L2
Γ1

(−N, N).
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Combining (6.5) and (6.6) leads to
1
λ

(ψ(x, λ)− φ(x, λ)) ∈ L2
Γ1

(−∞, ∞) ,

and the inverse Fφ−transform implies the existence of Hq(x, t) ∈ L2
M1(t)

1
λ

(ψ(x, λ)− φ(x, λ)) =
∫ ∞

0

Hq(x, t)φ(t, λ)dM1(t).¤

In order to proceed further we rewrite the transmutation operator as

ψ(x, λ) = φ(x, λ) +
∫ ∞

0

Hq(x, t)λφ(t, λ)dM1(t)

= φ(x, λ) +
∫ ∞

0

Hq(x, t)S1qφ(t, λ)dM1(t)

= φ(x, λ) +
∫ ∞

0

Hq(x, t)d+φ(t, λ).

The kernel Hq contains all information about the solution ψ and so contains the information about
M2 and q2.
In practice, we usually do not have the spectral function explicitly. In the next proposition we use
an important fact that asymptotics of the spectral function Γ as λ → ∞ depend on the behavior
of M as x → 0.

Proposition 10. Assume that limx→0
DM1
Dxα1 = k1 6= 0, limx→0

DM2
Dxα2 = k2 6= 0, and spectrum

of S1 is bounded from below. If 0 < α1 ≤ α2 then there exists Hq(x, ·) ∈ L2
M1

(0, x) such that for
x ≥ 0

ψ(x, λ) = φ(x, λ) + λ

∫ ∞

0

Hq(x, t)φ(t, λ)dM1(t).

Proof. We only need to show that conditions of Proposition 9 hold. First when λ → −∞,
dΓ1(λ) = 0 and so the condition dΓ1(λ) = O (dΓ2(λ)) is trivially verified. However when λ →∞,
we have two separate cases, see [14]: if

a 6= 0 then Γi(λ) = c1λ
αi

1+αi + o
(
λ

αi
1+αi

)
as λ →∞,

a = 0 then Γi(λ) = c1λ
2+αi
1+αi + o

(
λ

2+αi
1+αi

)
as λ →∞.

Since 0 < α1 ≤ α2 implies α1
1+α1

≤ α2
1+α2

i.e. dΓ1
dΓ2

≈ cλ
α1−α2

(1+α1)(1+α2) < ∞ as λ →∞.¤
We now present explicit examples which show that the representation of the transmutations

cannot be in general triangular or close to unity, see [11].

7. Examples

Many examples of all kinds of spectra, for various potentials, can be found in [6, 22]. The
purpose of the following examples is to illustrate two essential facts of transmutations for strings,
which make all the difference from the usual transmutations for Sturm-Liouville operators (1.6).
The first is that one should have the parameter λ in the integral. Secondly the upper bound may
not be just x as in the Gelfand–Levitan theory.

Example 1. Let M1(x) = x and M2(x) = ρ2x, a = 1, b = 0, ρ > 1. Then for x ≥ 0, we have

[S1]
{
− d

dx
d+

dx+ ϕ(x, λ) = λϕ(x, λ),
ϕ(0, λ) = 1, ϕ′(0, λ) = 0

and [S2]

{
− d

ρ2dx
d+

dx+ y(x, λ) = λy(x, λ)
y(0, λ) = 1, y′(0, λ) = 0.

The eigenfunctionals of the strings are

ϕ(x, λ) = cos(x
√

λ) and y(x, λ) = cos(ρx
√

λ) for x ≥ 0,
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and their spectral functions, [19], are given by

dΓ1(λ) =
1
π

dλ√
λ+

and dΓ2(λ) =
ρ

π

dλ√
λ+

.

Thus by Proposition 2, the transmutation exists

cos(ρx
√

λ) = cos(x
√

λ) + λ

∫ ∞

0

H(x, t) cos(t
√

λ)dt.

Computing the kernel H, we obtain

H(x, t) =
1
π

∫ ∞

0

1
λ

(
cos

(
ρx
√

λ
)
− cos(x

√
λ)

)
cos

(
t
√

λ
) dλ√

λ

= min
{

ρ + 1
2

x,

∣∣∣∣
ρ− 1

2
x + t

∣∣∣∣
}

sign
[
ρ− 1

2
x + t

]

+min
{

ρ + 1
2

x,

∣∣∣∣
ρ− 1

2
x− t

∣∣∣∣
}

sign
[
ρ− 1

2
x− t

]
.

One can verify that H(x, t) = 0 if t > ρx, but H(x, t) = ρx − t 6= 0 if t < ρx, but close to ρx.
Therefore we deduce an explicit form of the type

(7.1) cos(ρx
√

λ) = cos(x
√

λ) + λ

∫ ρx

0

H(x, t) cos(t
√

λ)dt.

Here we notice that the multiplier λ is needed simply because for any fixed x > 0 we have
cos(ρx

√
λ)− cos(x

√
λ) /∈ L2√

λ
while the integral on the right hand side

∫ ρx

0

H(x, t) cos(t
√

λ)dt ∈ L2√
λ+

.

Thus the role of λ is to ensure that 1
λ

(
cos(ρx

√
λ)− cos(x

√
λ)

)
∈ L2√

λ+
.

As for the integral upper bound in (7.1), it cannot be just x as in the transmutation used by
Gelfand-Levitan. It is easily seen that since the growth type of cos(ρx

√
λ)−cos(x

√
λ) as a function

of
√

λ is ρx, when ρ > 1 the Paley-Wiener theorem implies that the support of the transform must
be included in [−ρx, ρx] and the fact that the transform is even, reduces it to [0, ρx].
Example 2. Consider transmuting the strings when α, β > 0,

[S1]
{ −x−αϕ′′(x, λ) = λϕ(x, λ), 0 ≤ x

ϕ(0, λ) = 1 ϕ′(0, λ) = 0 [S2]
{ −x−βy′′(x, λ) = λy(x, λ), 0 ≤ x

y(0, λ) = 1 y′(0, λ) = 0.

Their eigensolutions are the well known Bessel functions

ϕ(x, λ) = c1(λ)
√

xY 1
2+α

(
2
√

λ

2 + α
x

2+α
2

)
and y(x, λ) = c2(λ)

√
xY 1

2+β

(
2
√

λ

2 + β
x

2+β
2

)
.

The spectral functions are [14],

Γ1(λ) ≈ C1λ
α+1
α+2 and Γ2(λ) ≈ C2λ

β+1
β+2 as λ →∞.

This leads to the following conclusion.

Corollary 2. If β ≥ α > 0 then there exists a transmutation such that

y(x, λ) = ϕ(x, λ) + λ

∫ ∞

0

H(x, t)ϕ(t, λ)tαdt.
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In terms of Bessel functions the above relation becomes

c2(λ)
√

xY 1
2+β

(
2
√

λ

2 + β
x

2+β
2

)
= c1(λ)

√
xY 1

2+α

(
2
√

λ

2 + α
x

2+α
2

)

+λc1(λ)
∫ ∞

0

H(x, t)
√

tY 1
2+α

(
2
√

λ

2 + α
t

2+α
2

)
tαdt

An interesting particular case is when α = 1, i.e. ϕ(x, λ) = cos
(
x
√

λ
)

, thus for β ≥ 1 we have

c2(λ)
√

xY 1
2+β

(
2
√

λ

2 + β
x

2+β
2

)
= cos

(
x
√

λ
)

+ λ

∫ ∞

0

H(x, t) cos
(
t
√

λ
)

dt.
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