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Electroencephalography (EEG) provides high temporal resolution cognitive information

from non-invasive recordings. However, one of the common practices–using a subset

of sensors in ERP analysis is hard to provide a holistic and precise dynamic results.

Selecting or grouping subsets of sensors may also be subject to selection bias, multiple

comparison, and further complicated by individual differences in the group-level analysis.

More importantly, changes in neural generators and variations in response magnitude

from the same neural sources are difficult to separate, which limit the capacity of testing

different aspects of cognitive hypotheses.We introduce EasyEEG, a toolbox that includes

several multivariate analysis methods to directly test cognitive hypotheses based on

topographic responses that include data from all sensors. These multivariate methods

can investigate effects in the dimensions of response magnitude and topographic

patterns separately using data in the sensor space, therefore enable assessing neural

response dynamics. The concise workflow and the modular design provide user-friendly

and programmer-friendly features. Users of all levels can benefit from the open-sourced,

free EasyEEG to obtain a straightforward solution for efficient processing of EEG data

and a complete pipeline from raw data to final results for publication.

Keywords: EEG, EEG/MEG, methodology, EEG signal processing, toolbox, topography, multivariate analysis,

machine learning

INTRODUCTION

Electroencephalography (EEG) is a suitable non-invasive measure for investigating the temporal
dynamics of mental processing because of its high temporal resolution and cost-effectiveness. The
event-related potential (ERP) is the most common way to reflect neural response dynamics in the
temporal domain. However, ERP analyses are mostly based on responses in individual sensors or
an average of a group of selected sensors. This “selecting sensors” analysis method is not optimal,
because it faces various challenges (Tian and Huber, 2008; Tian et al., 2011). For example, only
relying on data in a few sensors cannot easily differentiate between changes in the distribution
of neural sources vs. changes in the magnitude of neural sources. Moreover, selecting sensors
may introduce subjective bias during the selection processes, and sometimes data in different
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sensors may derive inconsistent or even contradicting results.
Unless all possible sensor selections have been tested, readers
will not know whether the reported effects are robust
across sensors or sensor groups. Running statistical tests
among multiple (groups of) sensors is subject to multiple
comparisons, and hence increases the type I error (false
positives) or type II error (false negatives that could be
induced by correction methods). Furthermore, the ERP analysis
heavily depends on identifying ERP components. However,
data in a few sensors cannot fully represent the spatial and
temporal features of components, which makes the estimation
of components’ response magnitude and latency hard and
incomplete. Last, individual differences in spatial and temporal
characteristics caused by anatomical and functional differences
across subjects further complicate the analysis, which makes
group-level analysis even more opaque. Therefore, most of
the time, it is hard to get a precise and holistic view
of temporal dynamics by using “selected sensors” in ERP
analyses.

These problems may be solvable by using information from
all available sensors. Two approaches can be taken. The first
one is to localize neural sources by projecting all sensors
information back to the source space (source localization). The
advantage is that additional information about source spatial
distribution can be estimated together with their temporal
dynamics. Numerous source localization methods, such as dipole
modeling, Loreta, Beamforming, and MNE (Grech et al., 2008),
have been proposed and built in software packages such as
BESA, EEGLab, Brainstorm, NutMEG, SPM, Fieldtrip, MNE-
Python. However, source localization is an ill-posed problem–
infinite solutions can be obtained from themixture of recordings.
Therefore, many assumptions have to be met and sophisticated
procedures and careful manipulation have to be followed in order
to obtain meaningful source localization results. Moreover, these
localization methods work best with magnetoencephalography
(MEG) that has better spatial resolution. EEG signals, on the
other hand, are highly distorted by the skull. High-density
EEG systems and realistic head models that are estimated
by individual anatomical MRI scans are required to achieve
acceptable results of EEG source localization. However, these
high-cost systems and MRI scans may be not feasible for many
researchers.

The second approach is to work with all “raw” data in
the sensor space. Compared with methods with dependent
variable from individual sensors or averages of selected sensors,
this approach that relies on information from multiple sensors
is called multivariate analysis. Basically, multivariate analysis
in EEG uses the topographical patterns of sensors, and try
to differentiate response patterns among conditions at each
given time point. If differences, either in response magnitude,
or topographic patterns, or latency were detected across a
timespan, we can infer that different mental processes and
their temporal dynamics mediate distinct conditions. This
multivariate approach aims to directly test cognitive hypotheses
by using data in all sensors (Tian and Huber, 2008; Tian
et al., 2011) and by-passing source localization in case that the
location information of cortical activities was not the primary

research interest of the study. Note that performing the source
localization by solving the inverse problem is the only way in
EEG andMEG studies to directly address the questions regarding
the location in the brain level. Scalp data and topographic
patterns reflect the response dynamics at the sensor level
and can be used as indicators of modulation by experimental
manipulation.

In this paper, we introduce EasyEEG toolbox (https://github.
com/ray306/EasyEEG), in which several multivariate analyses are
included for processing EEG sensor data and testing cognitive
hypotheses. To our knowledge, a few EEG analysis software
packages (Delorme et al., 2011; Groppe et al., 2011; Pernet
et al., 2011; Gramfort et al., 2013; Gerven et al., 2015) have
already included several multivariate analysis methods for data
in the sensor space. For example, LIMO EEG (Pernet et al.,
2011) aims to test the effects at all sensors and all time
points by a set of statistical tools such as ANOVA, ANCOVA
and Hierarchical General Linear Model along with multiple
comparisons corrections; Mass Univariate ERP Toolbox (Groppe
et al., 2011) applies univariate tests (e.g., t-test) in each of all
sensors over time points with multiple comparison correction;
the Donders Machine Learning Toolbox (Gerven et al., 2015)
supports the single-trial analysis on several machine learning
methods built in, and MNE-Python (Gramfort et al., 2013)
makes use of the a machine learn package named Scikit-Learn
(Pedregosa et al., 2011) to see the decoding performance over
temporal or spatial domain. Those toolboxes and the new
toolbox EasyEEG shares the same goal which is to investigate
the temporal neural dynamics using all data in all sensors.
The uniqueness of EasyEEG toolbox is that the included
multivariate methods are carried on the explicit measures that
reflect the topographic patterns across all sensors. It offers
a straightforward and intuitive approach to efficiently test
cognitive hypotheses.

The designing principle of this toolbox is to be both
user-friendly and programmer-friendly. So we separated the
procedure of EEG data analysis into several steps, and made
each step be an independent module with concise input/output
interfaces. In each module, common important but tedious
operations that involve complicated programming details have
been encapsulated into several simple commands. Various
multivariate group analysis methods have been built in with
single lines of commands. Users simply need a descriptive
dictionary to snip the data and one line of concatenated
command to perform all analyses and visualize the results.
After knowing only a few commands, all users, regardless
of programming experience, could start their analysis within
a few minutes. Moreover, the open-source nature of this
toolbox enables and supports users to add more algorithms
for the EEG data analysis. EasyEEG has encapsulated a lot
of APIs for the programmers. The researchers who want
to introduce a new analysis method should only pay the
attention to the core logic of that method, but leave the
trivial details, such as reshaping data and plotting, away
from the programming. And even for the deep learning
applications for EEG data, EasyEEG also provides a concise
interface. In general, it offers a clear way to perform
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group level statistics tests to directly investigate cognitive
hypotheses. We introduce how to use this package in the next
section.

WORKFLOW AND METHODS

The general analysis workflow in EasyEEG involves four stages:

1. Import the preprocessed data. EasyEEG currently (0.8.3)
supports the epoches data generated fromMNE and EEGLAB;

2. Define a dictionary (a Python syntax) to describe the analysis
target (e.g., conditions, sensors, temporal durations, and/or
any comparison between two groups), then extract the data
by a function “extract()” with the definition as the parameter;

3. Apply one of four computation functions [e.g., “tanova()”]
introduced in this paper. For algorithms that require long
processing time, the computation process can be seen in a
process bar showing used time and estimated rest time to
finish; The computation function will yield a special data
structure named AnalyzedData;

4. Visualize and output the results. AnalyzedData includes the
name of analysis (in analysis_name attribute), the result
of analysis (in data, annotation or supplement attribute),
and the parameters for visualization (in default_plot_params
attribute). Researchers can not only examine the p-values
or other information, but also customize the visualization
parameters for different figures.

You can see more detail in EasyEEG’s online documentation
(http://easyeeg.readthedocs.io/en/latest/).

We introduce a procedure that includes four multivariate
methods for testing cognitive hypotheses using information
in topographic patterns. An open dataset of face perception
(Wakeman and Henson, 2015) is used to demonstrate this
procedure and methods. The first two methods are to combine
univariate approaches with topographic information to estimate
the spatial extent of experimental effects (distribution of
significant sensors) and the overall temporal dynamics of
experimental effects (dynamics of global field power, GFP).
These analyses can make the connection with common practice
of ERP analysis. The next two methods are to implement
multivariate analyses, introducing in this paper topographic
analysis of variance (TANOVA) and pattern classification that
take account of holistic topographic information to perform
group-level statistics and investigate the dynamics of response
patterns.

Distribution of Significant Sensors
The spatial extent of experimental effects can be estimated by
the number and distribution of sensors that are significantly
different between conditions. This analysis is done by performing
statistical tests, such as paired t-test, on response amplitude
between two conditions in each sensor at all given time points
or windows, and counting the number of the sensors that
have significant results. In this way, we can quantify the
spatial difference in terms of response amplitude between two
topographies. By examining differences across timepoints, we can

estimate the temporal dynamics of underlying neural processes
that reflect in topographies.

Dynamics of Global Field Power (GFP)
Global field power (GFP) was introduced by Lehmann and
Skrandies (Lehmann and Skrandies, 1980). It is calculated with
the following equations (Equation 1):

GFPu =

√

1

n
·

∑n

i=1
u2i

ui = Ui − u (1)

u =
1

n

∑n

i=1
Ui

where n is the number of sensors in the montage; Ui is the
measured potential of the ith senosr (for a given condition at
a given time point t); is the mean value of all Ui; ui is the
average-referenced potential of the ith electrode.

Basically, GFP is a summary statistics of response magnitude
from all sensors on a topography, which is in the form of
variance of response magnitude and mathematically equals
the root mean square (RMS) of all mean-referenced sensor
values. GFP reflects the overall energy fluctuation of distributed
electric potentials across all sensors at a specific time point.
Therefore, it is a good way to summarize and visualize the
temporal dynamics of the whole brain activities. Nevertheless,
researchers need to be cautious that the essence of GFP
is a non-linear transformation. Therefore, when researchers
apply GFP to group-averaged ERP, the outcome is not
the same as the average of individual GFPs. Variances
between subjects have a major effect on group-averaged
GFP.

The group-level statistical analysis of GFP can be addressed
by many common approaches (time point by time point;
area measures, peak measures etc.). We provide one of these
approaches in the EasyEEG. For comparison between any two
conditions, we take every subject’s data from every temporal
window with defined duration of interest from both conditions
and apply paired t-test. Thus, we get the p-value that suggests
the level of significance across all sensors in successive temporal
windows.

Topographic Analysis of Variance
(TANOVA)
Topographies reflect underlying neural processes. Comparing
pattern similarity between topographies in different conditions
can reveal distinct mental processes and hence directly test
cognitive hypotheses. TANOVA is a statistical analysis on a
measure of similarity between topographies. This topographic
similarity measure, called “angle measure” (Tian and Huber,
2008), where the topographic pattern similarity is quantified
by a high-dimensional angle between two topographies. More
specifically, the multivariate topographic patterns across all

sensors are represented in high-dimensional vectors
−→
A and

−→
B for two conditions, where the number of dimensions is
the number of sensors. The topographic similarity between
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the two conditions is quantified by the cosine value of the
angle θ that can be obtained by the following equation
(Equation 2).

cos θ =

−→
A ·

−→
B

∣

∣

∣

−→
A

∣

∣

∣

∣

∣

∣

−→
B

∣

∣

∣

(2)

The cosine value is an index of spatial similarity between two
conditions, where the value of “1” represents identical patterns
and value of “−1” represents exact opposite patterns. Moreover,
because this index is normalized by response magnitude of both
conditions, it has the advantage that it is unaffected by the
magnitude of responses.

The statistical analysis of the “angle measure” is a non-
parametric statistical test, termed topographic analysis of
variance (TANOVA) (Murray et al., 2008; Brunet et al., 2011).
The critical step in TANOVA is to generate a null distribution.
In EasyEEG (0.8.4.1), we provided three different strategies to
generate the null distribution of the angle measure cosine values.

Strategy 1:

(1) Put all subjects’ data into one pool regardless of experimental
conditions.

(2) Shuffle the pool and randomly re-assign a condition label for
each trial (data permutation).

(3) Calculate the group averaged ERPs for each new labeled
condition.

(4) Calculate the topographic similarity angle measure (cosine
value of angle θ) between the new group-averaged ERPs.

(5) Repeat the former steps (1–4) 1,000 times (suggested by
Manly, 2006).

Strategy 2:

(1) Perform data permutation within subject. That is, shuffle and
re-label the trials for each subject.

(2) Calculate the group averaged ERPs for each new labeled
condition.

(3) Calculate the topographic similarity angle measure (cosine
value of angle θ) between the new group-averaged ERPs.

(4) Repeat the former steps (1–3) 1000 times.

Strategy 3:

(1) Calculate the ERPs for each condition and subject.
(2) Perform data permutation at the within-subject level for

ERPs. That is, re-label the ERPs for each subject.
(3) Calculate the spatial topographic similarity angle measure

(cosine value of angle θ) between for the new group-
averaged ERPs.

(4) Repeat the former steps (1–3) 1,000 times.

Strategy 1 is used by many researchers (Murray et al., 2008;
Brunet et al., 2011; Lange et al., 2015). However, it loses subject’s
information by mixing all subjects’ data into one pool. In
contrast, Strategy 2 permutes the data at the within-subject level.
Both Strategy 1, 2 may be time-consuming and computational
demanding (about 8 h each strategy, reduced to 60min when

multithreading computation is applied. PC Configuration: CPU:
Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20 GHz 32 cores; RAM:
256GB; System: Ubuntu16.04.1). Therefore, Strategy 3 has the
advantage of reducing computing complexity and processing
duration (can be done within 1–2min). But Strategy 3 also has
limitation that it loses trial information by averaging trials at the
first step. Regardless of different procedures, we find out that
the results from three strategies are similar and stable when the
repetition times are beyond 1000 times (see details in the next
section). Thus, we suggest that Strategy 3 can be used as a pilot
test to have a quick check of results, and Strategy 2 for further
validation.

After determining the null distribution, a comparison is made
between the actual topographic similarity angle measure and
the null distribution. The p-value is determined by finding the
rank position of that actual cosine value in the generated null
distribution. It reveals how significant the similarity between two
topographic response patterns in different conditions are in a
chosen time window.

Pattern Classification
Although TANOVA is good at detecting topographic variance
at a given moment, it’s insensitive to the fluctuation over time.
We introduce a pattern classification method in EasyEEG to
capture topographic dynamics. Moreover, pattern classification
can collaboratively take advantage of all aspects of information
in topographies, compared with GFP and TANOVA that
only emphasize response magnitude and energy distribution,
respectively.

This pattern classification method is in the framework of
supervised machine learning. The collection of magnitudes of all
sensors at a time point composes a sample, and the corresponding
condition category is the label of the sample. After a classifier is
trained by mapping the samples in a dataset to their labels, the
classifier is used to infer the labels of samples in a new dataset for
testing.

The pattern classification method aims for obtaining
topographic differences among conditions at all timepoints
to reveal the topographies changes over time. The general
procedure work as follows:

1) Data in each condition in a specific time point or window
are extracted to form a sample. Samples in the time points or
windows of interest from two conditions form a dataset for
each subject.

2) The pattern classification is done separately for each subject,
so that we can obtain the classification results of all subjects at
a given time point or window.

2.1) Each dataset is divided into a training set and a test set.
The samples in the training set are used to train the
classifier, and then the samples in the test set are used to
evaluate the trained classifier (get a classification score).

2.2) Repeat step 2.1 for all time points and average the scores.
2.3) Repeat step 2.1 and step 2.2 for each subject.

3) Compare the classification scores of all subjects with the
chance level 0.5 for a two-alternative classification with
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the permutation test (Pitman, 1937). The p-value can be
obtained to indicate whether topographies in two conditions
are significantly different at a given time point or window.

4) Repeat the steps 2 and 3 at successive time points or windows,
so that dynamics across time can be obtained.

Any supervised machine learning model can be used as
a classifier. One should notice, however, that the classifier
model determines the capacity of inferring the functional
relationship between samples and their labels. The biggest issue
for discovering the relationship is the number of available trials
in the EEG data. In general, an EEG experiment generates
fewer than hundreds of trials. If we attempt to infer a complex
functional relationship from only a few hundreds of samples, the
result can hardly generalize to other samples (the problem of
“overfitting”). One solution is to keep the balance between the
trial counts and the complexity of the functional relationship.
For example, Logistics Regression (Cox, 1958) is a linear model,
which can provide a simple functional relationship without much
tuning of hyperparameters. We adopted the Logistics Regression
algorithm as the default classifier model. Depending on different
situations and needs, users can easily switch to other supervised
machine learning algorithms such as Naive Bayes or Support
Vector Machine in EasyEEG. Because sometimes the sample size
in two labels might be unbalanced, we adopted Area Under Curve
(AUC) as the classification score (King et al., 2013). And to make
the classification score more robust, the algorithm will be applied
to different partitions of the samples for several times (Cross
Validation; Arlot and Celisse, 2010).

The simple classifier models can reduce overfitting, but the
functional relationship they are able to catch may also be too
simple to represent the real relationship. That is, some complicate
topographic pattern differences won’t be recognized by themodel
(the problem of “under-fitting”). The solution for under-fitting
is to increase the complexity of classifier models which tends to
cause overfitting. Therefore, we need to find a fine balance using
appropriate regularization model (e.g., Krogh and Hertz, 1992;
Prechelt, 1998; Hinton et al., 2012) or a special deep model that
is designed for few samples (e.g., Kimura et al., 2018). Should
one need to customize, all these extra optimizations can be easily
added to the existing function by the programming interface
provided in the toolbox.

EXAMPLES AND RESULTS

Data for This Tutorial
Data used for this tutorial are an open dataset of EEG responses to
face stimuli (available at https://openfmri.org/dataset/ds000117/)
(Wakeman and Henson, 2015). The face stimuli are made of
300 grayscale photographs (half from famous people and half
from non-famous people) that are matched and cropped to
show only the face. Additional 150 grayscale photographs of
scrambled face that are generated by taking the 2D-Fourier
transform of either famous or non-famous faces, permuting
the phase information, and then inverse-transforming back
into the image space. Subjects were required to make the
judgment about how symmetric they regard each face stimulus
by pressing a key, while EEG signals were recorded. The EEG

data was acquired from by 16 healthy subjects at 1100Hz
sampling rate in a light magnetically shielded room using a 70
channel Easycap EEG cap (based on EC80 system: http://www.
brainlatam.com/manufacturers/easycap/ec80--185). Full details
about the experimental design and data acquisition can be found
in Wakeman and Henson (2015)

Processing Pipeline
All raw data were first preprocessed by MNE-Python with
a standard script (see Supplementary Code Snippet 1) and
saved in the “.h5” format. Epochs were chosen from −200ms
pre-stimulus to 600ms post-stimulus onset, and were baseline
corrected based on the pre-stimulus period and band-pass
filtered from 0.1 to 30Hz. Epochs that contain artifacts were
excluded based on a±100µV rejection criterion.

We demonstrate scripts for applying four analysis methods
and their outcomes as follows (the entire script was running in
a Jupyter notebook, see: https://github.com/ray306/EasyEEG/
blob/master/tests/(Demo)%20Face%20perception.ipynb). The
runtime environment for the following examples was based on
EasyEEG 0.8.4.1, Python 3.6 64 bit, Ubuntu 16.04.1.

Load Data and Define the Analysis Target
First, we define a dictionary that contains information for
further analysis. The descriptive dictionary “target” is composed
by two components: conditions and timepoints. To make the
comparison between conditions, we add “&” between conditions
as the operation symbol and use “X vs X” as the annotation.
Because all analyses are based on all sensors, we don’t need to
define the channels. The duration of each epoch is 0–600ms.

Code Snippet 1 | The data loading and analysis target definition.

import EasyEEG

epoch = EasyEEG.io.load_epochs('data.h5')

#load the pre-processed data (see

supplementary Code Snippet 1&2 for the

detail) from disk

target = {'conditions': 'S vs F:Scrambled&

Famous, \

S vs U:Scrambled&

Unfamiliar, \

U vs F:Unfamiliar&

Famous',

'timepoints': '0~600'}

e = epoch.extract(target)

The EasyEEG provides a simple and easy way to complete the
loading and extraction process by calling the “load_epochs()” and
the “extract()” functions. Data is extracted for further analysis
by passing the descriptive dictionary “target” to the “extract()”
function, and is saved in the variable “e.”

Distribution of Significant Sensors
By applying the function “topography(),” we can perform the
distribution of significant sensors analysis. Specifically, we define
successive time windows of every 100ms. The distribution results
are saved in the variable “result.” And by calling the function
“plot(),” we can visualize the results (Figure 1). Sensors that
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FIGURE 1 | Results of distribution of significant sensors analysis. (A) Topographies of response differences between conditions across time. Each row contains

topographies for a given comparison at different time points. Sensors that show significant response magnitude differences are circled in white. The color on the

topography represents the response magnitude differences. The conditions in each comparison is listed on the left. S for scrambled condition, F for famous face

condition, and U for unfamiliar face condition. (B) The number of significant sensors across time. The color scale represents the number of significant sensors. The

conditions of comparison are listed at the left side of the figure. Labels are the same as in (A). The comparison between face perception conditions (F and U) and

scrambled (S) condition is significantly different in sensors above frontal, central, bilateral parietal-occipital areas, starting around 180ms. The comparison between

face perception conditions (F vs. U), however, only shows significant difference at the latencies of 300–400ms and 500–600ms. Refer to main text for detailed results.

show significant differences between two conditions are circled in
white (Figure 1A). The function “significant_channels_count()”
can be used to more clearly illustrate the temporal dynamics
by the count of significant sensors. The results are saved in the
variable “sig_ch_count” and depicted in Figure 1B that displays
the number of significant sensors across time. The color scale
represents the number of significant sensors.

Code Snippet 2 | Apply the Distribution of significant sensors analysis.

# the topographies of difference

topo = e.topography(win_size='100ms')

topo.plot()

# the dynamics of the count of the

significant sensors

sig_ch_count = e.significant_channels_count

(win_size='5ms')

sig_ch_count.plot()

Figure 1 shows that the comparison between conditions
“Famous” (F) and “Scrambled” (S) as well as the comparison
between conditions “Unfamiliar” (U) and “Scrambled” (S)
are significantly different in sensors above frontal, central,
bilateral parietal-occipital areas. These differences start around
200ms (180ms in sensor count results in Figure 1B). The
comparison between conditions “Famous” (F) and “Unfamiliar”
(U), however, only shows significant difference at the latencies
of 300–400ms and 500–600ms. From 300 to 400ms, only
about 10 sensors above parietal and right-lateral occipital
areas show significant differences. From 500 to 600ms,
around 25 sensors above middle frontal and bilateral occipital

areas show significant differences. And these differences are
weaker compared the comparisons between face and non-face
conditions. See Supplementary Results 1, 2 for the summary of
sensor magnitude, p-values, and the count of significant sensors.
See supplementary ZIP file for the raw data.

GFP
The function “GFP()” can be used to obtain the GFP.
Computation of GFP can be done within a few seconds. We

set the “compare” parameter to be “True” to enable statistical

analysis between any two conditions. With the function “plot(),”

the results of GFP can be visualized.

Code Snippet 3 | Apply the GFP analysis.

scripts = [{'conditions': 'Scrambled,

Famous', 'timepoints':

'0~600'},

{'conditions': 'Scrambled,

Unfamiliar', 'timepoints':

'0~600'},

{'conditions': 'Unfamiliar,

Famous','timepoints':

'0~600'}]

# do the three analyses independently

for idx,script in enumerate(scripts):

gfp = epochs.extract(script).GFP(compare

=True)

gfp.plot()
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As shown in Figure 2, the condition “Scrambled” (S) begins
significantly different from the condition “Famous” (F)” or
Unfamiliar” (U)” around 140ms. A small significant difference
is found between conditions “Scrambled” (S) and “Unfamiliar”
(U) at 500–600ms, whereas the comparison between conditions
“Scrambled” (S) and “Famous” (F) shows weak but significant
difference at 400–600ms. For comparison between conditions
“Famous” (F) and “Unfamiliar” (U), significant differences are
at 220–260ms (most at 240ms), 300–400ms (most at 400ms),
and 500–600ms (most at 600ms). See Supplementary Result 3
for the summary of the GFP powers and the p-values over time.
See supplementary ZIP file for the raw data.

TANOVA
The function “tanova()” is for performing TANOVA analysis.
Data was averaged in every 5ms defined by the parameter
“win_size.” The number of repetitions for creating the null
distribution was set to 1,000 times as defined by the parameter
“shuffle.” Different strategies of creating the null distribution can
be defined by the parameter “strategy.” The computation time
is about 60 times slower in Strategy 1 and Strategy 2 than that
in Strategy 3 (about 1min using our system). The output of
“tanova()” function is the series of p-values. We corrected the p-
values by accepting the consecutive significant data points which
are longer than 20ms (Lange et al., 2015) using a command
“correct(method=’cluster’).” Users can also use the other solutions
for multiple comparisons correction such as FDR Benjamini-
Hochberg (Benjamini andHochberg, 1995) by replacing the value
of parameter “method.”

Code Snippet 4 | Apply the TANOVA analysis.

t_result = e.tanova(win_size='5ms',

shuffle=1000,strategy=1) #change value of

the parameter 'strategy' to 2 or 3 for

Strategy 2 or Strategy 3

t_result.correct(method='cluster').plot()

The results from Strategy 1 and Strategy 2 are highly similar.
The topographic response patterns in condition “Scrambled”
starts significantly different from those in the condition “Famous
(F)/Unfamiliar (U)” after 170ms (p < 0.01). For comparison
between conditions “Famous” and “Unfamiliar,” most time after
470ms are significantly different (p < 0.01) except from 530
to 560ms. The results from Strategy 3 mostly agree with those
from Strategy 1 and 2, with one noticeable exception at 180ms
for comparison between two face perception conditions. The
results from all three comparisons show significant differences
for a short time period around 180ms (p < 0.01 for comparison
“Scrambled vs. Unfamiliar” and comparison “Unfamiliar vs.
Famous”; p < 0.05 for comparison “Scrambled vs. Famous”).
See Supplementary Result 4 for the summary of the p-values of
TANOVA over time. See supplementary ZIP file for the raw data.

Pattern Classification
The function “classification” is for performing pattern
classification analysis. The default classifier is a logistic
regression classifier. Data was averaged in every 5ms defined by
the parameter “win_size ='5ms'”. The parameters “test_size =

0.3” and “fold= 25” indicate that the 30% of data were randomly
selected as the test set and the rest are in the training set in each
fold (data splitting iteration) and the number of folds is 25 in the
cross validation.

Code Snippet 5 | Apply the Pattern classification analysis.

c_result = e.classification(win_size='5ms',

fold=25,test_size=0.3)

c_result.correct(method='cluster').plot()

Figure 4 depicts the pattern classification results as p-values
across time. The condition “Scrambled” starts significantly
different from those in condition “Famous (F) or Unfamiliar
(U)” after 120ms. The condition “Unfamiliar” and “Famous“
show sparse differences along time. More specifically, results
show that at around 220ms, 280ms, 330ms, 380ms, 410–450ms,
and 510–600ms, there are significant differences between these
two conditions (p < 0.05). See Supplementary Result 5 for the
summary of the scores of the p-values of Pattern classification
over time. See supplementary ZIP file for the raw data.

The function “classification()” also allows researchers to use
an external model such as a deep learning model (Chollet
and Others, 2015; Abadi et al., 2016), see Supplementary Code
Snippet 4 for an example.

DISCUSSION

EEG provides high temporal resolution information that reflects
cognitive processes. However, common ERP methods using
partial information in selected sensors are hard to obtain a
precise and comprehensive temporal dynamics across the system.
Whereas, source localization may estimate the distribution
of neural generators and their dynamics. But sophisticated
procedures, various assumptions, as well as high demand on data
quality, facility and computational power may make localization
methods not practical for some users. In the EasyEEG toolbox, we
offer multivariate analyses that use EEG topographical patterns
of sensors to obtain holistic system-level dynamic information
without projecting back to the source space. Different types
of analyses that take from distinct yet related perspectives
help users infer different aspects of temporal dynamics by
differentiating response patterns and magnitude across time.
Main functions and other necessary steps have been packed in
this toolbox, so that users can easily use. Moreover, the highly
flexible, compatible and expandable design in programming
are also ideal for advanced users. Our EasyEEG toolbox offers
a practical, efficient and complete pipeline from raw data
to publication for EEG research to directly test cognitive
hypotheses.

This paper introduces four methods included in EasyEEG,
which take information from all sensors of a topography to
investigate neural dynamics. Thesemethods yet target at different
aspects of information and separately evaluate topographic
patterns and response magnitude across time. The first method
the distribution of significant sensors analysis can provide the
spatial extent of effects by observing the spatial configuration and
counting the number of sensors that have significant differences
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FIGURE 2 | Results of GFP analysis. Each color line represents the GFP of each condition. Condition labels are the same as Figure 1. The shadow areas around

each line depict the standard error of the mean. The grayscale vertical bar stands for the results of statistical analysis. Grayscale represents the significant levels, and

location represents the latencies of significant effects. (A,B) The condition “Scrambled” (S) begins significantly different from the face perception conditions around

140ms. Differences are also significant at some later latencies. (C) For comparison between two face perception conditions, significant differences are observed

starting around 220ms, later than those in comparisons between face and non-face conditions in (A,B). Some later significant differences are also observed. Refer to

main text for detailed results.

among conditions. The sample results show that greater spatial
extent and more number of significant sensors in both face
perception conditions, compared with scrambled condition,
starting around 180ms (Figure 1). These results indicate that
the distribution of significant sensors can grossly identify the
dynamics of neural processing in different conditions. The
second method GFP analysis provides an indicator of overall

energy variation among all sensors. The sample results show that
the face perception conditions start to differ from scrambled
condition around 140ms, whereas response magnitudes differ
between face perception conditions (famous vs unfamiliar)
starting around 220ms. These latency differences in response
magnitude reveal that the general face perception occurs earlier,
and specific face identification occurs later.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2018 | Volume 12 | Article 468

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yang et al. Group-Level Multivariate Analysis in EasyEEG Toolbox

The third method the TANOVA analysis provides a way
to quantify and statistically test pattern similarity between
topographies. The sample results show that the response
topographic patterns in face perception conditions start to differ
from those in scrambled condition around 170ms (Figure 3).
These results indicate that distinct processes for face perception
emerge around 170ms. Whereas, topographic responses in
two face perception conditions remain the same until around
470ms. These results indicate that similar sensor patterns
mediate the perception of famous and unfamiliar faces during
the early perceptual processes. The differences start around
470ms could be because the effects of familiarity induce
additional neural processes in famous condition compared with
the processes for unfamiliar condition. The fourth method the
pattern classification uses self-adaptive algorithms and takes
advantage of all information regarding response magnitude and
patterns of topographies to investigate neural dynamics. The
sample results show that both face perception conditions show
differences from the scrambled condition as early as around
120ms. Differences between two face perception conditions are
scattered across the timespan. These results indicate that the
pattern classification method can reveal response magnitude
and pattern differences as the classification results between two
face conditions, as well as can provide additional information
such as magnitude and pattern interaction, indicated by the
detection of early differences between scrambled and face
conditions.

These four methods are complementary to each other and can
provide information at different levels to overcome limitation
of individual methods. Users can use them collaboratively to
obtain a comprehensive picture of their data. For example, the
distribution of significant sensors was obtained by individually
testing response magnitude differences in each sensor. This
without correction is subject to multiple comparisons. We use
this result to provide a general and direct visualization of data and
dynamic results, similar to the common practice in fMRI research
that uses “p < 0.05 uncorrected” for visualizing results.

The observed significant sensors distribution differences,
as demonstrated in the face perception sample, can be caused
either by response magnitude changes or the change of
neural generators that is reflected in topographic patterns.
We use the GFP and TANOVA to further test the magnitude
and pattern differences among conditions, respectively.
The GFP results show magnitude differences between two
face perception conditions starting around 220ms, whereas
TANOVA results show pattern difference starting until
440ms. These results from two methods collaboratively
suggest that response magnitude in the same neural sources
is firstly different between perceiving famous and unfamiliar
faces, and later distinct neural generators are involved for
processing familiarity. In the comparisons between face and
scrambled conditions, both GFP and TANOVA analyses
reveal differences start around 170ms, suggesting both neural
generators and their magnitude differ when processing faces or
non-faces.

The pattern classification analysis gives the combination
of magnitude and topographic differences, and can be used
to verify and “double-check” the results in both GFP and

TANOVA. In the sample results, the latencies of significant
results in the classification agree with the combination of
results in GFP and TANOVA in both comparisons between face
and non-face conditions, as well as between face perception
conditions. Moreover, the pattern classification can provide
more information than GFP or TANOVA methods alone. This
additional information is likely from the interaction between
the response magnitude and patterns. For example, the early
differences between face and scrambled conditions is only
detected using pattern classification.

Based on the features of four methods and their
complementary nature, we recommend the following procedure.
User can follow all or partial of this procedure based on their
research goals to obtain topographic and response magnitude
dynamics.

1) Perform basic pre-processes such as noise reduction, baseline
correction, filtering using other available toolboxes such as
MNE Python.

2) Load the pre-processed data
[EasyEEG.io.load_epochs(“path”)], define conditions and
comparisons, and extract the data epochs of interests
[extract()].

3) Obtain the distribution of significant sensors [topography()]
for an direct and intuitive visualization [plot()] of effects.

4) Test the overall magnitude differences [GFP().plot()].
5) Test the topographic pattern differences [tanova().plot()].
6) Perform pattern classification [classification().plot()] to verify

the results from (3) to (5).

By following the above 6 steps, users can visually inspect their
data and effects, obtain the statistical results at the group-level
regarding response magnitude and topographic patterns, and
have a verification of obtained results from another perspective
of pattern classification andmachine learning. EasyEEG provides
the realization of these steps and a complete pipeline from
raw EEG data, to generating figures, to statistical testing for
publication.

The results obtained by EasyEEG are consistent with those
from other analysis approaches. A mass univariate General
Linear Model (GLM) was applied on the same face perception
dataset (Wakeman and Henson, 2015). Their results suggested
that faces and scrambled conditions significantly differed from
around 160ms and last to the end of the epoch (600ms),
with differences in the sensors over fronto-central and lateral
parieto-occipital areas, which are very consistent with our
results (Figures 1, 2, 4). In the comparison between two face
perception conditions, they found a single cluster over mid-
frontal electrodes from 520 to 620ms (Wakeman and Henson,
2015), which also agrees with our TANOVA results (Figure 3).
These consistent results obtained by different approaches and
toolboxes demonstrate the reliability of our methods and
EasyEEG.

Besides the reliability, EasyEEG can obtain additional results
and provide more insights. The most important one is separating
response magnitude effects from topographic pattern changes.
As in our results, GFP and TANOVA analyses reveal differences
in response magnitude but not in topographic patterns between
two face perception conditions, whereas both magnitude and
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FIGURE 3 | Results of TANOVA analysis. The results are represented as p-values across time. Color represents the significant levels, with darker color for smaller

p-values. Conditions labels are the same as in Figure 1. (A–C) The results obtained by applying different strategies of computing null distribution in the

non-parametric tests. These results are similar. The topographic response patterns in condition “Scrambled” starts significantly different from those in the face

perception conditions after 170ms and last till the end of epoch. For comparison between face perception conditions (F vs U), significant pattern differences are

obtained after 470ms. Results in Strategy 3 have an exception that all three comparisons show significant differences for a short time period around 180ms. Refer to

main text for detailed results.

FIGURE 4 | Results of Pattern classification analysis. Pattern classification results are represented as p-values across time. Color represents the significant levels.

Condition labels are the same as in Figure 1. Both face perception conditions show differences (p < 0.01) from the scrambled condition as early as around 120ms.

Differences between two face perception conditions are scattered across the timespan. Refer to the main text for detailed results.

patterns differ between face and scrambled conditions. These
results highlight the advantage and capacity of EasyEEG on
testing different aspects of hypotheses. Moreover, EasyEEG
provides an unbiased omnibus measure using information
of all sensors in topographies, which overcomes individual
spatial and temporal differences and facilitates group-level
analyses.

EasyEEG shares some attributes with other existing toolboxes
of multivariate analyses, yet has distinct features. For instances,
Mass Univariate ERP Toolbox applies the univariate test at
each of all sensors, and reduces the multiple comparison
pollution by different correction methods (Groppe et al., 2011);
Whereas EasyEEG takes the topographical pattern of sensors
directly with multivariate approaches, so that it can better
avoid the multiple comparison problems than the univariate
tests. LIMO EEG utilizes the hierarchical general linear model
for multivariate data (Pernet et al., 2011), Donders Machine
Learning Toolbox (Gerven et al., 2015) and MNE-Python offers
an interface to Scikit-Learn for retrieving the classification score
(Gramfort et al., 2013) a complete pipeline from the data
loading and preprocessing to the statistical testing and results
visualization.

EasyEEG offers great convenience and outstanding
compatibility. The most common difficulty of using various
software packages is how to get your own EEG data working in
that toolbox. EasyEEG has a solution by reducing programming
demands for customized algorithms. First, the complicated and
tedious data extraction operations are replaced by calling built-in
extraction function with descriptive dictionary. Researchers are
only required to understand the structure of extracted EEG
data. Second, EasyEEG makes extraction and combination of
data in multiple sections/blocks automatic. In this way, users
avoid the tedious and error-prone repetitive steps. Third, the
proposed multivariate analysis methods have been implemented
in simple command lines. Users can specify the intended analysis
and parameters in one place and obtain the final results. Thus,
researchers can focus more on their experiments and selection
of core algorithms and methods, and obtain quick results to test
their hypotheses.

EasyEEG also provides great flexibility and expandability for
advanced users. Should researchers want to examine different
aspects of data or to apply some other customized algorithms,
they only need to modify a small portion of the current scripts
to quickly create new computational or visualization algorithms
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based on a resilient data structure and a number of well-written
application programming interfaces (APIs).

Besides the introduced multivariate analysis methods, we aim
to include more analysis methods in EasyEEG to investigate
neural dynamics, and increase the reliability of these methods.
More specifically, we plan to integrate more machine learning
models for EEG data analysis and pattern classification methods.
Moreover, we aim to increase the efficiency and expandability
of EasyEEG by designing more programming APIs for the
developers.

There are several limitations of current version of our toolbox.
First, methods included in our toolbox work best with the
activation widely distributed among all sensors. However, if the
effects are focused in several electrodes, the effect size could
be reduced by the summary of topography, especially in the
GFP analysis. Second, the multivariate methods rely on the
topographies in the sensor space to infer the relation between
neural sources of different conditions. The mapping between
sources and topographies could be complicated. For example,
two different neural sources, in theory, could generate the same
pattern. If this situation occurred, our toolbox would derive
incorrect results, although it is highly unlikely. Moreover, the
topography-based analysis can find differences of neural sources
between conditions. But it cannot further separate whether the
differences are induced by the changing of source location or
the orientation of the same source. All these limitations are
induced by the cost-effectiveness tradeoff. While methods in our
toolbox can offer direct and easy ways to test psychological and
neuroscience, we sacrifice the ability to precisely testing aspects
of underlying neural sources. Therefore, users should choose
differentmethods based on their own questions and needs. Third,
only four multivariate methods are built in the current version
of toolbox. We are aiming to integrate more features in the
future, such as deep learning techniques, to increase the power
of our toolbox, meet broader requirement of users and provide
solutions to wider ranges of questions.

In summary, EasyEEG provides simple, flexible and powerful
methods that can be used to directly test cognitive hypotheses
based on topographic responses. These multivariate methods can
investigate effects in the dimensions of response magnitude and
topographic patterns separately using data in the sensor space,
therefore enable assessing neural response dynamics without
sophisticated localization. Python based algorithms provide
concise and extendable features of EasyEEG. Users of all levels
can benefit from EasyEEG and obtain a straightforward solution
to efficiently handle and process EEG data and a complete
pipeline from raw data to publication.
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