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Abstract. Laboratory-based studies have shown that com-
bustion sources emit volatile organic compounds that can
be photooxidized in the atmosphere to form secondary or-
ganic aerosol (SOA). In some cases, this SOA can ex-
ceed direct emissions of primary organic aerosol (POA).
Jathar et al. (2017a) recently reported on experiments that
used an oxidation flow reactor (OFR) to measure the pho-
tochemical production of SOA from a diesel engine op-
erated at two different engine loads (idle, load), two fuel
types (diesel, biodiesel), and two aftertreatment configu-
rations (with and without an oxidation catalyst and parti-
cle filter). In this work, we used two different SOA mod-
els, the Volatility Basis Set (VBS) model and the Statis-
tical Oxidation Model (SOM), to simulate the formation
and composition of SOA for those experiments. Leverag-
ing recent laboratory-based parameterizations, both frame-
works accounted for a semi-volatile and reactive POA; SOA
production from semi-volatile, intermediate-volatility, and
volatile organic compounds (SVOC, IVOC and VOC); NOx-
dependent parameterizations; multigenerational gas-phase
chemistry; and kinetic gas–particle partitioning. Both frame-
works demonstrated that for model predictions of SOA mass
to agree with measurements across all engine load–fuel–
aftertreatment combinations, it was necessary to model the
kinetically limited gas–particle partitioning in OFRs and ac-
count for SOA formation from IVOCs, which were on aver-
age found to account for 70 % of the model-predicted SOA.
Accounting for IVOCs, however, resulted in an average un-
derprediction of 28 % for OA atomic O : C ratios. Model pre-
dictions of the gas-phase organic compounds (resolved in

carbon and oxygen space) from the SOM compared favor-
ably to gas-phase measurements from a chemical ionization
mass spectrometer (CIMS), substantiating the semi-explicit
chemistry captured by the SOM. Model–measurement com-
parisons were improved on using SOA parameterizations
corrected for vapor wall loss. As OFRs are increasingly used
to study SOA formation and evolution in laboratory and field
environments, models such as those developed in this work
can be used to interpret the OFR data.

1 Introduction

Combustion-related aerosols are an important contributor
to urban and global air pollution and have impacts on cli-
mate (Pachauri et al., 2014) and human health (Anderson
et al., 2012). While direct particle emissions from combus-
tion sources are dominated by primary organic aerosol (POA)
and black carbon (Bond et al., 2004), these sources also
emit volatile organic compounds (VOCs) that can photo-
chemically react in the atmosphere to form secondary or-
ganic aerosol (SOA) (Robinson et al., 2007). SOA produc-
tion from combustion emissions is poorly understood and
not very well represented in models in terms of its precur-
sors, gas–particle partitioning, composition, and properties
(Fuzzi et al., 2015). Atmospheric models frequently under-
predict SOA mass concentrations during strong photochemi-
cal episodes in urban areas (Jathar et al., 2017b), which likely
highlights the challenge in modeling the SOA contributions
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from urban, combustion-related emissions (Ensberg et al.,
2014).

Diesel-powered sources, which are an important source of
air pollution at urban and regional scales, emit precursors that
form SOA in the atmosphere (Gentner et al., 2017). Robin-
son et al. (2007) found that photochemical processing of ex-
haust emissions from a small off-road diesel engine led to
SOA production and doubled the primary aerosol mass over a
few hours in an environmental chamber. Chirico et al. (2010)
and Gordon et al. (2014) performed similar chamber experi-
ments on tailpipe emissions from in-fleet, on-road diesel ve-
hicles run on chassis dynamometers. Both found SOA pro-
duction that was roughly consistent with the findings from
Robinson et al. (2007). They additionally found that the
use of aftertreatment devices (diesel oxidation catalysts and
diesel particulate filters) substantially reduced SOA produc-
tion (mimicking the reduction in primary aerosol emissions)
but observed some SOA production during cold starts and/or
regeneration events when the proper functioning of the af-
tertreatment devices was limited. Furthermore, Gordon et
al. (2014) found negligible differences in the SOA formation
between diesel and biodiesel fuel. To access longer equiv-
alent photochemical aging timescales compared to typical
chamber experiments, Tkacik et al. (2014) measured SOA
formation using an oxidation flow reactor (OFR) from air
sampled from a highway tunnel in Pittsburgh, PA, used by
both on-road gasoline and diesel vehicles. OFRs use high
concentrations of atmospheric oxidants, e.g., hydroxyl rad-
icals, to achieve long exposures on short actual timescales;
further discussion is provided below. Tkacik et al. (2014)
measured much stronger SOA formation compared to cham-
bers (SOA : POA was 10 : 1) over photochemical exposures
equivalent to 2 to 3 days, but found that the SOA was lost, or
destroyed, as the mixture continued to age over the timescale
of a week. Recently, Jathar et al. (2017a) performed exper-
iments using an OFR to measure the photochemical pro-
duction of SOA from an off-road diesel engine operated at
various engine load, fuel, and aftertreatment configurations.
Jathar et al. (2017a) found that efficient combustion at higher
engine loads and removal of SOA precursors by aftertreat-
ment systems reduced SOA production by factors of 2 to 10.
The only exception was that the aftertreatment system did
not seem to reduce SOA production at idle loads possibly
because the exhaust temperatures were low enough to limit
removal of SOA precursors in the oxidation catalyst. Over-
all, these studies indicate that diesel exhaust contributes to
atmospheric SOA production, although the precise produc-
tion of SOA varies across dimensions of photochemical age,
engine duty cycle, use of alternative fuels, and aftertreatment
devices.

OFRs are being used to study the photochemical produc-
tion of SOA from both anthropogenic (e.g., Ortega et al.,
2016) and natural (e.g., Palm et al., 2016) sources. Most
OFRs used for SOA studies are 10 to 15 L flow-through metal
reactors with lamps that can produce high concentrations of

atmospheric oxidants to simulate photochemical processing
(e.g., Lambe et al., 2011). Flows through an OFR allow for
residence times between 1 and 4 min, but given the high oxi-
dant concentrations OFRs can simulate several weeks of pho-
tochemistry. OFRs have three distinct advantages over en-
vironmental chambers. First, OFRs are smaller in size and
easier to operate than environmental chambers, which allows
for shorter experiments and makes them ideal for field de-
ployments (Palm et al., 2016; Simonen et al., 2017). Second,
production of high oxidant concentrations in OFRs allows for
much longer photochemical exposures (∼ factor of 10) than
those possible with chambers (Lambe et al., 2011). Third,
due to their flow-through nature, OFRs have shorter resi-
dence times than conventional chambers (∼ 1–4 min) and
hence are less susceptible to gas and particle losses that can
influence SOA formation (Zhang et al., 2014; Krechmer et
al., 2016). Despite those advantages, there are concerns that
the accelerated chemistry and limitations to gas–particle par-
titioning may affect the formation and composition of SOA
in OFRs, which calls into question their relevance in under-
standing SOA formation in the real atmosphere (Palm et al.,
2016; Jathar et al., 2017a; Ahlberg et al., 2017). For example,
short residence times and/or small condensation sinks from
preexisting aerosol may not allow for complete condensation
of SOA vapors (Lambe et al., 2015). Similarly, high oxidant
concentrations in OFRs may lead to molecules undergoing
a greater number of reactions in the gas phase before con-
densing, including reactions that lead to fragmentation and
formation of higher volatility products (Kroll et al., 2009).
Both effects will typically suppress SOA production. With
the increased use of OFRs, there is a need to develop and
use modeling tools that can account for fragmentation reac-
tions and kinetic gas–particle partitioning. This will allow
for a more accurate interpretation of OFR data and facilitate
translation of OFR results to the real atmosphere.

Models used to simulate the photochemical production of
SOA from VOCs in combustion emissions have tradition-
ally used the two-product (Odum et al., 1996) or the more
generalized n-product Volatility Basis Set (VBS) framework
(Donahue et al., 2006a). In this framework, VOC oxidation
products are lumped into volatility bins based on their ef-
fective saturation concentrations (C∗) and where the satura-
tion concentration determines the partitioning of the products
between the gas and particle phases (Pankow, 1994). This
framework has been widely used in both box (Dzepina et
al., 2009; Hodzic et al., 2010; Jathar et al., 2014a; Hayes et
al., 2015) and three-dimensional (Murphy and Pandis, 2009;
Tsimpidi et al., 2009; Jathar et al., 2011; Ahmadov et al.,
2012; Konovalov et al., 2015) models to simulate the chem-
istry and gas–particle partitioning of SOA. While this frame-
work offers a simple and computationally efficient scheme
to model SOA formation, the use of volatility alone nei-
ther tracks the molecular composition nor informs the con-
tinued multigenerational chemistry that will determine the
atmospheric evolution and properties of SOA. As a result,
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volatility-based models have been challenged in leveraging
observations of the elemental composition of SOA (e.g.,
atomic O : C ratios) that have become possible through the
use of the aerosol mass spectrometer (AMS) to constrain
parameterizations or test model predictions. Further, most
volatility-based models have employed ad hoc parameteri-
zations to model multigenerational chemistry that do not ac-
count for fragmentation reactions (Robinson et al., 2007) and
possibly double count SOA formation (Jathar et al., 2016).
Therefore, there is a demand to develop models that can pro-
vide an improved representation of the chemistry that gov-
erns the formation, composition, and properties of SOA.

Previously, volatility-based SOA models have been used
to predict photochemical production of SOA from motor ve-
hicle exhaust (Robinson et al., 2007; Jathar et al., 2014b;
Tkacik et al., 2014). These modeling studies have shown that
speciated SOA precursors such as long alkanes (C6−12) and
single-ring aromatics (e.g., benzene, toluene) explain less
than 20 % of the observed SOA and have argued that the re-
mainder of the SOA (∼ 80 %) arises from the photooxidation
of typically unspeciated organic compounds. These unspe-
ciated compounds, also referred to as intermediate volatility
organic compounds (IVOCs), are likely species with carbon
numbers larger than 12 and appear as an unresolved complex
mixture on using traditional gas chromatography–mass spec-
trometry (GC-MS) techniques (Presto et al., 2011). Early
estimates of IVOC emissions and their SOA potential have
significantly improved predictions of the SOA formed from
diesel exhaust (Jathar et al., 2014b) and have broadly im-
proved OA model performance in three-dimensional large-
scale models (Murphy and Pandis, 2009; Pye and Seinfeld,
2010; Jathar et al., 2011; Tsimpidi et al., 2009). Consider
as an example that Zhao et al. (2015), using a thermal des-
orption GC-MS to provide detailed speciation of the carbon-
number resolved linear, branched, and cyclic alkane IVOCs
in diesel exhaust, found that these species accounted for up
to 60 % of the non-methane organic gas emissions. While
IVOCs have been recognized as an important class of SOA
precursors for diesel (and even for gasoline and biomass
burning) sources, updated emissions and speciation estimates
from Zhao et al. (2015) have not yet been used to explain
observations of photochemically produced SOA from diesel
exhaust.

Recently, several model frameworks have been developed
to improve the representation of SOA formation, consider-
ing dimensions of SOA beyond just volatility. The Statisti-
cal Oxidation Model (SOM) developed by Cappa and Wil-
son (2012) is one such example, although volatility remains
an important consideration. The SOM is a semi-explicit,
parameterizable mechanism that uses a two-dimensional
carbon–oxygen grid to simulate the multigenerational chem-
istry and gas–particle partitioning of organic compounds. Al-
though the SOM does not explicitly track or specify the prod-
uct species composition (e.g., functional groups), the carbon-
and oxygen-number representation provides adequate de-

tail to represent many key atmospheric processes, e.g., re-
actions with oxidants, formation of functionalized products,
scission of carbon backbones or fragmentation, and surface
and condensed-phase chemistry and gas–particle partition-
ing. The SOM has been used to interpret chamber experi-
ments (Zhang et al., 2014; Cappa et al., 2013; Cappa and
Wilson, 2012) and was recently integrated into a chemical
transport model (Jathar et al., 2015) to examine the influence
of multigenerational aging (Jathar et al., 2016) and chamber-
based vapor wall losses (Cappa et al., 2016) on ambient con-
centrations and properties of OA. The two-dimensional VBS
(2D-VBS) (Donahue et al., 2011) and the carbon–polarity
grid of Pankow and Barsanti (2009) are examples of simi-
lar frameworks. These more sophisticated models (i.e., SOM,
2D-VBS, carbon–polarity grid) have not yet been employed
to study SOA formation from complex mixtures such as com-
bustion emissions.

To summarize, combustion sources such as diesel-
powered sources emit precursors that can photooxidize in
the atmosphere to produce SOA. This SOA production is de-
pendent not only on the precursor composition (that could
vary by combustion mode and fuel type) and photochemical
age, but also on the experimental artifacts (e.g., short con-
densation timescales) introduced by OFRs. Hence, there is a
need to develop and apply sophisticated, yet computationally
efficient, numerical models to simulate and study SOA for-
mation from combustion emissions. In this work, we applied
two SOA model frameworks that vary in sophistication (VBS
and SOM) to simulate the photochemical production of SOA
in an OFR from diesel exhaust. The models were evaluated
by comparing model predictions (OA and O : C) to the recent
measurements made by Jathar et al. (2017a), where SOA pro-
duction was quantified for different photochemical ages un-
der varying engine loads, fuels, and aftertreatment devices.
The model–measurement comparison, along with sensitivity
simulations, highlights the importance of modeling the ki-
netic gas–particle partitioning of SOA in OFRs, the contri-
bution of IVOCs to the total SOA production, and the ability
of the SOM to accurately track the composition of SOA.

2 Methods

2.1 Experiments and data

Jathar et al. (2017a) performed photooxidation experiments
using an OFR to measure SOA production from the exhaust
of a 4.5 L John Deere diesel engine. The stock engine met
Tier 3 emissions standards for off-road diesel engines. The
OFR used therein was described in detail by Friedman et
al. (2016) and the experimental setup and OA measurements
from these experiments were described in detail by Jathar
et al. (2017a). We briefly summarize the experimental setup,
measurements, and findings from Jathar et al. (2017a). The
engine was run at two different loads (idle and 50 % load)
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with two different fuels (diesel and biodiesel) and with and
without an aftertreatment system. The aftertreatment system
included a diesel oxidation catalyst (DOC) to oxidize CO and
total hydrocarbons (THC) and a diesel particle filter (DPF)
to trap fine particles. Diesel exhaust was diluted by a fac-
tor of 45–110 before entering the OFR. The intensity of
the mercury lamps (at wavelengths of 185 and 254 nm) in-
side the OFR was varied to produce different hydroxyl radi-
cal (OH) concentrations and simulate different photochemi-
cal exposures. The OFR had a residence time of 100 s. A suite
of instrumentation was used to measure gas-phase (CO2,
CO, THC, NOx , O2, oxygenated organic compounds) and
particle-phase (aerosol size and composition) concentrations.
A total of 13 experiments (see Table 1 for more details) were
performed at varying engine loads and with varying fuels and
aftertreatment configurations. The OH exposure was varied
between 0 and a maximum of 9.2× 107 molecules-h cm−3

(equivalent to 2 days of photochemical aging at an OH con-
centration of 1.5× 106 molecules cm−3). On average, each
experiment included measurements at six to seven different
photochemical exposures. The mass concentrations and ele-
mental composition of the POA (measured when OFR lights
were off) and SOA (at varying OH exposures) were mea-
sured by a high-resolution aerosol mass spectrometer (HR-
AMS). In addition to the measurements reported by Jathar et
al. (2017a), the gas-phase concentrations of oxygenated or-
ganic compounds were measured by an acetate reagent ion-
based chemical ionization mass spectrometer (CIMS) (Link
et al., 2016). At all engine configurations, SOA production
exceeded the POA emissions after the equivalent of a few
hours of atmospheric photochemical aging. SOA production
was particularly strong at idle (or less fuel-efficient) engine
loads and/or when exhaust temperatures were low and proper
functioning of the aftertreatment devices was limited. Fur-
ther, POA emissions and SOA production were nearly iden-
tical between diesel and biodiesel fuels. A synopsis of ex-
periments performed and the THC, which includes all SOA
precursors CO, NOx, POA, SOA, O : C, OH, and size distri-
bution, is presented in Table 1.

Although the diesel exhaust was diluted with clean air to
produce atmospherically relevant concentrations of POA, the
initial THC, CO, and NOx concentrations in the OFR were
still quite high. Peng and Jimenez (2017), using a detailed
gas-phase model, argued that the high external OH reactiv-
ity from high THC, CO, and NOx concentrations might lead
to non-OH chemistry in the OFR and NO could quickly be
consumed in the OFR leading to low NO conditions for SOA
formation. Peng and Jimenez (2017) quantified the poten-
tial influence of NO on the oxidation chemistry by calcu-
lating the ratio of the reactive flux of the peroxy radicals
with NO to the reactive flux of the peroxy radicals with
HO2 (rRO2+NO/rRO2+HO2 ). A ratio greater than 1 was con-
sidered as “high NO” while a ratio less than 1 was considered
“low NO”. For the relative humidity, photon flux, initial NO,
and external OH reactivity values in Jathar et al. (2017a),

the model of Peng and Jimenez (2017) predicted that the
OFR mostly ran in a high NO mode at all photochemical
exposures when the engine was run at load conditions or
with an aftertreatment device in place. However, the model
predicted that the OFR mostly ran in a low NO mode es-
pecially at the high photochemical exposures when the en-
gine was run at idle conditions and without an aftertreatment
device (i.e., idle–diesel–none and idle–biodiesel–none). The
rRO2+NO/rRO2+HO2 ratio and low versus high NO mode for
each photon flux and experiment combination is listed in Ta-
ble S1 in the Supplement. Based on these results, we accord-
ingly used the low and high NOx parameterizations to per-
form the model simulations.

The model of Peng and Jimenez (2017) also indicated that
most of the experiments performed by Jathar et al. (2017a)
were run under, in what Peng and Jimenez (2017) refer to as,
“risky” or “bad” conditions. These conditions refer to situ-
ations in the OFR where the initial NO concentrations and
external OH reactivity are high enough to suppress OH ex-
posure and lead to non-tropospheric photolysis at 185 and
254 nm, which could compete with OH exposure to deter-
mine the fate of the SOA precursors and its oxidation prod-
ucts. Such conditions could be avoided by ensuring low
initial NO concentrations and external OH reactivity that
for combustion emissions would require substantial dilution
with clean air before they are oxidized in the OFR. Future
studies on combustion sources should be cognizant of this
fact to avoid artifacts linked to non-tropospheric photolysis
of organic compounds in OFRs.

2.2 Organic aerosol models

In this work, we used two different OA models to pre-
dict the mass concentrations and chemical composition of
SOA and compare predictions against the SOA measure-
ments from Jathar et al. (2017a) and Friedman et al. (2017).
In this section, we briefly describe the two model frame-
works, namely the VBS and the SOM, used to simulate the
coupled chemistry, thermodynamic properties, and kinetic
gas–particle partitioning of OA. Neither model accounted for
photolysis of organic compounds in the gas phase at 185 or
254 nm, which may need to be considered in the future when
modeling the OFR chemistry from combustion emissions.
The VBS model was chosen as it is widely used in contempo-
rary air quality models; the SOM was chosen to examine the
influence of improved representation of OA processes (e.g.,
fragmentation reactions) on model predictions.

2.2.1 Volatility basis set

The VBS model, developed by Donahue et al. (2006b), is a
parameterizable model that allows for a volatility-based rep-
resentation of the coupled chemistry, thermodynamic proper-
ties, and gas–particle partitioning of OA. The VBS uses loga-
rithmically spaced so-called basis sets based on the effective
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Table 2. SOA precursors and mass yields used in the VBS model for high NOx conditions.

Species log10C
∗ Reference

0.1 1 10 100 1000

Toluene 0.0000 0.0100 0.2400 0.4500 0.7000 Hildebrandt et al. (2009)
Benzene 0.0392 0.0315 0.0000 0.8230 0.0957 Ng et al. (2007)a

m-Xylene 0.0032 0.0106 0.0633 0.0465 0.0000 Ng et al. (2007)a

p-Xylene 0.0000 0.0022 0.0764 0.0000 0.0000 Song et al. (2007)a

o-Xylene 0.0000 0.0132 0.1140 0.0000 0.0000 Song et al. (2007)a

Naphthalene 0.0000 0.1660 0.0000 0.5400 0.8130 Chan et al. (2009)a

1-Methylnaphthalene 0.0000 0.0170 0.4860 0.0000 0.0000 Chan et al. (2009)a

2-Methylnaphthalene 0.0000 0.0531 0.5040 0.0000 0.0000 Chan et al. (2009)a

1,2-Dimethylnaphthalene 0.0000 0.3100 0.0000 0.0000 0.0000 Chan et al. (2009)a

1-Methyl-3-n-propylbenzene 0.0000 0.0000 0.0405 0.0694 0.1140 Odum et al. (1996)a

n-Decane 0.0000 0.0000 0.0110 0.1280 0.2420 Presto et al. (2010)b

n-Undecane 0.0000 0.0040 0.0720 0.1760 0.1450 Presto et al. (2010)b

n-Dodecane 0.0000 0.0140 0.1100 0.1600 0.0000 Presto et al. (2010)
n-Tridecane 0.0140 0.0590 0.2200 0.4000 0.0000 Presto et al. (2010)
n-Tetradecane 0.0220 0.0940 0.3000 0.3500 0.0000 Presto et al. (2010)
n-Pentadecane 0.0440 0.0710 0.4100 0.3000 0.0000 Presto et al. (2010)
n-Hexadecane 0.0530 0.0830 0.4600 0.2500 0.0000 Presto et al. (2010)
n-Heptadecane 0.0630 0.0890 0.5500 0.2000 0.0000 Presto et al. (2010)

a Vapor wall losses are not accounted for. b Extrapolated from the Presto et al. (2010) data.

saturation concentration (C∗); C∗ of a species determines the
partitioning between the gas and particle phases (Pankow,
1994). In the VBS model, organic precursors were allowed
to react with OH to yield a unique product distribution in C∗

space that represented stable first-generation products. Sub-
sequent multigenerational gas-phase oxidation, or so-called
“aging”, of the VBS products was modeled using the scheme
of Robinson et al. (2007). In this scheme the product species
are allowed to react with OH and yield a product with a C∗

that is an order of magnitude lower than the direct precursor,
to a lower limit C∗ of 10−2 µg m−3. This scheme did not con-
sider fragmentation reactions. The following equations were
used to represent the organic precursor oxidation (Eq. 1) and
subsequent reaction and formation of products from the pre-
cursor oxidation and aging reactions (Eq. 2):

dV
dt
=−kOH[V ][OH], (1)

dCg+p
j

dt
= αjkOH[V ][OH] +βkOH,aging

[
C

g
j+1

]
[OH]

− γ kOH,aging

[
C

g
j

]
[OH], (2)

where V is the gas-phase concentration of a generic or-
ganic precursor (µg m−3; includes VOCs, IVOCs, and semi-
volatile VOCs), kOH is the reaction rate constant between the
precursor and OH (cm3 molecule−1 s−1), Cg+p

j is the gas +
particle-phase concentration in the j th bin (µg m−3), αj is
the mass yield of the first-generation oxidation product of
the j th bin (Table 2), kOH,aging is the reaction rate constant

(cm3 molecule−1 s−1) to represent multigenerational aging
of the oxidation products, and β and γ are the mass yields as-
sociated with the production and loss terms from multigener-
ational aging. For the j th bin, the second term in Eq. (2) rep-
resents the formation of oxidation products from the j + 1th
volatility bin and the third term in Eq. (2) represents the loss
of precursor from the j th bin. β and γ are assumed to have a
value of 1 (meaning no fragmentation) but β is 0 for the last
bin and γ is 0 for the first bin.

Volatility-resolved mass yields for 18 different organic
precursors for C∗ bins ranging from 10−1 to 103 µg m−3

were adopted or refit based on low and high NOx param-
eterizations published in the literature; organic precursors,
the high and low NOx VBS mass yields, and the rele-
vant references are listed in Tables 2 and 3. High NOx
VBS mass yields for n-alkanes higher than n-heptadecane
(n-octadecane, n-nonadecane, n-eicosane, n-heneicosane, n-
docosane, and n-tricosane) were estimated from Presto et
al. (2010), in which the mass yields were shifted by one
C∗ bin for an increase in two carbon numbers. Since there
were no direct low NOx VBS parameterizations for alkanes,
parameterizations for linear, branched, and cyclic alkanes
were developed using pseudo-chamber data generated with
the SOM based on the low NOx parameters listed in Table 5
for n-dodecane, methylundecane, and hexylcyclohexane, re-
spectively (more details can be found in the Supplement).
Some of these parameterizations accounted for vapor wall
losses and have been accordingly marked in Tables 2 and 3.
Each SOA precursor in the exhaust emissions was assigned a
surrogate from Tables 2 and 3 to model SOA formation in the
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Table 3. SOA precursors and mass yields used in the VBS model for low NOx conditions.

Species C∗ Reference

0.1 1 10 100 1000

Toluene 0.0000 0.0100 0.2400 0.7000 0.7000 Hildebrandt et al. (2009)
Benzene 0.3700 0.0000 0.0000 0.0000 0.0000 Ng et al. (2007)a

m-Xylene 0.3000 0.0000 0.0000 0.0000 0.0000 Ng et al. (2007)a

p-Xylene 0.0000 0.0022 0.0764 0.0000 0.0000 Song et al. (2007)a

o-Xylene 0.0000 0.0132 0.1145 0.0000 0.0000 Song et al. (2007)a

Naphthalene 0.7300 0.0000 0.0000 0.0000 0.0000 Chan et al. (2009)a

1-Methylnaphthalene 0.6800 0.0000 0.0000 0.0000 0.0000 Chan et al. (2009)a

2-Methylnaphthalene 0.5800 0.0000 0.0000 0.0000 0.0000 Chan et al. (2009)a

n-Decane 0.0002 0.0050 0.0013 0.3938 0.0278 Loza et al. (2014)b

n-Undecane 0.0001 0.0070 0.0216 0.3321 0.0000 Loza et al. (2014)b

n-Dodecane 0.0011 0.0080 0.0279 0.3902 0.0003 Loza et al. (2014)b

n-Tridecane 0.0029 0.0064 0.0551 0.3231 0.7090 Loza et al. (2014)b

n-Tetradecane 0.0004 1.2000 0.1777 0.0194 0.0014 Loza et al. (2014)b

n-Pentadecane 0.0032 0.0124 0.0686 0.5050 0.0025 Loza et al. (2014)b

n-Hexadecane 0.0000 0.0572 0.2754 0.4346 0.1710 Loza et al. (2014)b

n-Heptadecane 0.0399 0.0757 0.4409 0.3691 0.0000 Loza et al. (2014)b

n-Octadecane 0.1958 0.0203 0.7077 0.0777 0.0000 Loza et al. (2014)b

n-Nonadecane 1.0281 0.0000 0.0000 0.0000 0.0000 Loza et al. (2014)b

n-Eicosane 0.0024 0.8470 0.2160 0.0000 0.0000 Loza et al. (2014)b

n-Heneicosane 0.3629 0.6766 0.0250 0.0000 0.0000 Loza et al. (2014)b

n-Docosane 0.7991 0.2633 0.0000 0.0000 0.0000 Loza et al. (2014)b

C12 branched alkane 0.0077 0.0015 0.0416 0.2486 0.9179 Loza et al. (2014)b

C13 branched alkane 0.0105 0.0007 0.0610 0.2376 1.2045 Loza et al. (2014)b

C14 branched alkane 0.0135 0.0007 0.0819 0.4173 0.4879 Loza et al. (2014)b

C15 branched alkane 0.0156 0.0034 0.1677 0.3553 0.7973 Loza et al. (2014)b

C16 branched alkane 0.0075 0.0704 0.1689 0.5741 0.0000 Loza et al. (2014)b

C17 branched alkane 0.0510 0.0000 0.4527 0.4605 0.0000 Loza et al. (2014)b

C18 branched alkane 0.0836 0.0001 0.7962 0.1484 0.0000 Loza et al. (2014)b

C19 branched alkane 0.3151 0.0001 0.7470 0.0000 0.0000 Loza et al. (2014)b

C20 branched alkane 0.0198 0.8698 0.1725 0.0000 0.0000 Loza et al. (2014)b

C21 branched alkane 0.3753 0.6837 0.0000 0.0000 0.0000 Loza et al. (2014)b

C22 branched alkane 0.8517 0.2056 0.0000 0.0000 0.0000 Loza et al. (2014)b

C12 cyclic alkane 0.0128 0.0302 0.0124 0.6156 0.0043 Loza et al. (2014)b

C13 cyclic alkane 0.0297 0.0000 0.0939 0.4062 1.0776 Loza et al. (2014)b

C14 cyclic alkane 0.0322 0.0000 0.1521 0.5341 0.5717 Loza et al. (2014)b

C15 cyclic alkane 0.0345 0.0000 0.3430 0.3231 0.8672 Loza et al. (2014)b

C16 cyclic alkane 0.0147 0.1426 0.3616 0.2839 0.6597 Loza et al. (2014)b

C17 cyclic alkane 0.0574 0.2408 0.3453 0.4060 0.0000 Loza et al. (2014)b

C18 cyclic alkane 0.2546 0.0643 0.6091 0.1431 0.0000 Loza et al. (2014)b

C19 cyclic alkane 0.2940 0.2790 0.5010 0.0000 0.0000 Loza et al. (2014)b

C20 cyclic alkane 0.3423 0.5700 0.1653 0.0000 0.0000 Loza et al. (2014)b

C21 cyclic alkane 0.6100 0.4478 0.0155 0.0000 0.0000 Loza et al. (2014)b

C22 cyclic alkane 0.9573 0.1110 0.0013 0.0000 0.0000 Loza et al. (2014)b

a Vapor wall losses are not accounted for. b Produced from pseudo-chamber data generated using the SOM. For more details, refer to
the Supplement.

VBS model. When using the high NOx parameterizations,
branched and cyclic alkanes were assigned surrogates based
on equivalent linear alkanes, following the work of Lim and
Ziemann (2009) and Tkacik et al. (2012). A CX branched

alkane was assigned a CX−2 linear alkane as a surrogate and
a CX cyclic alkane was assigned a CX+2 linear alkane as
a surrogate. The idle–diesel–none and idle–biodiesel–none
experiments used the low NOx parameterizations while all
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the other experiments used the high NOx parameterizations.
The mass transfer (condensation/evaporation) of the VBS
products to the particle phase was assumed to be kinetically
limited in the OFR (Palm et al., 2016; Jathar et al., 2017a;
Ahlberg et al., 2017); Sect. 2.3 describes the mass transfer
equation used to model kinetic gas–particle partitioning.

2.2.2 Statistical Oxidation Model

The SOM, developed by Cappa and Wilson (2012), is a
semi-explicit, parameterizable model that allows for a sta-
tistical representation of the coupled chemistry, thermody-
namic properties, and gas–particle partitioning of OA. The
SOM uses a two-dimensional carbon–oxygen grid to track
gas- and particle-phase precursors and products from precur-
sor oxidation. Each cell in the SOM grid represents a model
organic species with a molecular weight defined by the for-
mula CxHyOz. A SOM species reflects the average proper-
ties (e.g., C∗, reactivity) of all actual species with the same
number of carbon (NC) and oxygen (NO) atoms that are pro-
duced from a given precursor class (e.g., benzene, alkanes).
In the SOM, all gas-phase species are assumed to be reac-
tive towards OH and the OH reaction rate constant (kOH) is
calculated using Eq. (3) as follows:

log(kOH)= A1+A2×
(
N
A3
C

)
× exp

(
−1×

Ea

8.314× T

)
×

[
1+

b1

σ
√

2π
exp

(
−

1(ln(NO+ 0.01)− ln(b2)
2

2σ 2

)]
, (3)

σ (NC ≤ 15)= 0.0214×NC+ 0.5238,
σ (NC ≥ 15)=−0.115×NC+ 2.695,
b1 =−0.2583×NC+ 5.8944,
b2 (NC ≤ 15)= 0.0314×NC+ 0.9871,
b2 (NC > 15)= 0.25×NC− 2.183,

whereA1= 15.1,A2= 3.94, andA3= 0.797. kOH for a spec-
ified NC and NO is assumed to be the same for species in all
the SOM grids.

The reactions with OH lead to either functionalization or
fragmentation, resulting in movement through the carbon–
oxygen grid. Six precursor-specific adjustable parameters are
assigned for each SOM grid: four parameters that define the
molar yields of the four functionalized, oxidized products
(pO,k , 6pO,k = 1 and hence one out of the four parameters
is determined by mass balance), one parameter that deter-
mines the probability of functionalization or fragmentation
(PFrag, PFunc= 1−PFrag), and one parameter that describes
the change in C∗ associated with the addition of one oxy-
gen atom (1LVP). Equation (4) represents the evolution of
species in the SOM grid:

d[CXOZ]
dt

=− k
X,Z
OH [OH] [CXOZ]+ [OH]

4∑
k=1

k
X,Z−k
OH

P
X,Z−k
func pO,k

[
CXOZ−k

]
+ [OH]

jmax∑
j=1

kmax−Z∑
k=0

k
X+j,Z−1+k
OH

P
X,Z−1+k
frag

N
X,Z
fragments

[
CXOZ−1+k

]
, (4)

where CXOZ is the gas+ particle-phase concentration of the
SOM species with X carbon atoms and Z oxygen atoms
(µg m−3) and Nfragments is the number of possible prod-
ucts from fragmentation. The probability of fragmentation is
modeled using Eq. (5) as a function of the O : C ratio because
higher O : C ratio compounds are expected to have a higher
probability of fragmentation (Chacon-Madrid and Donahue,
2011):

Pfrag =

(
NO

NC

)mfrag

. (5)

The C∗ for each SOM species was calculated using Eq. (6)
as follows:

log10C
∗
=−0.337MWHC+ 11.56− (NO×1LVP) , (6)

where MWHC (g mole−1) is the molecular weight of the hy-
drocarbon backbone (accounting only for the carbon and hy-
drogen atoms).

The parameters used to model SOA formation were based
on those published in Cappa et al. (2016) and are listed in
Tables 4 and 5. These parameter sets were developed by fit-
ting the SOM predictions to chamber measurements of SOA
mass concentrations and include corrections to account for
vapor wall losses (Zhang et al., 2014). Each SOA precur-
sor in the exhaust emissions was assigned a surrogate from
Table 4 or 5 to account for the oxidation chemistry associ-
ated with oxidation of that species. For example, pentadecane
used the parameterization developed by fitting n-dodecane.
The difference in the initial number of carbons and oxygens,
and thus the volatility, between the surrogate compound and
the precursor compound of interest was accounted for, with
consequent impact on the SOA yield. In other words, un-
like the VBS where the SOA mass yield of the SOA pre-
cursor and surrogate is identical, the surrogate in the SOM
only informed the statistical trajectory for multigenerational
oxidation of a given precursor, and the surrogate and actual
compound of interest can have different SOA mass yields.
The idle–diesel–none and idle–biodiesel–none experiments
used the low NOx parameters while all the other experi-
ments used the high NOx parameters. Similar to the VBS
model, the mass transfer (condensation/evaporation) of the
SOM products to the particle phase was assumed to be ki-
netically limited in the OFR (Palm et al., 2016; Jathar et al.,
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Table 4. SOA precursors and parameters used in the SOM (Cappa et al., 2016) for high NOx conditions.

Species mfrag 1LVP pO,1 pO,2 pO,3 pO,4 Reference

n-Dodecane 0.0980 1.3900 0.9270 0.0101 0.0180 0.0445 Loza et al. (2014)
Methylundecane 0.0100 1.2100 0.7419 0.0011 0.1820 0.0750 Loza et al. (2014)
Hexylcyclohexane 0.0477 1.5700 0.7313 0.0381 0.2101 0.0205 Loza et al. (2014)
Toluene 0.2220 1.2400 0.0029 0.0010 0.0010 1.0100 Zhang et al. (2014)
Benzene 0.5350 1.7000 0.0792 0.0010 0.9190 0.0010 Ng et al. (2007)
m-Xylene 0.0100 1.6800 0.9360 0.0010 0.0021 0.0609 Ng et al. (2007)
Naphthalene 0.1210 1.3100 0.6440 0.0010 0.0460 0.3080 Chan et al. (2009)

Table 5. SOA precursors and parameters used in the SOM (Cappa et al., 2016) for low NOx conditions.

Species mfrag 1LVP pO,1 pO,2 pO,3 pO,4 Reference

n-Dodecane 2.0000 1.8300 0.9990 0.0010 0.0010 0.0010 Loza et al. (2014)
Methylundecane 2.8200 1.9100 0.9980 0.0010 0.0010 0.0010 Loza et al. (2014)
Hexylcyclohexane 5.0000 2.0500 0.8160 0.1810 0.0019 0.0010 Loza et al. (2014)
Toluene 1.3100 1.7700 0.1850 0.0010 0.0019 0.8120 Zhang et al. (2014)
Benzene 0.0807 1.9700 0.6370 0.0010 0.0021 0.3600 Ng et al. (2007)
m-Xylene 1.0800 2.0500 0.1020 0.0010 0.8780 0.0190 Ng et al. (2007)
Naphthalene 0.1890 1.8700 0.3520 0.0543 0.5330 0.0609 Chan et al. (2009)

2017a; Ahlberg et al., 2017) and Sect. 2.3 below describes
the mass transfer equation used to model kinetic gas–particle
partitioning.

2.3 Kinetic gas–particle partitioning

Palm et al. (2016), Ahlberg et al. (2017), and Jathar et
al. (2017a) have argued that the short residence times and
small condensation sinks in the OFR may not permit all low-
volatility products formed from precursor oxidation to con-
dense onto preexisting aerosol. Hence, unlike earlier work
that has assumed equilibrium partitioning to model SOA in
OFRs (Tkacik et al., 2014; Chen et al., 2013), we mod-
eled the kinetic gas–particle partitioning of OA using Eq. (7)
(Zhang et al., 2014):

dCp
i

dt
= 2πDiDpNpFFS

(
C

g
i −

C
p
i C
∗

i

COA

)
, (7)

where Cp
i is the particle-phase mass concentration for the

ith organic species (µg m−3), Di is the gas-phase diffusion
coefficient of the ith organic species (m2 s−1),Dp is the num-
ber mean particle diameter (m), Np is the total particle num-
ber concentration (m−3), FFS is Fuchs–Sutugin correction
for non-continuum mass transfer, Cg

i is the gas-phase mass
concentration of the ith organic species (µg m−3), C∗i is the
effective saturation concentration of the ith organic species,
and COA is the total OA mass concentration (µg m−3). The
ith organic species refers to the organic compounds tracked
in the VBS bins and the SOM grids. The gas-phase diffu-
sion coefficient was calculated for each organic species as
follows:

Di =DCO2

MWCO2

MWi

, (8)

where DCO2 is the gas-phase diffusion coefficient of CO2
(1.38× 10−5 m2 s−1), MWCO2 (g mole−1) is the molecular
weight of CO2, and MWi (g mole−1) is the molecular weight
of the ith organic species. In the VBS model where we do
not track the molecular composition of the SOA species, we
assumed all condensing species to have a molecular weight
of 200 g mole−1. This formulation to calculate the gas-phase
diffusion coefficient underpredicted the measured gas-phase
diffusion coefficients compiled by Tang et al. (2015) by
∼ 20 %. However, doubling the gas-phase diffusion coeffi-
cient calculated in Eq. (8) resulted in very small change
(< 1 %) in the OA mass predictions for a representative ex-
periment. Hence, we decided to use the formulation in Eq. (8)
for the rest of this work. The Fuchs–Sutugin correction was
calculated as follows:

FFS =
0.75α(1+Kn)

Kn2+Kn+ 0.283 ·Kn ·α+ 0.75α
, (9)

Kn=
2λi
Dp

, (10)

λi =
3Di
Cj

, (11)

Ci =

√
8NAkT

πMWi

, (12)

where Kn is the Knudsen number, α is the mass accommo-
dation coefficient, λi is the mean free path of the ith organic
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Table 6. (a) Volatility- and (b) carbon-number resolved distributions used to determine mass concentrations of POA in the VBS and SOM
models, respectively. The volatility distributions are from May et al. (2013b).

(a)

C∗ (µg m−3) 10−2 10−1 101 102 103 104 105 106

fi 0.03 0.25 0.37 0.23 0.06 0.03 0.01 0.01

(b)

Carbon no. < 16 16 17 18 19 20 21 22 23 24 25 26 > 26

fi 0.003 0.000 0.058 0.043 0.055 0.094 0.146 0.181 0.178 0.137 0.078 0.026 0.001

species in air (m), Ci is the root mean square speed of the
gas (m s−1), NA is Avogadro’s number (molecules mole−1),
k is the Boltzmann constant (m2 kg s−2 K−1), and T is the
temperature (K).

2.4 Model inputs

2.4.1 Semi-volatile and reactive POA

Previous work has shown that much of combustion-related
POA is semi-volatile and exists in an equilibrium with gas-
phase vapors (Robinson et al., 2007; Huffman et al., 2009;
May et al., 2013a–c). Jathar et al. (2017a) measured emis-
sions of POA at no OH exposure and these measured con-
centrations were used to initialize the seed OA available for
partitioning in the OFR and to calculate the mass concen-
trations of vapors in equilibrium with the POA. The mass
concentrations of the POA vapors were determined based on
the normalized, volatility-resolved distribution of primary or-
ganic compounds estimated by May et al. (2013b) for emis-
sions from a suite of on- and off-road diesel vehicles. The
volatility distribution of May et al. (2013b) for diesel pri-
mary organic compounds is listed in Table 6a. For the SOM,
we assumed that the primary organic compounds could be
represented using a distribution of n-alkanes and we refit the
volatility distribution in Table 6a to develop a carbon-number
resolved distribution of n-alkanes; this distribution is listed in
Table 6b.

2.4.2 SOA precursors

Jathar et al. (2017a) did not speciate the THC or SOA precur-
sor emissions from the diesel engine and hence we have de-
veloped our own emissions profiles based on previously pub-
lished literature to speciate the THC emissions. In this work,
we used two different emissions profiles listed in EPA SPE-
CIATE version 4.3 that are commonly used to speciate THC
emissions from diesel engines for emissions inventories used
in atmospheric modeling (EPA, 2011): profiles 3161 (diesel
exhaust – farm equipment) and 8774 (heavy duty diesel ex-
haust). Profile 3161 best matched the diesel engine source
and diesel fuel used by Jathar et al. (2017a) and was used

as the baseline emissions profile to speciate the THC emis-
sions; we examined the sensitivity of using Profile 8774 on
model predictions. We were unable to find a comprehensive
emissions profile for THC emissions from the use of straight
biodiesel fuel in the literature and have relied on emissions
profiles that were determined for biodiesel-diesel blends.
Profile 4777 (30 % biodiesel exhaust – light duty truck) was
used as the baseline emissions profile to speciate THC emis-
sions for experiments performed using the biodiesel fuel. All
three emissions profiles (3161, 8774, and 4777) are listed in
Tables S2 through S4.

Prior work in studying SOA formation has revealed that
traditional speciation of THC emissions does not include
emissions of high molecular-weight organic compounds,
such as IVOCs, that are important SOA precursors (Jathar
et al., 2014b). In Profile 3161 such compounds are partially
accounted for in the “unknown” species category (13.76 %
by mass of THC). Zhao et al. (2015) recently estimated that
IVOCs were 60 % of the THC emissions from a suite of on-
and off-road diesel engines and provided a semi-explicit spe-
ciation of the IVOC emissions as a carbon-number distribu-
tion of linear, branched, and cyclic alkanes. To account for
these IVOC emissions, we assumed that the base case emis-
sions profiles contained 30 % IVOCs on a mass basis (this
IVOC fraction was selected since it resulted in the most op-
timum model–measurement comparison for OA mass; this
will be discussed later in Sect. 3.3) and had the same chem-
ical speciation as that proposed by Zhao et al. (2015) for an
off-road engine (transportation refrigeration unit). We per-
formed sensitivity simulations using IVOC fractions of 0 %
(assuming that the THC emissions contained no IVOCs),
13.76 % (based on the “unknown” category in Profile 3161),
and 60 % (based on the median estimate in Zhao et al.,
2015), on a mass basis. Addition of IVOCs to the emissions
profile meant that the VOC species (e.g., benzene, toluene,
short alkanes) had to be renormalized to accommodate the
IVOCs. Table 7 lists the renormalized baseline emissions
profiles for SOA precursors used for diesel and biodiesel ex-
haust with 30 % IVOCs along with the reaction rate constants
with OH (kOH) and surrogates (or model compound) used to
model SOA formation for the VBS and SOM models. Con-
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centrations for each species were determined by multiplying
the experiment-specific THC mass concentrations with the
renormalized emissions profiles.

2.4.3 Particle size and particle number concentrations

For numerical simplicity, we used a monodisperse aerosol,
the properties of which (number mean diameter, Dp; num-
ber concentration, Np) were initialized from the measured
particle size distribution data when modeling kinetic gas–
particle partitioning. For experiments performed without
the DPF+DOC, the initial particle number concentrations
and condensational sinks were high (> 3.3× 105 cm−3 and
> 0.5 min−1) and hence the monodisperse aerosol was ini-
tialized based on data at no photochemical exposure. For
experiments performed with the DPF+DOC where the
initial particle number concentrations were relatively low
(< 1000 cm−3 and < 0.003 min−1), photochemical aging re-
sulted in formation and growth of new particles and provided
a substantial increase in the surface area (> factor of 300)
available for condensation. In these experiments, we initial-
ized the monodisperse aerosol using an average of the data
at no photochemical exposure and after photochemical ex-
posure (Palm et al., 2016). Averaging the data allowed for
a more realistic estimate of the condensational sink. In each
simulation, the condensing SOA mass was used to calculate
the change in particle size but the number concentration was
conserved. The number mean diameter and the number con-
centration data – representing the initial condensational sink
– for all experiments are listed in Table 1.

New particle formation and growth was observed for most
experiments at or near the highest photochemical ages (at
or > 1 OH day), which presumably influenced the conden-
sational sink at the beginning of the experiment. Therefore,
we performed sensitivity simulations to investigate the in-
fluence of new particle formation on model predictions. We
performed simulations with each model (VBS and SOM)
with four different initial condensational sinks. The first three
simulations used measured data to calculate the initial con-
densational sink inputs: (i) number mean diameter and mea-
sured number concentration at no OH exposure (equivalent
to the default for non-DPF+DOC experiments), (ii) num-
ber mean diameter and measured number concentration at the
given OH exposure, and (iii) average of (i) and (ii) (default
for DPF+DOC experiments). The fourth simulation (iv) as-
sumed that the OFR nucleated 1 nm particles at the beginning
of the experiment where the number concentration of these
particles was equal to that measured at the end of the experi-
ment.

2.5 Model simulations and model code

The VBS and SOM models were run separately for each pho-
tochemical exposure simulated for each experiment listed
in Table 1. In the VBS simulations, POA was tracked in

one basis set while products from each SOA precursor were
tracked in separate basis sets, allowing us to distinguish be-
tween POA and SOA. In the SOM simulations, all precur-
sor molecules with the same surrogate (e.g., all n-alkanes)
were tracked in the same SOM grid. Model simulations were
performed in phases to answer specific questions and inform
model inputs for later simulations:

1. To provide a general overview of the model predictions
and model–measurement comparison, and to orient the
reader to the results thereafter, we performed simula-
tions with the VBS and SOM models using the base set
of inputs for one of the idle–diesel–none experiments.
Our base case included Profile 3161 for VOC emissions,
30 % IVOC mass fraction, kinetic gas–particle partition-
ing with a mass accommodation coefficient of 0.1, and
monodisperse aerosol inputs based on measured data
at no photochemical exposure. The partitioning- and
IVOC-related choices for the base case are discussed in
Sects. 3.2 and 3.3, respectively.

2. Models used to simulate SOA production in environ-
mental chambers and OFRs have typically assumed in-
stantaneous equilibrium partitioning (e.g., Chen et al.,
2013). To examine the validity of assuming instanta-
neous equilibrium partitioning, we performed simula-
tions with the VBS and SOM models using instanta-
neous or kinetic gas–particle partitioning for one of
the idle–diesel–none and the idle–diesel–DPF+DOC
experiments. Kinetic partitioning was modeled using
three values of the mass accommodation coefficient
(α= 0.01, 0.1, 1) to capture the uncertainty in its true
value. To examine the influence of an increased ini-
tial condensational sink from new particle formation
on kinetic partitioning, we performed additional simu-
lations using four different initial condensational sinks
(see Sect. 2.4.3) on one of the idle–diesel–none and the
idle–diesel–DPF+DOC experiments.

3. Previous work has shown that combustion-related
IVOCs are important precursors of SOA (e.g., Jathar et
al., 2014b). To investigate the importance of IVOCs, we
performed simulations with the VBS and SOM mod-
els at four different assumed IVOC mass fractions (0,
13.76, 30, and 60 %), as discussed above when dis-
cussing the THC profiles, at all photochemical expo-
sures and for all the experiments listed in Table 1. We
performed additional simulations with different emis-
sions profiles and SOA parameterizations on one of the
idle–diesel–none experiments to investigate uncertain-
ties linked to the composition and SOA potential of
IVOCs.

4. Additional simulations were performed to examine the
sensitivity of model predictions to the following pro-
cesses: multigenerational aging, vapor wall losses, res-
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Table 7. Reaction rate constants (kOH), mass fractions, and VBS and SOM surrogates for SOA precursors in diesel and biodiesel emissions.
kOH values are from Atkinson and Arey (2003) when available or the EPI Suite version 4.11 (EPA, 2017). n/a= not applicable.

Species Carbon kOH Mass percentage VBS SOM
number (cm3 molecules−1 s−1) of THC surrogate surrogate

Diesel Biodiesel

Ethylbenzene 8 7.0× 10−12 0.2516 0.0826 Toluene Toluene
Indan 9 1.9× 10−11 0.1542 n/a Naphthalene Naphthalene
Butylbenzene 10 4.5× 10−12 0.0081 0.4720 m-Xylene m-Xylene
Diethylbenzene 10 8.11× 10−12 0.0731 n/a m-Xylene m-Xylene
Isopropyltoluene 10 8.54× 10−12 n/a 0.3599 Toluene Toluene
m-Xylene 8 2.31× 10−11 0.4951 0.3717 m-Xylene m-Xylene
o-Xylene 8 1.36× 10−11 0.2760 0.3953 o-Xylene m-Xylene
p-Xylene 8 1.43× 10−11 0.0812 n/a p-Xylene m-Xylene
n-Decane 10 1.1× 10−11 0.4302 1.7050 n-Decane n-Decane
n-Undecane 11 1.23× 10−11 0.2110 1.9410 n-Undecane n-Dodecane
Toluene 7 5.63× 10−12 1.1932 1.6401 Toluene Toluene
n-Tridecane 13 1.68× 10−11 n/a 0.6136 n-Tridecane n-Dodecane
Benzaldehyde 7 1.2× 10−11 0.5682 n/a Benzene Benzene
Benzene 6 1.22× 10−12 1.6234 1.5988 Benzene Benzene
C10 aromatics 10 2.3× 10−11 0.0649 n/a m-Xylene m-Xylene
C9 aromatics 9 2.31× 10−11 0.4058 n/a m-Xylene m-Xylene
1,2,3-Trimethylbenzene 9 3.27× 10−11 0.0974 n/a m-Xylene m-Xylene
1,2,4-Trimethylbenzene 9 3.25× 10−11 0.4302 0.4720 m-Xylene m-Xylene
1,2-Diethylbenzene 10 8.11× 10−12 0.0731 n/a Toluene Toluene
1,3,5-Trimethylbenzene 9 5.67× 10−11 n/a 0.1888 m-Xylene m-Xylene
1,2-Dimethyl-4-ethylbenzene 10 1.69× 10−11 n/a 0.176 m-Xylene m-Xylene
1,3-Dimethyl-2-ethylbenzene 10 1.76× 10−11 n/a 0.3304 m-Xylene m-Xylene
1,4-Dimethyl-2-ethylbenzene 10 1.69× 10−11 n/a 0.4366 m-Xylene m-Xylene
1-(1,1-dimethylethyl)-3,5-dimethylbenzene 12 3.01× 10−11 n/a 0.3717 m-Xylene m-Xylene
1-Methyl-2-ethylbenzene 9 7.44× 10−12 0.1136 0.3835 Toluene Toluene
1-Methyl-3-ethylbenzene 9 1.39× 10−11 0.2029 0.7198 Toluene Toluene
1-Methyl-2-tert-butylbenzene 11 6.74× 10−12 n/a 0.4307 Toluene Toluene
1-Tert-butyl-4-ethylbenzene 12 7.42× 10−12 n/a 0.1947 m-Xylene m-Xylene
2-Methyl-butyl-benzene 11 1.02× 10−11 n/a 1.1032 m-Xylene m-Xylene
3,3-Dimethyloctane 10 7.21× 10−12 n/a 0.3068 n-Decane Methylundecane
3-Ethyloctane 10 1.18× 10−11 n/a 0.1888 n-Decane Methylundecane
3-Methylnonane 10 1.14× 10−11 n/a 0.2655 n-Decane Methylundecane
C12 branched alkane 12 1.82× 10−11 1.1335 1.1335 n-Decane Methylundecane
C13 branched alkane 13 1.68× 10−11 0.8111 0.8111 n-Undecane Methylundecane
C14 branched alkane 14 1.39× 10−11 0.5257 0.5257 n-Dodecane Methylundecane
C15 branched alkane 15 1.82× 10−11 0.4692 0.4692 n-Tridecane Methylundecane
C16 branched alkane 16 1.96× 10−11 0.4935 0.4935 n-Tetradecane Methylundecane
C17 branched alkane 17 2.1× 10−11 0.2198 0.2198 n-Pentadecane Methylundecane
C18 branched alkane 18 2.24× 10−11 0.2863 0.2863 n-Hexadecane Methylundecane
C19 branched alkane 19 2.38× 10−11 0.1716 0.1716 n-Heptadecane Methylundecane
C20 branched alkane 20 2.52× 10−11 0.0969 0.0969 n-Octadecane Methylundecane
C21 branched alkane 21 2.67× 10−11 0.0639 0.0639 n-Nonadecane Methylundecane
C22 branched alkane 22 2.81× 10−11 0.0604 0.0604 n-Eicosane Methylundecane
C12 cyclic alkane 12 1.82× 10−11 4.3427 4.3427 n-Tetradecane Hexylcyclohexane
C13 cyclic alkane 13 1.68× 10−11 4.4265 4.4265 n-Pentadecane Hexylcyclohexane
C14 cyclic alkane 14 1.39× 10−11 3.1480 3.1480 n-Hexadecane Hexylcyclohexane
C15 cyclic alkane 15 1.82× 10−11 2.8599 2.8599 n-Heptadecane Hexylcyclohexane
C16 cyclic alkane 16 1.96× 10−11 2.1848 2.1848 n-Octatadecane Hexylcyclohexane
C17 cyclic alkane 17 2.1× 10−11 1.8546 1.8546 n-Nonadecane Hexylcyclohexane
C18 cyclic alkane 18 2.24× 10−11 1.6900 1.6900 n-Eicosane Hexylcyclohexane
C19 cyclic alkane 19 2.38× 10−11 1.0570 1.0570 n-Heneicosane Hexylcyclohexane
C20 cyclic alkane 20 2.52× 10−11 0.5900 0.5900 n-Docosane Hexylcyclohexane
C21 cyclic alkane 21 2.67× 10−11 0.3736 0.3736 n-Tricosane Hexylcyclohexane
C22 cyclic alkane 22 2.81× 10−11 0.3141 0.3141 n-Tricosane Hexylcyclohexane
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Table 7. Continued.

Species Carbon kOH Mass percentage VBS SOM
number (cm3 molecules−1 s−1) of THC surrogate surrogate

Diesel Biodiesel

Dodecane 12 1.82× 10−11 0.5830 0.5830 n-Dodecane n-Dodecane
Tridecane 13 1.68× 10−11 0.5465 0.5465 n-Tridecane n-Dodecane
Tetradecane 14 1.39× 10−11 0.3649 0.3649 n-Tetradecane n-Dodecane
Pentadecane 15 1.82× 10−11 0.3063 0.3063 n-Pentadecane n-Dodecane
Hexadecane 16 1.96× 10−11 0.2281 0.2281 n-Hexadecane n-Dodecane
Heptadecane 17 2.1× 10−11 0.1655 0.1655 n-Heptadecane n-Dodecane
Octadecane 18 2.24× 10−11 0.1481 0.1481 n-Octatadecane n-Dodecane
Nonadecane 19 2.38× 10−11 0.0726 0.0726 n-Nonadecane n-Dodecane
Eicosane 20 2.52× 10−11 0.0365 0.0365 n-Eicosane n-Dodecane
Heneicosane 21 2.67× 10−11 0.0222 0.0222 n-Heneicosane n-Dodecane
Docosane 22 2.81× 10−11 0.0143 0.0143 n-Docosane n-Dodecane
Pristane 19 2.44× 10−11 0.1434 0.1434 n-Nonadecane Methylundecane
Phytane 20 2.61× 10−11 0.0799 0.0799 n-Eicosane Methylundecane
Naphthalene 10 2.3× 10−11 0.1038 0.1038 Naphthalene Naphthalene
Phenanthrene 14 1.3× 10−11 0.0117 0.0117 Naphthalene Naphthalene

idence time distributions, and spatial heterogeneity in
OH concentrations.

The numerical codes for the VBS were developed in MAT-
LAB while those for the SOM were developed in IGOR
(WaveMetrics Inc.). These codes will be made available on
request. The simulations were performed on an Intel i5 pro-
cessor (1.7 GHz) and required ∼ 10 s to perform a VBS sim-
ulation and ∼ 500 s to perform a SOM simulation at a single
photochemical exposure.

3 Results

3.1 General model results using the base case

In Fig. 1, we compare predictions of OA from the VBS and
SOM models using the base case to the measurements for
the idle–diesel–none experiment performed on 5 June. Fig-
ure 1a and b compare predictions to the measurements in
units of µg m−3 and g kg-fuel−1, respectively; hereafter we
present all mass predictions in units of g kg-fuel−1. For this
experiment, the VBS and SOM models overpredicted the
OA mass by a factor of 2.0 and 2.2 at the lowest photo-
chemical exposure (0.06 OH days) and a factor of 1.6 and
1.8 at the next highest photochemical exposure (0.17 OH
days), respectively. The overprediction was because the mod-
els significantly overpredicted the SOA formation at these
two photochemical exposures. For higher photochemical ex-
posures (> 0.5 OH days), both models slightly underpre-
dicted the OA mass but predictions were still within the
measurement uncertainty. Our base case seemed to offer a
mixed model–measurement comparison for this specific ex-
periment (i.e., overprediction at lower photochemical ages
and a slight underprediction at higher photochemical ages)
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Figure 1. VBS and SOM model predictions of OA compared to
measurements from the experiment performed on 5 June (idle–
diesel–none) as a function of photochemical age. Inputs for both
models have been specified in the text. Panel (a) has comparisons
in µg m−3 and panel (b) has comparisons in g kg-fuel−1. Panel
(c) shows the modeled and measured OA composition at the highest
photochemical exposure.

because the 30 % IVOC mass fraction used in the base case
was optimized to achieve a favorable model–measurement
comparison across all experiments at all photochemical ex-
posures. In other words, the overprediction in this experi-
ment at lower photochemical exposures was probably off-
set by an underprediction at similar photochemical exposures
for some of the other experiments. It is important to note
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that the model performance varied across the suite of ex-
periments and this overall model performance is discussed
in more detail in Section 3.3. The VBS and SOM models
predicted that the OA at the maximum photochemical expo-
sure was dominated by SOA produced from VOC and IVOC
oxidation (92–93 %), which agreed well with the measured
composition (see Fig. 1c). For the measurements, POA was
defined as fresh OA while SOA was defined as OA formed
in addition to the POA. Furthermore, both models suggested
that most of the SOA emanated from the oxidation of IVOCs
with only 8.6–14 % resulting from the oxidation of aromatic
VOCs and less than 0.6–4 % resulting from alkane VOCs
smaller than a C12. This dominance of IVOCs in explaining
the photochemically produced SOA is in line with previous
OFR and chamber studies that have modeled SOA formation
from diesel exhaust (Tkacik et al., 2014; Zhao et al., 2015;
Jathar et al., 2014b).

3.2 Kinetic gas–particle partitioning

In Fig. 2, we plot predictions from the VBS and SOM mod-
els for the idle–diesel–none and idle–diesel–DPF+DOC ex-
periments assuming instantaneous and kinetic gas–particle
partitioning. The two different experiments were deliber-
ately chosen to highlight the role instantaneous partition-
ing plays at the extremities. We found that for the idle–
diesel–none experiment, the use of instantaneous partition-
ing roughly produced the same result as kinetic partition-
ing with α values of 0.1 and 1 and that all these predictions
resulted in roughly the same model–measurement compari-
son. The instantaneous partitioning predictions were slightly
higher than the kinetic partitioning predictions for the VBS
simulations. The kinetic partitioning simulations (except for
that with an α of 0.01) produced the same result as the in-
stantaneous partitioning simulation most likely because the
initial condensational sink was large enough (1.12 min−1)
in this experiment that there were no kinetic limitations to
partitioning. The increase in the condensational sink through
condensation of SOA (10 min−1 at the highest photochemi-
cal exposure) tended to further reduce any differences in the
predictions between the kinetic and instantaneous partition-
ing simulations. However, for the idle–diesel–DPF+DOC
experiment, the instantaneous partitioning simulations pre-
dicted substantial OA mass at the lower photochemical expo-
sures (0.04 and 0.12 OH days) compared to the kinetic par-
titioning simulations, specifically a factor of 9.8–29 larger at
0.04 OH days and a factor of 9.7–75 larger at 0.12 OH days
for the VBS model and a factor of 3.9–5.8 larger at 0.04 OH
days and a factor of 6.4–9.1 larger for the SOM. The instan-
taneous partitioning simulations consequently overpredicted
the measurements while the kinetic partitioning simulations
were more in line with the measurements. The instantaneous
partitioning simulations predicted a lot more SOA because
all condensable products of organic precursor oxidation were
allowed to condense instantaneously (according to their re-
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Figure 2. VBS model predictions of OA compared to measurements
from the experiment performed on 5 June (idle–diesel–none) as a
function of photochemical age assuming instantaneous equilibrium
partitioning and kinetic gas–particle partitioning run at three accom-
modation coefficients: α= 1 (dash-dot), 0.1 (dash), and 0.01 (solid).

spective volatilities) while the kinetic partitioning simula-
tions predicted little SOA production because the initial con-
densational sink was quite small (0.002 min−1). Predictions
from the instantaneous and kinetic partitioning simulations
were much closer at the higher photochemical exposures be-
cause the SOA formed had grown the condensational sink
enough to reduce limitations to partitioning (1 min−1 at the
highest photochemical exposure). These results imply that
the condensation of SOA in OFRs, in some instances, could
be kinetically limited and that instantaneous partitioning may
result in models overpredicting the condensation and forma-
tion of SOA.

We make two additional observations based on the results
in Fig. 2. First, the initial condensational sink for the idle–
diesel–none experiment was large (1.12 min−1) compared to
condensational sinks one would encounter in the real atmo-
sphere. For example, 5 µg m−3 of aerosol in a representa-
tive rural or remote environment will have a condensational
sink < 0.05 min−1 (Seinfeld and Pandis, 2006). Therefore,
modeling ambient applications of the OFR or OFR use with
sources that use emissions control devices will need to be
even more mindful of the instantaneous partitioning assump-
tion while predicting SOA formation. Second, for the kinetic
partitioning results, predictions from both models were rela-
tively less sensitive to α values between 0.1 and 1 but were
dramatically lower for an α value of 0.01 – more than a fac-
tor of 2 for the idle–diesel–none experiment and more than an
order of magnitude for the idle–diesel–DPF+DOC experi-
ment. Given the low sensitivity to α values greater than 0.1
and the reasonable model–measurement comparison at an
α value of 0.1 and 1 at least for the idle–diesel–none ex-
periment, we argue that the SOA condensation can be rep-
resented by an α value larger than 0.1 for the OFR experi-
ments in this work. This α value for diesel exhaust SOA was
consistent with prior estimates of the α value for biogenic
SOA estimated from chamber, OFR, and aerosol heating ex-
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periments (Lee et al., 2011; Saleh et al., 2013; Karnezi et al.,
2014; Palm et al., 2016) and direct measurements of α for
alkanol SOA (Krechmer et al., 2017). However, an α of 0.1
was an order of magnitude higher than that observed recently
for toluene SOA under dry conditions (Zhang et al., 2014).
Model results presented hereafter include a kinetic treatment
of gas–particle partitioning and assumed a mass accommo-
dation coefficient of 0.1.

Results from model simulations performed using different
initial condensational sink inputs, some of which captured
the influence of new particle formation, are plotted in Fig. 3.
We found that the initial condensational sink had no influ-
ence on the OA predictions from both models for the idle–
diesel–none experiment, despite substantial differences in the
initial condensational sink between the different cases. This
was because the amount of SOA formed (920 µg m−3 at the
highest photochemical exposure) was sufficient to grow the
condensational sink enough that the initial condensational
sink did not matter. In contrast, for both models we found
large differences between the model predictions of OA for
the idle–diesel–DPF+DOC experiment. The use of inputs
based on the measurements at no OH exposure, where the
aftertreatment system significantly reduced number concen-
trations (910 cm−3) and hence the available condensational
sink (0.002 min−1), produced much less SOA (an order of
magnitude lower or more) and poorer agreement with the
measurements – see curve (i) in Fig. 3b. Initial condensa-
tional sinks that captured the influence of new particle for-
mation resulted in higher model predictions but were still
about a factor of∼ 2 lower for the VBS simulations and a fac-
tor of ∼ 2.7 lower for the SOM simulations when compared
against the measurements. The DPF+DOC results also sug-
gest that calculating an initial condensational sink using data
from before and after the photochemical exposure, as done
by Palm et al. (2016), could be used as an input to model
OFR data. Slight differences between the different curves
for the idle–diesel–none experiment and curves (ii)–(iv) for
the idle–diesel–DPF+DOC experiment can be attributed to
the interaction of multigenerational aging and kinetic gas–
particle partitioning.

3.3 Influence of IVOCs on SOA formation

In Fig. 4a, we compare predictions of SOA concentra-
tions from the SOM against measurements for all the ex-
periments listed in Table 1 and at all photochemical ex-
posures. For visual clarity, we do not present results from
the VBS model as both models had nearly identical pre-
dictions with a few exceptions. The panels in Fig. 4 show
model–measurement comparisons assuming four different
fractions of IVOCs: 0, 13.76, 30, and 60 % (from left to
right); statistical metrics of fractional bias, fractional er-
ror, and R2 for the comparison for both models are listed

in Table S4 (fractional bias= 1
N

n∑
i=1

M−O
M+O

2
and fractional er-
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Figure 3. VBS and SOM model predictions of OA compared to
measurements from the experiments performed on (a) 5 June (idle–
diesel–none) and (b) 11 June (idle–diesel–DPF+DOC) as a func-
tion of photochemical age for four different particle size distribution
inputs: (i) number mean diameter and measured number concen-
tration at no OH exposure (solid), (ii) number mean diameter and
measured number concentration at the given OH exposure (dash),
(iii) average of (i) and (ii) (dash-dot), and (iv) nucleation of 1 nm
particles (dot).

ror= 1
N

n∑
i=1

|M−O|
M+O

2
, where M is the predicted value, O is

the observed value, and N is the sample size). The model–
measurement comparison and the model skill was very poor
when no IVOCs were included (fractional bias=−109 %,
fractional error= 125 %, and R2

= 0.52); this model reflects
the treatment of diesel-powered sources in most traditional
emissions inventories and large-scale models. The model–
measurement comparison was reasonable with 13.76 %
IVOCs (fractional bias=−46 %, fractional error= 101 %,
and R2

= 0.95) but model predictions were overpredicted
with 60 % IVOCs (fractional bias= 72 %, fractional er-
ror= 97 %, and R2

= 0.99). The optimal model performance
that produced the lowest fractional bias and fractional er-
ror was realized at an IVOC mass fraction of 0.3 (fractional
bias= 6 %, fractional error= 86 %, and R2

= 0.88). For pre-
dictions with 30 % IVOCs, 66 % and 70 % of the model pre-
dictions were within a factor of 1.5 and 2 of the measure-
ments and IVOCs on average accounted for 67 and 72 %
(VBS and SOM, respectively) of the SOA at the highest pho-
tochemical exposure across all experiments. Given the opti-
mal performance, the base case used in this work assumed
30 % IVOCs. These comparisons indicate that it is critical
that IVOCs be included when modeling the SOA formation
from diesel exhaust and also validate the IVOC composi-
tion estimates made by Zhao et al. (2015). We note that the
model of Peng and Jimenez (2017) suggested that the organic
compounds in the OFR experiments performed by Jathar
et al. (2017a) may have been subjected to non-tropospheric
photolysis at 185 and 254 nm. Accounting for the photoly-
sis of the key SOA precursors (IVOCs and aromatics) could
affect the optimal IVOC fraction identified above and hence
needs to be considered in future work.
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Figure 4. Scatter plot comparing SOM predictions of OA mass and O : C to measurements from all experiments at all photochemical ages at
four different IVOC mass fractions: (a) 0 %, (b) 13.76 %, (c) 30 %, and (d) 60 %.

We further investigated the IVOC species that contributed
the most to SOA formation. For 30 % IVOCs, cyclic alkane
IVOCs accounted for 23 % of the THC emissions and on av-
erage accounted for 59 and 53 % (VBS and SOM, respec-
tively) of the SOA formation across the different experi-
ments. We should note that the speciation of cyclic alkane
IVOCs in Zhao et al. (2015), while robust in quantifying the
carbon number, did not include any specificity in terms of the
molecular structure; i.e., their methods would not be able to
distinguish between a pure C10 cyclic alkane and a cyclohex-
ane with a 4-carbon branch. Further, the parameterizations
to model SOA formation from cyclic alkane IVOCs for both
models were based on the behavior of particular compounds.
In the VBS model when using the high NOx parameteriza-
tions, the surrogate for a cyclic alkane IVOC was determined
through equivalence with a straight alkane IVOC, while in
the VBS model when using the low NOx parameterizations
or the SOM the cyclic alkane IVOCs were tied to parame-
terizations for hexylcyclohexane. (The observed SOA yield
and derived SOM parameterization for hexylcyclohexane are
actually quite similar to that for cyclododecane for low NOx
conditions, but not for high NOx conditions; Cappa et al.,
2013.) This lack of specificity in the speciation and the SOA
parameterizations made the SOA predictions from the oxida-
tion of cyclic alkane IVOCs relatively uncertain. To examine
the sensitivity of the model predictions to uncertainties in the
model treatment of cyclic alkane IVOCs, we performed sim-
ulations with both models for one of the idle–diesel–none
experiments where the cyclic alkane IVOCs were treated as
branched alkane IVOCs; results from these simulations are
shown in Fig. 5a. The use of branched alkane IVOCs to
model cyclic alkane IVOCs only marginally reduced OA pre-
dictions for both the VBS and SOM models, suggesting that

the model predictions were not sensitive to the SOA parame-
terization used for cyclic alkane IVOCs. Regardless, we rec-
ommend that future work focus on a more detailed speciation
of cyclic alkane IVOCs in combustion emissions as well as
on chamber and OFR experiments on those speciated com-
pounds to improve quantification of their SOA mass yields.

As there were no direct measurements of any SOA pre-
cursors in the study of Jathar et al. (2017a), we have used
previously published emissions profiles for diesel exhaust to
determine initial concentrations of the SOA precursors. We
examined the sensitivity of model predictions to two differ-
ent emissions profiles from the EPA SPECIATE (version 4.3)
database: Profile 3161 (included in the base case) and Pro-
file 8774 (emissions from heavy duty diesel exhaust); the
speciation for both profiles is provided in Tables S2 and S3.
Both profiles only included speciation for VOC emissions
and in these simulations we assumed an IVOC mass fraction
of 0.3. The results captured in Fig. 5b for one of the idle–
diesel–none experiments show that the choice in the emis-
sions profile had no influence on the OA evolution for the
VBS model but had a small influence on the OA evolution
for the SOM. This relatively small influence was expected
given that most of the SOA was formed from IVOC, rather
than VOC, oxidation. This further demonstrates that IVOCs,
not VOCs, play an important role in controlling the SOA for-
mation from diesel exhaust emissions and it is important that
future studies work towards better understanding the IVOC
speciation.

The IVOC speciation of Zhao et al. (2015) included
37 unique species, each of which required a unique surro-
gate to model the SOA formation from that species. Track-
ing these many IVOC species in an atmospheric model (e.g.,
global climate model) may be intractable, and hence there is
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a need to develop simplified parameterizations to efficiently
model SOA formation from IVOCs. We note that species us-
ing the same surrogate in the VBS model (e.g., a C15 lin-
ear alkane, C17 branched alkane, and C13 cyclic alkane are
all parameterized using n-pentadecane when using the high
NOx parameterizations) could be lumped together to reduce
the number of precursors and products tracked and that there
are no penalties for a precursor type (e.g., n-alkanes) to in-
clude additional precursor and product species once a SOM
grid is setup. Nonetheless, to investigate the possibility of
developing a simplified parameterization, we modeled SOA
from IVOCs assuming that all the IVOCs could be modeled
together as a single linear C13, C15, C17, or C19 alkane; a
similar strategy was employed by Jathar et al. (2014b) to
model SOA formation from unspeciated organic compounds
in combustion emissions. Results from these simulations are
shown in Fig. 5c for one of the idle–diesel–none experiments.
For the VBS model, the use of a larger carbon number alkane
to model IVOC SOA produced increasingly more OA, with
the C19 alkane providing the best comparison against mea-
surements. For the SOM, the use of a C13 and C15 alkane pro-
duced good agreement with measurements with a C13 alkane
slightly underpredicting the OA at 0.5 OH days and the
C15 alkane slightly overpredicting the OA at lower photo-
chemical exposures (0.06 and 0.17 OH days). It was interest-
ing to observe that for the SOM, in contrast to the VBS, the
use of different linear alkanes produced different OA masses
at lower photochemical exposures but converged at the high-
est photochemical exposure, suggesting that the effective
SOA mass yield in the SOM varied dynamically with photo-
chemical age. Differences in the VBS and SOM predictions
with different alkane parameterizations point to inherent dif-
ferences in the coupled representation of multigenerational
aging and gas–particle partitioning. Results from these simu-
lations indicate that in cases where computational efficiency
is demanded, the SOA formation from IVOCs in diesel ex-
haust could be modeled using a surrogate linear alkane, pos-

sibly a C19 linear alkane with the VBS and a C13 or C15 linear
alkane for the SOM.

3.4 Elemental composition

The SOM tracks both the carbon and oxygen number of the
oxidation products, which allowed us to predict the O : C ra-
tio of the OA. The O : C of the OA was calculated by com-
bining the measured O : C of the POA with the modeled O : C
of the SOA. We compare predictions of the O : C of OA from
the SOM against measurements for all the experiments listed
in Table 1 and at all photochemical exposures in Fig. 4; sta-
tistical metrics of fractional bias, fractional error, and R2 for
the comparison are listed in Table S5. Model predictions for
the no IVOC case, where the O : C of the OA was dominated
by the O : C of the aromatic SOA, compared well with mea-
surements (fractional bias=−4.2 %, fractional error= 28 %,
andR2

= 0.77). However, the poor OA mass predictions with
no IVOCs suggests that the good O : C performance was
purely coincidental. The 13.76, 30, and 60 % IVOC cases
underpredicted the OA O : C, where the underprediction ap-
peared to increase as the IVOC influence increased (frac-
tional bias=−32 %, fractional error= 38 %, and R2

= 0.72
for the 13.76 % IVOC case; fractional bias=−37 %, frac-
tional error= 42 %, and R2

= 0.70 for the 30 % IVOC case;
and fractional bias=−60 %, fractional error=−62 %, and
R2
= 0.46 for the 60 % IVOC case). A higher IVOC frac-

tion resulted in a lower O : C ratio because the IVOCs were
primarily composed of higher carbon number species that
on oxidation produced low O : C SOA compared to SOA
formed from precursors such as aromatics. On average, the
30 % IVOC case predicted an O : C ratio that was 28 %
lower than the measurements. For the three non-zero IVOC
cases (13.76, 30, and 60 %), the model skill in predicting
the O : C was much better for the non-DPF+DOC experi-
ments (R2

= 0.82, 0.83, and 0.80, respectively) than for the
DPF+DOC experiments (R2

= 0.02, 0.02, and 0.29, respec-
tively). Measurements and model predictions of the OA O : C
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Figure 6. Normalized gas-phase concentration predictions from the SOM model for the idle–diesel–none and load–diesel–none experiments
performed on 5 June and compared to normalized gas-phase concentrations measured by the CIMS.

ratio from the 30 % IVOC case as a function of photochemi-
cal age are presented in Fig. S2.

The underprediction in O : C ratios was confounding when
compared to earlier applications of the SOM and in light
of the reasonable model–measurement comparison found in
this work in predicting OA mass. We note that the low O : C
in the 13.76, 30, and 60 % IVOC cases stems from the domi-
nance of product species that have high carbon numbers and
low oxygen numbers. We explored several lines of reason-
ing for this underprediction. First, Cappa et al. (2013) found
good agreement between the SOM-predicted and observed
O : C for chamber experiments conducted using individual
linear, branched and cyclic C12 alkanes. Also, general pre-
dictions of the dependence of O : C on the carbon number
of the parent hydrocarbon (cf. Fig. 2b in Cappa and Wilson,
2012) show good agreement with observations (cf. Fig. 2a
in Tkacik et al., 2012), in terms of both absolute values and
shape. This suggests that uncertainties in the SOM param-
eters may not be the dominant reason for the underpredic-
tion. A possible reason for the underprediction then is that
the compounds identified by Zhao et al. (2015) as IVOCs are
structurally different than the alkanes used to model them
in this work. Second, the gas-phase chemistry in the OFR
might be inherently different than that in a chamber. For ex-
ample, kinetic limitations to gas–particle partitioning may re-
sult in gas-phase oxidation of low-volatility products having
high O : C that typically would have partitioned to the parti-
cle phase in a chamber experiment but instead are fragmented
(Palm et al., 2016). Why the chamber-based SOM parameters
then offer good model performance on OA mass remains un-
clear. One way in which this issue could be addressed in the
future is by developing SOM parameters exclusively based
on OFR data, as and when they become available. Third, the
SOM used here did not include heterogeneous and particle-
phase reactions that might influence the OA composition and
O : C ratio. When heterogeneous reactions of OA were in-
cluded assuming an OH uptake coefficient of 1 (the product
distribution from the oxidation reaction was kept the same as
the gas-phase reactions), SOA production at the highest pho-

tochemical exposure for all the experiments was reduced, on
average, by 7 % from fragmentation reactions within the par-
ticle phase, but the O : C ratio was only marginally increased
(average of 2 %).

To understand the O : C underprediction better, we com-
pared model predictions of normalized gas-phase species
concentrations from the SOM to normalized gas-phase mea-
surements made by Friedman et al. (2017) using a CIMS.
The CIMS detects an array of oxygenated organic species
and the high resolution of the time-of-flight mass spectrom-
eter enables identification of the elemental composition of
each detected peak. The CIMS data were aggregated by car-
bon and oxygen number to facilitate comparison with the
SOM data. The comparison was performed on a normalized
basis because the CIMS did not provide absolute concentra-
tions for every detected peak. The SOM–CIMS comparisons
for the idle–diesel–none and load–diesel–none experiments
at the highest photochemical exposure are shown in Fig. 6,
which highlight four findings of note. First, the CIMS mea-
sured species larger than a carbon number of 12 that are
presumably products from oxidation of higher molecular-
weight organic compounds, although the possibility of dimer
formation in the instrument cannot be entirely ruled out.
Nonetheless, this provides additional evidence for the pres-
ence of IVOC oxidation products in diesel exhaust emis-
sions. Second, the CIMS measured organic compounds with
high O : C ratios (e.g., C6O6, C7O7). This implies that the
reaction chemistry in OFRs rapidly adds functional groups
to the carbon backbone, although larger, less oxidized com-
pounds could be simultaneously functionalized and frag-
mented in the CIMS leading to the appearance of highly ox-
idized species. Third, the SOM offered a reasonable corre-
lation against the CIMS measurements for both experiments
across a majority of the carbon–oxygen combinations that
spanned more than 4 orders of magnitude. Qualitatively, this
finding validates the statistical evolution of organic com-
pounds tracked through the generalized SOM mechanism,
although certainly some differences are evident. Finally, for
the mid-carbon number species (∼C10), the SOM seemed to
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produce higher fractions of species with low oxygen numbers
(O0 to O3) but lower fractions of species with high oxygen
numbers (O5 to O7). This underprediction of the high oxy-
gen number species might potentially explain why the SOM
may be underpredicting the OA O : C ratio. The SOM–CIMS
comparison is preliminary and we intend to explore the im-
plications of this comparison in future work.

3.5 Other model sensitivities

We performed sensitivity analyses to examine the influence
of other key processes on predictions from both the VBS and
SOM models. When examining the sensitivity to each pro-
cess, all the other inputs were kept the same as those listed
in the base case. We only present sensitivity results for the
idle–diesel–none experiment performed on 5 June, as the re-
sults for this experiment were generally representative of all
experiments (Fig. 7). For completeness, we performed sim-
ulations for all the experiments at the highest photochemical
exposure since each of the processes explored below man-
ifested the strongest response at the highest photochemical
exposure. The results from these simulations are presented
as a change in the model predictions relative to that offered
by the base case.

3.5.1 Multigenerational aging

One of the key differences between the VBS and the SOM
models is how they represent the multigenerational aging of
gas-phase products. SOA parameters for the VBS model rep-
resent stable product distributions at the end of the cham-
ber experiments and therefore already include the influ-
ence of multigenerational aging reactions encountered dur-
ing the chamber experiment. Additional multigenerational
aging in the VBS model, based on the scheme of Robinson
et al. (2007), is simulated as a continuous decrease in prod-
uct volatility, which does not account for fragmentation reac-
tions and has not been constrained against experiments. The
SOM framework explicitly models multigenerational aging
that includes treatment of fragmentation reactions and con-
strains the aging reactions based on the chamber experiments
to an extent that is determined by the length (in OH exposure
space) of the experiment. To test the influence of multigen-
erational aging, we performed model simulations with aging
turned off for the VBS and SOM models and plot the re-
sults in Fig. 7a. We found that aging had a small influence
(∼ 18 % reduction in OA mass) on model predictions from
the VBS model, most likely because the high SOA and OA
mass concentrations resulted in a substantial fraction of the
organic species to be partitioned to the particle phase. This
left very little of the organic species in the gas phase to partic-
ipate in multigenerational aging. We calculated that less than
20 % by mass of the product species in this experiment was
in the gas phase at the OA mass concentration at the highest
photochemical exposure, implying that the SOA mass yields
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Figure 7. VBS and SOM predictions of OA compared to measure-
ments from the experiment performed on 5 June (idle–diesel–none)
as a function of photochemical age. Panels (a)–(d) examine the
influence of multigenerational aging, vapor wall losses, residence
time distribution, and spatial heterogeneity in OH concentrations,
respectively. The dashed lines in panel (d) are deliberately lighter
in color than the solid line to help differentiate the base result from
the sensitivity results.

at these OA mass concentrations were rapidly approaching
100 %. In contrast, the absence of aging resulted in a 43 %
decrease in the OA mass for the SOM. The decrease was
mainly because the first-generation oxidation product with
the highest yield (i.e., CxO1) was too volatile to partition
to the particle phase and needed to be aged further to form
condensable products. As noted earlier, the term aging is de-
fined differently for the VBS and SOM models and the re-
sults presented here need to take the definitional issues into
account when examining the influence of aging. Compared
to the base case, no aging resulted in an average decrease of
6 and 30 % in OA mass for the VBS and SOM models, re-
spectively, for all experiments at the highest photochemical
exposure. These simulations suggest that aging of the oxi-
dation products, at least for the SOM, is as important as the
contribution of first-generation products to SOA formation.

3.5.2 Vapor wall losses

Prior work has highlighted the influence vapor wall losses
exert on the calculation of SOA mass yields from cham-
ber experiments (Zhang et al., 2014; Krechmer et al., 2016).
Cappa et al. (2016), based on the chamber work of Zhang
et al. (2014), recently published parameter sets for the SOM
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that accounted for no vapor wall losses and two different va-
por wall loss rates (1× 10−4 and 2.5× 10−4 s−1) assuming
an equivalent OA mass of the chamber walls of 10 mg m−3

(the base case used the parameter sets for a vapor wall loss
rate of 2.5× 10−4 s−1). We performed model simulations
with SOM using parameters that were either not corrected for
vapor wall losses or that were corrected for vapor wall losses
using either the low (1× 10−4) or high (2.5× 10−4) esti-
mates proposed by Cappa et al. (2016). The results plotted
in Fig. 7b show that correcting for vapor wall losses signifi-
cantly increased model-predicted OA mass (by 73 and 112 %
for the low wall loss and high wall loss cases, respectively,
at the highest photochemical exposure when compared to the
case with no wall loss) and provided the best performance
for the high estimate for vapor wall losses. Across all experi-
ments and at the highest photochemical exposure, accounting
for vapor wall losses using the high estimate resulted in an
average increase of 39 % over not accounting for vapor wall
losses. These comparisons suggest that it is important to use
SOA parameterizations in which vapor wall losses in cham-
bers have been accounted for when interpreting SOA experi-
ments. Furthermore, we also simulated the influence of vapor
losses to the OFR walls on model predictions. We assumed
reversible uptake of vapors to the walls and used a vapor wall
loss rate of 2.5× 10−3 s−1 (factor of ∼ 10 larger than that
for a chamber) based on the work of Palm et al. (2016) and
an equivalent OA mass concentration of 10 mg m−3 for the
OFR walls. The results plotted in Fig. 7 show that the loss
of vapors to the OFR walls had a small influence on model
predictions: a 6.5 % decrease for this experiment and an av-
erage decrease of 11 % across all experiments at the highest
photochemical exposure. Increasing the equivalent OA mass
concentration for the OFR walls to 100 and 1000 mg m−3

seemed to have no influence on model predictions. These
findings imply that vapor wall losses in the presence of suffi-
cient seed aerosol might not be of concern for OFRs (Lambe
et al., 2015).

3.5.3 Residence time distributions

Model simulations performed in this work assumed that the
OFR operated as a plug flow reactor with a constant res-
idence time. Experimental studies by Lambe et al. (2011)
and fluid dynamics simulations by Ortega et al. (2016) have
shown that OFRs, particularly like the one used in this work,
exhibit heterogeneity in residence times. We performed sim-
ulations to explore the sensitivity of varying residence times
on model predictions. These simulations were performed
based on a discretized version of the residence time distribu-
tion measured by Lambe et al. (2011) for SO2 that yielded an
average residence time of 100 s (same as that used by Jathar
et al., 2017a). The discretized version included six parcels
with volume fractions of 0.23, 0.36, 0.24, 0.11, 0.05, and 0.01
with residence times of 45, 65, 100, 200, 300, and 500 s, re-
spectively. Each parcel experienced the same OH concen-

tration but the varying residence times resulted in different
OH exposures for each parcel. The parcels were combined
after photochemical exposure without repartitioning the OA
between the six parcels. Similar to the findings of Peng et
al. (2015) for calculating OH exposure, our results in Fig. 7c
show that using a residence time distribution had very little
influence on the OA mass evolution compared to use of an
effective average time. Compared to the base case, the res-
idence time distribution resulted in an average decrease of
3 and 5 % in OA mass for the VBS and SOM models, re-
spectively, for all experiments at the highest photochemical
exposure.

3.5.4 Spatial heterogeneity in OH

In addition to the influence exerted by a distribution of resi-
dence times, spatial heterogeneity in the gas-phase chemistry
inside the OFR (e.g., from radial variation in light intensity)
could lead to spatial heterogeneity in OH concentrations and
result in a distribution of OH exposures for the sample be-
ing aged. We performed simulations to explore the sensitiv-
ity of a varying OH exposure on model predictions. These
simulations were performed where we split the sample com-
ing into the OFR into two parcels and treated the parcels to
different OH exposures. Each experiment was repeated for
all combinations (ten total) of three different parcel splits
(1/4–3/4, 1/3–2/3, 1/2–1/2) and two different OH expo-
sure splits (1/3-X, 2/3-X);X was determined by conserving
the total OH exposure reported by Jathar et al. (2017a). For
instance, the first simulation was performed by splitting the
OFR air parcel into 1/4 and 3/4 fractions by volume and
exposing the 1/4 volume to 1/3 of the OH exposure. The
parcels were combined after photochemical exposure with-
out repartitioning the OA between the two parcels. The re-
sults in Fig. 7d show that the simulated spatial heterogeneity
always reduced the OA mass although the maximum reduc-
tion (13 % for the VBS and 14 % for the SOM models) at
the highest photochemical exposure was within the measure-
ment uncertainty. Compared to the base case, the spatial het-
erogeneity in OH resulted in a maximum decrease of 14 and
15 % in OA mass for the VBS and SOM models, respectively,
for all experiments at the highest photochemical exposure.

4 Summary and discussion

Recently, Jathar et al. (2017a) reported on experiments per-
formed using the OFR to measure the photochemical produc-
tion of SOA from diesel exhaust under varying engine loads,
fuel types, and aftertreatment systems. These data present an
opportunity to not only test SOA models but also use these
models to interpret OFR data and determine their relevance
for the real atmosphere. In this work, we applied two dif-
ferent SOA model frameworks (VBS and SOM) to simu-
late the photochemical production of SOA in an OFR from
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Figure 8. Model predictions of the ratio of SOA produced under
kinetic partitioning assumptions to the SOA produced under instan-
taneous partitioning assumptions as a function of the initial conden-
sational sink and the SOA formed under instantaneous partitioning.
Panels are for calculations performed at two different particles sizes
(10 and 100 nm) and two different residence times (2 and 4 min).

diesel exhaust and evaluated those model frameworks using
the data from Jathar et al. (2017a). The VBS model is a pa-
rameterized model that allows for a volatility-based repre-
sentation of OA while the SOM is a semi-explicit parame-
terized model that uses a carbon–oxygen grid to track OA.
Both simulated the coupled chemistry, thermodynamic prop-
erties, and gas–particle partitioning of OA and accounted for
(i) semi-volatile and reactive emissions of POA, (ii) SOA
production from IVOCs and VOCs, (iii) NOx-dependent pa-
rameterizations, (iv) multigenerational aging, and (v) kinetic
gas–particle partitioning.

Model predictions suggest that the instantaneous gas–
particle partitioning assumption may overpredict SOA for-
mation in OFRs when the initial condensational sinks are
low and the condensation of SOA is likely kinetically lim-
ited. Hence, SOA formation in OFRs needs to be modeled
or interpreted through an explicit treatment of kinetic gas–
particle partitioning. Differences in model predictions be-
tween instantaneous and kinetic partitioning will depend on
the rate at which condensable SOA mass is produced in the
OFR (depends on the initial precursor concentrations and
composition and photochemical exposure), residence time
in the OFR, properties of the condensing species (e.g., dif-
fusion coefficient, molecular weight), and parameters rele-
vant for partitioning (e.g., accommodation coefficient, seed
aerosol surface area). To explore the relative importance
of instantaneous and kinetically limited partitioning in an

OFR, we used the SOM to simulate SOA formation from
diluted diesel exhaust using instantaneous and kinetic par-
titioning assumptions for varying amounts of SOA formed
(1–10 000 µg m−3) and initial condensational sinks (0.001–
10 min−1). These simulations were similar to the calcula-
tions performed by Palm et al. (2017), where they calcu-
lated timescales and losses of condensable SOA vapors to
the OFR walls and sampling lines and reaction with OH. The
calculations were performed for two different initial particle
sizes (10 and 100 nm) since the condensation of SOA mass
would grow the initial condensational sink for the two par-
ticles at different rates; i.e., for the same starting initial con-
densational sink, smaller particles would experience quicker
growth in the condensational sink compared to larger parti-
cles for the same amount of condensing mass. The calcula-
tions were also performed for two different residence times
– 2 and 4 min – to span the residence time range used in typ-
ical applications of the OFR. We assumed a mass accommo-
dation coefficient of 0.1. The results plotted in Fig. 8 show
the ratio of SOA predicted through kinetic partitioning to
that predicted through instantaneous partitioning as a func-
tion of the initial condensational sink and the SOA formed
under an instantaneous partitioning assumption. Across the
four scenarios explored (two initial particle sizes and two res-
idence times), the SOA formation predicted under the kinetic
partitioning assumption was an order of magnitude or more
lower than that predicted under the instantaneous partition-
ing assumption over a large portion of the input range ex-
plored, e.g., when the initial condensational sink was smaller
than ∼ 0.1 min−1 and the maximum SOA formed was lower
than ∼ 100 µ m−3 for the 10 nm simulations and lower than
∼ 1000 µg m−3 for the 100 nm simulations. We also found
that the SOA formation in the OFR was kinetically limited
under typical ambient conditions. The SOA formation pre-
dicted under the kinetic partitioning assumption approached
the SOA formed under the instantaneous partitioning as-
sumption either when the initial condensational sink was
very large (> 5 min−1) or when a large amount of condens-
able SOA was produced in the OFR (>= 1000 µg m−3 for
the 10 nm particles and > 10 000 µg m−3 for the 100 nm par-
ticles). Our finding implies that ambient applications of the
OFR, where initial condensational sinks are typically smaller
(∼ 0.005–0.5 min−1) and the maximum SOA produced is
typically less than 40 µg m−3, will only produce a small frac-
tion (0–30 %) of the intended SOA. Furthermore, our simula-
tions suggested that a smaller initial particle size (i.e., 10 nm)
for the same initial condensational sink and a longer OFR
residence time (i.e., 4 min) may not necessarily help produce
the intended SOA under ambient conditions. Although these
simulation results need to be verified experimentally, they do
suggest that it might be challenging to operate the OFR in
conditions where instantaneous or atmospherically relevant
partitioning is applicable, further complicating the coupled
atmospheric simulation of chemistry and thermodynamics in
OFRs.
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Upon including IVOCs as SOA precursors, both the VBS
and SOM models were able to reasonably predict the OA
mass evolution reported by Jathar et al. (2017a) across dif-
ferent engine loads, fuel types, and aftertreatment systems.
Model predictions suggest that 30 % of the unburned hy-
drocarbon emissions are likely IVOCs and that these IVOCs
(regardless of the emissions profiles used to determine non-
IVOC emissions) account for most (average of 70 %) of the
SOA formed from diesel exhaust. These findings are consis-
tent with prior work from chamber experiments (Jathar et al.,
2014b) and modeling studies (Zhao et al., 2015). Simulations
performed using single surrogates suggest that the complex
mixture of IVOCs in diesel exhaust could be well represented
using a linear C13 or C15 alkane for the SOM but might
need a larger surrogate such as a C19 alkane for the VBS
model. The need for a different surrogate species to model
IVOC SOA between the SOM and VBS models most likely
arises from differences in the coupled treatment of the oxida-
tion chemistry and gas–particle partitioning in the OFR. The
use of surrogates offers a computationally efficient strategy
to model SOA formation from IVOCs in large-scale three-
dimensional models. The SOM tracks the carbon and oxygen
numbers of the oxidation products and hence model predic-
tions were used to calculate atomic O : C ratios for OA, which
were then compared to measurements. While the inclusion
of IVOCs allowed for good model–measurement compar-
isons on OA mass, the SOM underpredicted the O : C ratio
of OA on average by 28 %, possibly highlighting the limi-
tations in modeling the IVOCs as alkanes and/or extrapolat-
ing chamber-based parameterizations to OFR experiments.
Model predictions of the gas-phase organic species compared
favorably to those measured using a CIMS, which quali-
tatively validates the statistical evolution of organic com-
pounds tracked through the generalized SOM mechanism.

As OFRs are increasingly used to study SOA formation
and evolution in laboratory and field environments, there is a
need to develop models that can be used to interpret OFR
data. This work suggests that multigenerational aging (in
case of the VBS model), residence time distributions, and
spatial heterogeneity in OH concentrations produced sensi-
tivities that were well within the measurement uncertainty
and were not a concern for the model system studied. How-
ever, model predictions did appear to be more sensitive to
multigenerational aging (in case of the SOM) and influence
of vapor wall losses, highlighting that these processes be
included in OFR models. While the conclusions from this
work may be relevant for other laboratory and ambient stud-
ies, their relative importance may vary. There are several in-
stances where the model development was insufficient and
will likely be addressed in future work. For example, the
model could benefit from the use of a polydisperse size dis-
tribution to treat new particle formation and growth and im-
prove predictions of the evolution of the aerosol size distri-
bution. The model of Peng and Jimenez (2017) suggested
that the SOA precursors and their oxidation products in the

Jathar et al. (2017) experiments might have been subjected
to non-tropospheric photolysis. Our work did not consider
the photolysis of IVOCs (or other SOA precursors), which,
if considered, may have implications for the IVOC findings
reported here. We recommend that future studies on combus-
tion sources significantly dilute their emissions before oxi-
dizing them in an OFR while simultaneously accounting for
photolysis reactions in models that simulate OFR chemistry.
Finally, the model needs to be rigorously tested against other
laboratory (e.g., Lambe et al., 2012) and ambient (e.g., Palm
et al., 2016) OFR data.
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