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The World Anti-doping Agency currently collates the results of all doping tests for

athletes involved in elite sporting competition with the aim of improving the fight against

doping. Existing anti-doping strategies involve either the direct detection of use of

banned substances, or abnormal variation in metabolites or biological markers related

to their use. As the aim of any doping regime is to enhance athlete competitive

performance, it is interesting to consider whether performance data could be used within

the fight against doping. In this regard, the identification of unexpected increases in

athlete performance could be used as a trigger for their closer scrutiny via a targeted

anti-doping testing programme. This study proposes a Bayesian framework for the

development of an “athlete performance passport” and documents some initial findings

and limitations of such an approach. The Bayesian model was retrospectively applied to

the competitive results of 1,115 shot put athletes from 1975 to 2016 in order establish

the interindividual variability of intraindividual performance in order to create individualized

career performance trajectories for a large number of presumed clean athletes. Data

from athletes convicted for doping violations (3.69% of the sample) was used to assess

the predictive performance of the Bayesian framework with a probit model. Results

demonstrate the ability to detect performance differences (∼1 m) between doped and

presumed clean athletes, and achieves good predictive performance of doping status

(i.e., doped vs. non-doped) with a high area under the curve (AUC = 0.97). However, the

model prediction of doping status was driven by the correct classification of presume

non-doped athletes, misclassifying doped athletes as non-doped. This lack of sensitivity

is likely due to the need to accommodate additional longitudinal covariates (e.g., aging

and seasonality effects) potentially affecting performance into the framework. Further

research is needed in order to increase the framework structure and improve its accuracy

and sensitivity.

Keywords: anti-doping, monitoring, target testing, data analytics, competition results

1. INTRODUCTION

Over the last decade the fight against doping in sports has evolved from purely biochemical testing
for specific substances, to longitudinal profiling of specific biomarkers in the form of the athlete
biological passport (ABP). The ABP uses longitudinal blood tests or steroid profiles, also known
as modules, to indirectly demonstrate use of banned substances via a mathematical probabilistic
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approach (Sottas et al., 2008). This longitudinal approach has
improved the efficiency of targeted testing and resulted in an
increased number of positive erythropoiesis stimulating agent
doping cases in recent years (Zorzoli et al., 2014). Moreover,
other anti-doping initiatives as outlined in the WADA technical
document for sport specific analysis, signifies a move toward a
more forensic intelligence led anti-doping system, which gathers
broader sources of information to inform the planning of doping
tests (WADA, 2016).

A major source of information that is not currently used
within anti-doping practice is athlete performance. As the goal
of most doping regimes is to improve athlete performance to
gain an unfair advantage in competition, it seems logical to
assume that the effect of doping might be identified through the
evolution of performance of an athlete over time. For example,
on a global perspective, (Schumacher and Pottgiesser, 2009)
demonstrate marked improvements in world best performances
in male 5,000 and 10,000 m running performances following the
commercial introduction of recombinant erythropoietin in the
1990s. Conversely, they also highlight a down turn in female
world best discus performances following the introduction of
out-of-competition anti-doping tests for anabolic steroids in
the late 1980s. Therefore, it is possible to question whether
longitudinal tracking of athlete performance might provide
additional information (alongside haematological and steroidal
ABP modules) that can be used as part of the intelligence
gathering process to inform anti-doping organization’s testing
programmes.

The main objective of performance profiling in the form
of an athlete performance passport (APP), would be to
track individual performance over time in order to identify
unexpected or disproportionate increases in performance
that might be indicative of doping (Hopker et al., 2018).
However, analysis of performance data of this nature is
complex as it is difficult to differentiate between physiological
increases in performance arising from normal training and/or
maturation from unphysiological improvements caused by
doping. Moreover, excellent athletic performance within a
competition in itself is not proof of any wrong doing, or
doping. Nevertheless, an APP may be useful in strengthening the
sensitivity and applicability of the current ABP in the fight against
doping by providing information to trigger targeted anti-doping
tests for specific athletes (Iljukov et al., 2018).

In order to assess the feasibility of an APP approach, this
study explores the important issue of modeling and analyzing
the relationship between doping status and athlete performance
accounting for some of the other covariates that impact on
performance. Specifically, as a first step toward an APP, this study
aims to characterize trajectories in athlete shot put performance
results, while simultaneously accounting for sex and age. To
address these aims, we used a Bayesian latent factor model for
functional data (Montagna et al., 2012) characterizing the curve
for each athlete as a linear combination of a high-dimensional
set of basic functions, and placed a sparse latent factor regression
model on the basis coefficients. Within this framework, it
is possible to study the dependence of the curve shapes on
covariates incorporated through the distribution of the latent

factors, and regress a scalar response (e.g., the doping status)
on a functional covariate (e.g., an athlete shot put performance
curve).

2. METHODOLOGY

Our goal is predicting an athlete’s doping status (a scalar
response) given his/her shot put performance results and other
non-functional covariates (e.g., age and sex). In section 2.1, we
will investigate how the Bayesian latent factor regressionmodel of
(Montagna et al., 2012) can be used to represent an athlete’s shot
put trajectory, and in section 2.2 we will explore the extension of
this method to the joint modeling of the functional predictor and
the scalar outcome. Finally, in section 2.3 we will briefly discuss
the advantages of a Bayesian inferential approach over classical
methods.

2.1. Functional Latent Factors
Representation for Shot Put Performance
Let n denote the number of athletes in the study. We supposed
that shot put performance results for athlete i are available as
noisy measurements of an underlying smooth curve fi(t) at ni
time points tij, j = 1, . . . , ni. Here tij denotes the time (in days)
from the first measurement available for athlete i, thus ti1 = 0 for
every i. We denote the shot put result at tij as yij and model:

yij = fi(tij)+ ǫij, (1)

with ǫij ∼ N(0,ψ2), independently across i and j. Figure 1 shows
the true shotput performance results for athletes who competed
in the year of 2012. For the modeling of the random underlying
smooth curves f1, . . . , fn, we follow (Montagna et al., 2012) and
write {fi}

n
i=1 in terms of a collection of fixed basis functions:

fi(tij) =

p∑

m=1

θimbm(tij) = b(tij)
⊤θ i. (2)

It is important to use a sufficiently large p and to choose locally
concentrated basis elements so that a rich variety of shapes for
fi are entertained. Hereafter, {bm(·)}

p
m=1 are chosen to be 2D

isotropic Gaussian kernels:

b1(t) = 1, and bm(t) = exp(−b || t − φm ||2),m = 2, . . . , p,
(3)

with kernel locations {φm}
p
m=2 and bandwidth b to be specified

according to prior knowledge.
The basis coefficients vectors θ1, . . . , θn capture all athlete-

to-athlete variations in shot put performance curves. However,
these vectors have a large dimension p and are non-sparse. To
obtain a low dimensional representation of the shot put curves,
we place a sparse latent factor model (Arminger, 1998) on the
basis coefficients:

θ i = 3ηi + ζ i, with ζ i ∼ Np(0,6), (4)

where 3 = {λml} is a p × k factor loading matrix with k ≪ p,
ηi = (ηi1, . . . , ηik)

⊤ is a vector of latent factors for athlete i
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FIGURE 1 | Shotput Performance trajectory of all “non-doped” (left panel) and “doped" (right panel) athletes with results in the 2012 season.

and ζ i = (ζi1, . . . , ζip)
⊤ is a residual vector that is independent

with the other variables in the model and is normally distributed
with mean zero and a diagonal covariance matrix 6 =

(σ 2
1 , . . . , σ

2
p ). The low-dimensional vectors η1, . . . , ηn are used in

all subsequent parts of the model where one seeks to link the shot
put curves f1, . . . , fn with other variables of interest.
Information on covariates xi (e.g., sex and age) available for
athlete i can be incorporated though a simple linear model on
the latent factors:

ηi = β⊤xi + 1i, 1i ∼ Nk(0, I), (5)

where β is a r × k matrix of covariates coefficients, with r
denoting the number of covariates. We remark that the current
formulation of model (1)–(5) cannot accommodate covariates
changing over time, thus xi can only be a vector of static
covariates. For a more detailed discussion on the properties of
this model, we defer to (Montagna et al., 2012).

2.2. Prediction of Doping Status
Our goal is to use the shot put performance trajectory modeled
through Equations (1)-(5) to predict the doping status of an
athlete zi. Let zi = 1 if athlete i is convicted for doping offences
at any point in his/her career, and zi = 0 otherwise. From a
statistical perspective, zi is a Bernoulli random variable zi ∼

Bernoulli(pi), where pi is the probability that athlete i will use

doping at any point in his/her career. We follow (Montagna et al.,
2012) and model pi as:

pi = P(zi = 1 | α, γ , ηi) = 8(α + γ⊤ηi), (6)

where 8(·) denotes the standard normal distribution function,
α is an intercept, and γ is a vector of unknown regression
coefficients. We remark that the same set of latent factors
ηi impacts on the shot put performance curve via the basis
coefficients θ i and on the response variable (the doping status) via
the probability of doping. We remark that Equation (6) defines a
probit model for doping status.

2.3. The Bayesian Inferential Framework
To summarize our methodology, we provide a graphical
representation of the model outlined in Equations (1)–(6) in
Figure 2. The vector of latent factors plays the key role in linking
the two component models for doping status and shot put
performance curves, and the doping status zi is conditionally
independent of all nodes in the model given the latent factors
ηi. All parameters located outside of the dashed rectangle
(α, γ ,β ,3,6) are shared by all athletes (parameters not indexed
by i), and they are estimated by pulling information (borrowing
of information) across all athletes. This is of crucial importance
especially when data are sparse. If covariate information is
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FIGURE 2 | A graphical representation of the Bayesian Framework outlined in Equations (1)–(6).

available, covariates impact on the ηi’s via a linear regression
model.

All model parameters, which are represented by circles in
Figure 2, need to be estimated from the data. To estimate
these parameters, one can either proceed via classical methods
or by embedding model (1)–(6) in a Bayesian framework. In
classical methods, the model parameters are unknown, but
fixed constants. In Bayesian statistics, the model parameters are
considered to be random variables and are therefore assigned
prior probability distributions. The priors are then combined
with the likelihood to obtain the posterior distributions of the
model parameters.

Bayesianmethods and classical methods both have advantages
and disadvantages, and there are some similarities. When the
sample size is large, Bayesian inference often provides results for
parametric models that are very similar to the results produced
by classical methods. A Bayesian analysis provides a convenient
setting to a wide range of models, such as the hierarchical
model outlined in Equations (1)–(6). Existing numerical methods
make computations tractable for virtually all parametric models.
Most importantly, Bayesian inference provides a natural and
principled way of combining prior experts information with the
data, within a solid decision theoretical framework. For example,
let us look at the intercept parameter α in Equation (6). This
parameter represents the baseline risk for an athlete to use doping
at some point in his/her career, regardless of athlete-specific
factors (e.g., sex, age, performance). While it is impossible to
know the exact proportion of doped athletes in a given sport,
experts may have a sense for what this proportion (or a plausible
range for this proportion) may be based on their knowledge.

Suppose that experts believe that about 1% of athletes use doping.
Such belief can be embedded in the prior for α, which is generally
chosen to beNormal for computational convenience. Thus, α will
be given a α ∼ N(8−1(0.01), 1) prior so that the hyperpriormean
is chosen to correspond to the experts knowledge (the variance
can also be suitably adjusted). It is naturally possible that different
people will produce different priors, and by trying different prior
choices we can investigate how sensitive conclusions are to these
choices. Unfortunately, it is not possible to make use of prior
knowledge within a classical inferential framework.

For all the reasons above, we decide to follow the lead
in (Montagna et al., 2012) and embed model (1)–(6) in a
Bayesian framework by choosing prior distributions for all
model parameters. Given the high dimensionality of the
problem (large n, the number of subjects, and large p, the
number of basis functions in Equation 2) it is practically
important to choose conditionally conjugate prior distributions
for parameters ψ2,α,3,6,β , γ . Conjugacy ensures that the
posterior distribution of the parameters is of the same type of the
prior (e.g., a Normal prior combined with a Normal likelihood
as in Equation (1) returns a Normal posterior distribution), and
this leads to efficient posterior computation via Markov Chain
Monte Carlo. We adopt the same conjugate priors of (Montagna
et al., 2012) and details on posterior computation, together
with the MATLAB code to run the analysis, are available in
(Montagna et al., 2012).

Despite the simplicity of this hierarchical model, the
resulting model on the smooth shot put trajectories
f1, . . . , fn allows a flexible accommodation of covariate
information. In particular, these curves are independent

Frontiers in Physiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 884

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Montagna and Hopker A Bayesian Approach for an Athlete Performance Module

FIGURE 3 | Bayesian Network Model of Shot Put performance for 6 randomly selected athletes. Solid line denotes the mean performance trend modeled from the

athlete’s individual data. Dashed line represents the 95% credible performance interval for the athlete.

Gaussian processes with covariate dependent mean functions

E[fi(t)] =
∑k

m=1 β⊤
mxiφ̃m(t) and a common covariance function

Cov{fi(t), fi(s)} =
∑k

m=1 φ̃m(t)φ̃m(s) +
∑p

l=1
σ 2
l
bl(t)bl(s), where

βm denotes the mth column of β and φ̃m(t) =
∑p

l=1
λlmbl(t).

In summary, our model accommodates scalar (doping)-on-
function (shot put trajectories) regression and the distribution
of the curves is allowed to change flexibly with (static)
predictors.

3. DATA

Following Institutional ethical approval (Prop_72_2017_18)
athletes data to be included within the model was obtained with
permission from an open results database (www.tilastopaja.eu).
Specifically, 56,000 results of elite shot put competitions of 1,115
athletes from 1976 to 2016, inclusive, were collected. Sampled
data included the athlete name, IAAF ID number, date of birth,
sex, country of birth, event, result in meters, finishing position,
and any doping violation during the athlete’s career.

Hereafter, we focus on the analysis of data collected from 2012.
This enables us to use both sex and age as predictors of shot
put performance. We remark that the model could be applied
to all the available data from 1976 to 2016, but we would be no
longer able to use age (now a longitudinal predictor) as covariate.
Elite shot put performance data were collected on 352 athletes
between 5th January and 29th December, 2012, for a total of 3290
measurements. The average number of measurements per athlete
was 9.34, ranging from a minimum of 1 to a maximum of 27
measurements. The average age of the athletes was 23 years, with
the youngest athlete being 15 years old and the oldest athlete
being 43 years old, and 175 athletes were males. Only 13 athletes
in this dataset were convicted for doping offences (zi = 1),
representing 3.69% of the sample. We applied model (1)–(6) to
the data, and results are presented in the next section.

4. RESULTS

Figure 3 shows the estimated trajectories f̂i for six randomly
selected athletes. As expected, we note that 95% credible intervals
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expand when no measurements are available, and this effect is
particularly evident toward the end of the year for athletes 21, 69,
and 43. Wider bands denotes higher uncertainty in the estimates
due to lack of data. Left panels show three randomly selected non-
doped athletes, and right panels show three randomly selected
doped athletes. No significant differences emerge in the shape of
the estimated trajectories at this level of analysis between doped
and non-doped athletes.

Figure 4 shows the average shot put performance function
estimates for doping and non-doping athlete groups. Specifically,
the solid and dash-dot lines in Figure 4 were obtained by
averaging the basis function coefficients for athletes belonging

to either group, f̂g(t) = b(t)⊤θ̂ g , where θ̂ g = 1
Card(g)

∑
i∈g θ̂ i

and Card(g) is the cardinality of group g. It appears that as a
group, doped athletes achieve higher shot put results than non-
doped athletes, though credible intervals expand and overlap at
the end of the observation period due to lack of data in the
later part of the year. Within this model, it is also possible to
study the effect of covariates on shot put performance. Figure 5

shows the estimated trajectories f̂i for a 30 years old male athlete
(dash line), a 23 years old male athlete (solid line), and a 15
years old male athlete (dash-dot line), along with 95% credible
intervals. It appears age has an impact on shot put performance,
with more experienced athletes outperforming their younger

counterparts. No significant conclusions can be made at the
end of the year (after day 200) given that credible bands are
overlapping. This is again due to the sparsity of the data, thus
increased uncertainty.

To assess the predictive performance of our model, we

split the data into a training set of 300 athletes and a test
set of 52 athletes. Training and test sets were generated to

maintain the same proportion of doped/non-doped athletes in
the sample, thus 2 athletes in the test set (3.69% of 52) were

randomly chosen from the doped athletes in the sample. All

remaining athletes in the test set were randomly chosen from
non-doped athletes in the sample. The complete data (shot put

performance and doping status) were retained for the training
set when running the analysis, whereas the doping status of

athletes in test set was held out and predicted. Figure 6 shows
the ROC curve for correct classification of doping status for

subjects in the test set. We also report the Area Under the
Curve (AUC), with the closer this value to 1, the better the

predictive performance. The model shows very good predictive

performance, but we underline this result is mostly driven by the
correct classification of supposed non-doped athletes as “non-

doped,” rather than the classification of the two doped athletes
in the test set as “doped” athletes. A discussion is provided in the

next section.

FIGURE 4 | Shot put performance between “non-doped” and “doped” populations. Solid line represents the mean for the “doped” population, with dashed line

illustrating the 95% credible performance bounds. Bolded dashed line represents the mean for the “non-doped" population, with dotted lines representing the 95%

credible performance bounds.
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FIGURE 5 | Shotput performance trajectories for a 30 years old male athlete (dash line), a 23 years old male athlete (solid line), and a 15 years old male athlete

(dash-dot) along with their 95% credible intervals.

FIGURE 6 | ROC curve analysis for correct classification of doping status for athletes in the test set.
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5. DISCUSSION

This study has proposed a Bayesian latent factor regression
model for the analysis of performance data used in an anti-
doping context. Following (Montagna et al., 2012), we include
a high-dimensional set of pre-specified basis functions, while
allowing automatic shrinkage and effective removal of basis
coefficients not needed to characterize any of the athlete-
specific functions. Further, we accommodate joint modeling of
a functional predictor, the elite shot put performance trajectory,
with a binary response, the doping status, within a framework
of scalar-on-function regression. While the motivation of our
work comes from the analysis of shot put performance data,
the methodology presented in this paper is widely applicable
to the analysis of performance data collected in all so-called
centimeter-gram-second sports.

The model achieves good predictive performance of doping
status, with a high AUC. However, the model prediction is
driven by the correct classification of non-doped athletes, thus
the error in sensitivity we observe is due to the misclassification
of the doped athletes as non-doped. For example, if we classified
as “doped” all athletes having p̂i > 0.50 (the random
classification rate), none of the truly doped athletes in the
test set would be correctly classified as doped. We observed
this misclassification problem not only when analysing data
limited to 1 year, but also when analysing all available shot
put performance data. There could be several reasons that lead
to the misclassification. The number of doped athletes is very
small compared to size of the sample (13 doped athletes out of
352 subjects), thus it is possible that the signal is too low for
the model to be able to detect the doping-status of an athlete.
In particular, (Montagna et al., 2012, 2018) show the model
has good classification performance of any group in simulation
studies with higher signal-to-noise ratio and more balanced
representation of different groups in the sample. It might also be
possible that some athletes denoted as “clean” in the sample are
in fact “doped,” but were never caught through traditional testing
methods.

Regardless of potential issues with the data, the model in its
current formulation suffers from some limitations. The Bayesian
latent factor regression methodology was originally developed
for very sparse longitudinal data (Montagna et al., 2012) with
the purpose of capturing a global trend in subject-specific
trajectories. Instead, the shot put dataset has measurements often
collected just a few days apart from each other on each athlete,
and for a potentially long number of years. Thus, our dataset

shows more local, short-range variability, which the current
version of the model cannot adequately represent. Further, the
model does not currently accommodate longitudinal covariates
potentially affecting performance, for example, as shown in
Figure 5, athlete aging has a clear demonstrable effect on shot
put throwing distance. Moreover, factors such as individual
athlete seasonal training and competition patterns will affect
their individual competition results, independently of any doping
related effect and so must be accounted for in any longitudinal
model of performance. Nonetheless, our current model appears
to be able to detect differences between the two populations in the
early phase of the competitive year, with about 1 meter difference
in performance between doped and non-doped athletes (see
Figure 4). Therefore, this retrospective data modeling provides
an indication that the effects of doping can be identified from
longitudinal athlete performance profiles, and that it could
potentially be used as a tool to estimate theoretical future credible
performances for a given athlete. The ultimate application of this
type of modeling approach would be that when the projected
credible level of performance is exceeded by an athlete (e.g.,
Figure 3—athlete 53 and 281 data points above the 95% credible
interval), they would be identified for target testing via the ABP
system. Thus, an athlete performance passport will potentially
improve the effectiveness of in-competition anti-doping testing,
where currently only placed athletes and a number of randomly
selected others, are subjected to scrutiny.

While the above has to be considered as a preliminary analysis
affected by some limitations, the model is still credible and
might represent a useful tool for longitudinal tracking of athlete
performance in order to discriminate expected from unexpected
or disproportionate increases. Further research is required in
order to increase the structure of the model by incorporating
more covariates (e.g., training, maturation, seasonal variation) in
order to increase its accuracy and sensitivity, and thus better fit
the shot put data.
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