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Immune checkpoint inhibitors have now become a standard therapy for malignant 
melanoma. However, as immunotherapies are effective in only a limited number of 
patients, biomarker development remains one of the most important clinical challenges. 
Biomarkers predicting clinical benefit facilitate appropriate selection of individualized 
treatments for patients and maximize clinical benefits. Many biomarkers derived from 
tumors and peripheral blood components have recently been reported, mainly in retro-
spective settings. This review summarizes the recent findings of biomarker studies for 
predicting the clinical benefits of immunotherapies in melanoma patients. Taking into 
account the complex interactions between the immune system and various cancers,  
it would be difficult for only one biomarker to predict clinical benefits in all patients. Many 
efforts to discover candidate biomarkers are currently ongoing. In the future, verification, 
by means of a prospective study, may allow some of these candidates to be combined 
into a scoring system based on bioinformatics technology.

Keywords: biomarker, immune checkpoint inhibitor, malignant melanoma, cytotoxic T-lymphocyte-associated 
antigen 4, programmed death-1

iNTRODUCTiON

In recent years, immune checkpoint inhibitors have increasingly been applied to the clinical develop-
ment of cancer immunotherapy. For malignant melanoma, ipilimumab, a humanized monoclonal 
antibody (mAb) that blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and nivolumab, 
as well as pembrolizumab, a humanized mAb that blocks programmed death-1 (PD-1) on primed 
T  cells, have been approved and are now used as standard therapies. Several clinical trials have 
investigated new agents, alone and in combination, for use in the treatment of advanced malignant 
melanoma. However, immunotherapies are effective in only a limited number of patients and severe 
immune-related adverse events (irAEs) develop in some patients. Biomarkers predicting clinical 
benefit support appropriate the selection of individualized treatments for patients and maximize 
clinical benefits. Thus, one of the most important tasks for advancing this form of therapy is to iden-
tify “baseline (pretreatment)” biomarkers predicting responses or toxicities. In general, biomarkers 
are mainly divided into two functional categories, “prognostic” and “predictive.” A prognostic 
biomarker can be defined based on the effects of patient or tumor biology on the patient’s clinical 
outcome. This includes patients at high risk for disease relapse who may thus derive benefit from 
earlier treatments. On the other hand, a predictive biomarker is defined by the effects of treatment, 
including tumor response and improvements in overall survival (OS), disease-free survival (DFS), 
and progression-free survival (PFS). Many biomarker candidates have been identified, to date, in 
retrospective settings. This review summarizes recent findings of biomarker studies designed to 
identify means of predicting the clinical benefits of immunotherapies in melanoma patients, focus-
ing on three categories: tumor tissue, peripheral blood, and others (Table 1).
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TaBle 1 | Biomarkers for metastatic melanoma patients treated with immune 
checkpoint inhibitor therapy.

Tumor (microenvironment) Reference

Immunohistochemistry (IHC)
Programmed death-ligand 1 (PD-L1) expression on tumor cells (1–4)
PD-L1 expression on immune cells (5–7)
Programmed death-1 expression on T cells (25)
Infiltration of CD8+ cells (37–41)
Infiltration of CD4+ cells (40)
Regulatory T cells (Tregs) (29, 30)
Myeloid-derived suppressor cells (MDSC) (31–35)
Tumor-associated macrophages (M2) (36)
Gene profiling (expression/mutation/amplification)
Tumor mutation burden (9–14)
Number of somatic mutations (non-synonymous mutations) (10, 11, 15–19)
Activation of IFN-γ signaling (21, 22)
Amplification of WNT/β-catenine signaling (23)
Janus kinase (JAK) 1/JAK2 loss-of-function mutations (25, 26)

Peripheral blood

Number of lymphocytes (42, 43)
Number of Tregs (38, 44, 45)
Number of MDSCs (46–50)
Number of proliferating CD8+ T cells (52–57)
Number of memory CD4+ T cells (58–60)
Concentrations of cytokines (e.g., IL-6, IL-8, IL-10, and TGF-β) (62–64)
Concentration of VEGF (66)
PD-L1 expression on circulating tumor cells (8)
Soluble PD-L1 (67)

Others

Microbiome (68–70)
Fatty acids (71)
Vitiligo and rash (72–75)
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treated with anti-PD-1 antibody (nivolumab) and anti-CTLA-
4-antibody (ipilimumab), there was a correlation with a good 
response in non-small lung cancer patients treated with these 
drugs (6, 7). On the other hand, Schott et al. reported that PD-L1 
expression on “circulating” tumor cells might also be a potential 
biomarker (8). They suggested circulating tumor cells to possibly 
be precursors of metastatic disease, with PD-L1 expression allow-
ing stratification according to the anticipated response to therapy. 
Further study is needed to determine the clinical significance of 
PD-LI expression.

Genes: Mutation-Burden and Gene-
expression
Melanoma is characterized by having one of the highest muta-
tion burdens of any cancer (9, 10). These somatic mutations gene-
rate immunogenic-neoantigens recognized as tumor-antigens, 
possibly triggering effective anti-tumor immune responses 
(11–13). Genomic analysis revealed that a high mutational 
load at baseline may predict better survival but not treatment 
responses (13), and the mutation burden after PD-1 therapy was 
reportedly decreased in melanoma patients who responded to 
treatment (14).

Genes harboring significant mutations included BRAF, 
CDKN2A, NRAS, PTEN, and TP53 in cutaneous melanoma, 
BRAF, NRAS, NF1, and KIT in acral melanoma (hands and 
feet), and SF3B1 in mucosal melanoma (internal body surfaces) 
(15–17). The BRAF mutation was the most common, being 
detected in approximately half of metastatic melanoma patients.  
In the current treatment of melanoma, only BRAF V600 mutations 
are regarded as being molecular markers applicable to treatment 
decision-making strategies (10, 18). Several studies of CTLA-4 
and PD-1 therapy have revealed that BRAF V600E mutations do 
not correlate with either the response to CTLA-4 therapy or the 
resulting OS, whereas the correlation with the response of melano-
mas to PD-1 therapy was significant (11, 19). On the other hand, 
inactivation of CDKN2A and/or PTEN is regarded as an important 
mechanism underlying resistance and/or durable responses to 
BRAF-inhibitor-based therapy, but is not currently taken into 
consideration in the clinical decision-making process (10).

Previous sequence studies, such as The Cancer Genome Atlas  
study, used exome and low-pass whole-genome sequencing (WGS). 
In 2017, Hayward et  al. reported the first large, high-coverage  
WGS study of melanomas (cutaneous, acral, and mucosal sub-
types), including analysis of the non-coding region. Their report 
showed that the number of mutations in the non-coding region  
was detected as a number equivalent to that in the coding region,  
and that the most common mutations in the non-coding region 
were in the TERT promoter upstream from the initiation codon 
(69% of all melanomas and 86% of cutaneous melanomas) (17). 
Moreover, Ishida et  al. preliminarily reported a correlation bet-
ween HLA-A*26 alleles and the response to anti-PD-1 (nivolumab) 
therapy in Japanese patients with metastatic melanoma (20). 
HLA accounts for some of the individual differences in antigen- 
specific immune responses, and might provide useful informa-
tion for devising individualized immunotherapeutic regimens. 
The associations of these new findings with clinical responses to 
immunotherapies merit further investigation.

BiOMaRKeRS iN TUMOR TiSSUe

PD-l1 expression on Tumor Cells
Programmed death-ligand 1 (PD-L1) expression has been inves-
tigated as a potential biomarker for PD-1 or the PD-L1 inhibitor. 
In phase I trials, PD-L1 expression on tumor cells correlated with 
the response to anti-PD-1 antibody (1). Given these promis-
ing results, several companies developed PD-L1 companion 
diagnostic tests for anti-PD-1/PD-L1 antibody and patients with 
PD-L1-positive tumors were considered to be good candidates 
for anti-PD-1/PD-L1 antibody treatment. In fact, the U.S. Food 
and Drug Administration has approved pembrolizumab, an anti-
PD-1 antibody, for the treatment of PD-L1-positive non-small 
cell lung cancer (NSCLC) and gastric cancer. However, there are 
several problems while using PD-L1 expression as a biomarker 
for immunotherapy. First, PD-L1 expression levels show hetero-
geneity within tumors (2). Second, PD-L1 is a dynamic marker 
that can be affected by treatment and local inflammation (3). 
Third, the optimal threshold level of PD-L1 expression remains 
uncertain (4). In fact, some PD-L1 negative patients also derive 
benefit from treatment with an anti-PD-1/PD-L1 inhibitor.

Interestingly, PD-L1 expression on tumor infiltrating immune 
cells may be more predictive of responsiveness to anti-PD-1 
antibody than the level of PD-L1 expression by the tumor (5). 
Furthermore, while PD-L1 expression on tumor cells did not 
tend to be related to the response rate in melanoma patients 
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On the other hand, there have been several investigations of 
the gene expressions on tumor tissues, for their value in predict-
ing responses to immune checkpoint inhibitors. Immunohis to-
chemistry and gene profiling assays have suggested the presence of 
a “T-cell-inflamed tumor microenvironment,” with an abundance 
of chemokines and an IFN-γ signature, to correlate with the 
clinical efficacy of immune checkpoint inhibitors in melanoma 
patients (21, 22). Numerous studies have revealed the molecular 
mechanisms underlying lack of T-cell infiltration and resistance of 
melanomas to immune checkpoint therapy, such as the melanoma- 
intrinsic active WNT/β-catenin-signaling pathway (23) and 
enrichment for mutations in PTEN (24), loss-of-function muta-
tions in Janus kinase (JAK1)/JAK2 (which are involved in IFNγ 
signaling), and β2 microglobulin (an MHC class I subunit) (25, 26).

Tumor infiltrating lymphocytes (Tils)
Tumor infiltrating lymphocytes, such as T  cells, macrophages, 
and various types of immune suppressive cells, are considered 
to be the most important players in the regulation of anti-
tumor immune responses. Several studies have demonstrated 
an increase in the TIL number to correlate with good clinical 
responses and a higher survival rate of patients with melanoma 
and various other cancers (27, 28).

In melanoma patients, immune suppressive cells, such as 
regulatory T cells (Tregs) (29, 30), monocytic myeloid-derived 
suppressor cells (m-MDSCs) (31–35), and tumor-associated 
(activated) macrophages (TAM; M2) (36), were reportedly 
increased in number and thereby inhibited effector T cells, result-
ing in an increase in tumor growth.

In contrast, a number of investigators have reported the quan-
tity of infiltrating CD8+CD45RO+ effector memory T cells to be 
clearly associated with longer DFS and OS, for many cancer types 
including melanoma (37–39). Recently, Wei et al. comprehensively 
profiled the effects of CTLA-4/PD-1-targeted immunotherapy on 
tumor infiltrating immune cells. Their study revealed that PD-1 
blockade and CTLA-4 blockade both led to a subset of exhausted-
like CD8+ T  cells (CD45RO+PD-1+T-bet+EOMES+). They also 
showed that CTLA-4 blockade induced the expansion of an ICOS+ 
Th1-like CD4 effector population (CD45RO+PD-1loTBET+ and 
CD69+) in melanoma patients. These observations suggested that 
these two immunotherapies target specific subsets of exhausted-
like CD8+ T  cells, but drive different cellular mechanisms to 
induce tumor rejection (40). Moreover, Canale et  al. described 
high expression of CD39 on CD8+ infiltrating T  cells as being 
increased in melanoma lesions. CD39 is the immunosuppres-
sive enzyme termed ATP ectonucleotidase, and CD39highCD8+  
T  cells reportedly exhibit features of cellular exhaustion, such 
as reduced production of tumor necrosis factor and interleukin  
(IL)-2, as well as expressions of co-inhibitory receptors (41).

BiOMaRKeRS iN PeRiFeRal BlOOD

Peripheral Blood Mononuclear Cells 
(PBMCs)
Blood biomarkers have most frequently been analyzed for cor-
relations with clinical responses to immunotherapies. Baseline 

and/or post-treatment changes in absolute counts of white blood 
cells, lymphocytes, eosinophils, neutrophils, and monocytes, as 
well as ratios of neutrophils or monocytes to lymphocytes may 
both be promising and routinely available blood markers that 
have shown associations with responses to immune checkpoint 
inhibitors (11, 42, 43).

Recently, several studies have raised the possibility of cir-
culating immune cells as predictive biomarkers for immune 
checkpoint inhibitors. The frequency of circulating Tregs is 
reportedly associated with disease progression and poor patient 
survival for many carcinomas treated with immunotherapy 
(38, 44, 45). Numerous studies have found that high levels of 
circulating m-MDSCs in various forms of cancer, including 
melanoma, correlate with poor survival (46–48). In patients 
treated with anti-PD-1 antibody, m-MDSCs were reported to be 
a blood cytology marker showing significant correlations with 
all outcome parameters (49, 50). However, human MDSCs have 
yet to be clearly characterized both biologically and phenotypi-
cally. A very recent study demonstrated that the frequency of 
CD14+CD16-HLA-DRhi monocytes predicts both PFS and OS of 
melanoma patients treated with anti-PD-1 antibody, based on 
analysis employing high-dimensional single-cell mass cytom-
etry (51). This CD14+ population including MDSCs might be 
useful as a predictive and/or prognostic biomarker for cancer 
patients receiving immunotherapy, but further investigation is 
needed to clarify the phenotype and biological characteristics of 
this diverse population of cells.

On the other hand, several studies examining circulating 
T  cells have shown the involvement of CD8+ T  cells, such as 
the proliferating (Ki67+) CD8+ effector-like T cells, in NSCLC 
patients receiving PD-1-therapy (52), and neoantigen-specific 
circulating CD8+ T  cells in melanoma (53, 54). The latter are 
CD8+ T cells expressing PD-1. In addition, two complementary 
reports showed that CD28, a member of the same family as PD-1 
(including CTLA-4 and ICOS), expressed on CD8+ T cells is a 
key molecule in PD-1-targeted therapy (55). Hui et al. showed 
that “CD28 is the primary target of PD-1 signaling,” using a 
cell-free membrane reconstitution system. Their report revealed 
that PD-1 was phosphorylated in response to PD-L1 ligation, 
thereby preferentially inducing dephosphorylation of CD28 
(but not the T cell receptor), resulting in the inhibition of T cell 
proliferation (56). On the other hand, Kamphorst et al. found 
that, in lung cancer patients, proliferating Ki67+PD-1+CD8+ 
T  cells were increased in peripheral blood, and subsequently 
activated (CD38+, HLA-DR+) and mostly expressed CD28 
(57), implying that CD28 signaling is associated with rescue 
of the exhausted CD8+ T  cells in PD-1 targeted therapies. 
These findings are reasonable and it is interesting that CD28, 
belonging to the same family as PD-1, is a key molecule in 
PD-1-targeted therapy, although its applicability as a predictive/
prognostic biomarker in melanoma patients is as yet unclear. 
Moreover, whether other family members, including CTLA-4 
and ICOS, have similar features in immune checkpoint therapy, 
remains unknown. Elucidating these issues might reveal novel 
useful biomarkers for use alone and/or in combination with 
PD-1-targeted therapy. Another interesting, and potentially 
important, finding of these studies is that proliferating CD8+ 
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effector-like T cells were reportedly increased following PD-1-
targeted therapy.

Several recent studies, focusing on circulating CD4+ T cells, 
found that increases in central memory CD4+ T cells (CD27+, 
FAS−, CD45RA−, and CCR7+) (58), and IL-9-producing CD4+  
T helper (Th9) cells (59), correlated with good clinical responses 
of melanoma patients to anti-PD-1 therapy. Moreover, in lung 
cancer patients treated with nivolumab, the frequencies of 
CD62LlowCD4+ T  cells and Tregs (CD25+Foxp3+CD4+) in pre-
treatment PBMC were reported to correlate significantly with 
clinical responses (60). Their ASCO presentation outlined the 
major differences in pre-existing immunity, among patients 
showing a partial response, stable disease, or progressive disease, 
in response to anti-PD-1 Ab, as reflected by the status of CD4+ 
T cells, i.e., the balance between primed effector and Tregs. These 
recent reports raised the possibility that, in peripheral blood, not 
only T cell exhaustion but also activation of effector CD8+ T cells 
and increases in memory T cells appear to be highly important, 
and not only phenotyping markers but also functional molecules 
can serve important roles as prognostic and/or predictive factors 
for immune checkpoint inhibitors. Although peripheral blood 
analysis may provide valuable insights into the responses of can-
cer patients to immune checkpoint inhibitors, more investigation 
is needed before these biomarkers can be applied in clinical 
settings.

OTHeRS

Soluble Factors (Serum/Circulating 
Factors)
Lactate dehydrogenase was frequently investigated in previ-
ous studies and showed significant correlations with OS and 
PFS, whereas there were no correlations with responses to 
treatments (61). Recently, several studies have revealed that 
serum cytokine levels to correlate with responses to immune 
checkpoint inhibitors. Sanmamed et  al. showed serum IL-8 
levels to be highly correlated with tumor burden changes in 
metastatic melanoma and NSCLC patients during treatment 
with anti-PD-1/anti-CTLA-4 therapy (62, 63), and Yamazaki 
et al. reported that pretreatment serum IFN-γ, IL-6, and IL-10 
levels were significantly higher in those with tumor progression 
among patients with advanced melanoma given nivolumab 
(64). In addition, in patients with metastatic melanoma receiv-
ing nivolumab, the activity of soluble CD73, which is an enzyme 
that hydrolyzes extracellular AMP to adenosine, in blood was 
shown to be significantly associated with clinical outcomes (65). 
Moreover, Frankhauser et  al., studying metastatic melanoma 
patients, reported gene expression of vascular endothelial 
growth factor-C (VEGF-C) to correlate markedly with both 
CCL21 and T  cell inflammation, and that serum VEGF-C 
concentrations were associated with both T  cell activation/
expansion and clinical responses to checkpoint blockade (66).

Soluble PD-l1 (sPD-l1)
Pretreatment sPD-L1 levels reportedly correlate with progression 
of advanced melanoma treated with anti-CTLA-4 or anti-PD-1 

antibody. Although changes in circulating sPD-L1 in the early 
phase after starting treatment did not distinguish responders from 
non-responders, patients who had increased circulating sPD-L1 
after 5  months of treatment tended to show partial responses 
(67). The biology of sPD-L1 remains unclear and merits further 
research.

Microbiome
A vast number of microbes colonize the human body. This 
colonization is associated with many diseases, including various 
malignancies. During the past decade, the advent of metagen-
omic sequencing that combines next-generation DNA sequenc-
ing technologies with computational analyses has allowed us to 
analyze the relationships between the microbiome and various 
cancers. Recent studies have suggested that the gut microbiome 
may affect the efficacy of immune checkpoint inhibitors and, 
consequently, that changing the gut microbiome of a mouse or 
even a human patient might make tumors more responsive to 
immune checkpoint inhibitors. This possibility was first evalu-
ated using preclinical models. Vétizou et  al. showed that the 
efficacy of anti-CTLA-4 therapy was diminished in a germ-free 
mouse model. In addition, the use of broad-spectrum antibio-
tics to eliminate gut microbiota altered the anti-tumor effect of 
anti-CTLA-4 therapy (68). Sivan et al. reported that Bifidobacte
rium counts decreased in parallel with the anti-tumor effects 
of anti-PD-L1 therapy in a mouse model (69). Furthermore, 
Gopalakrishnan et al. indicated that anti-PD-1 immunotherapy 
in melanoma patients may be modulated by the gut microbiome. 
These researchers reported significantly higher alpha diversity 
and a relative abundance of Ruminococcaceae bacteria in the gut 
microbiome of responders (70). These findings indicated that 
specific organisms comprising the gut microbiome enhanced 
anti-tumor responses in patients treated with immune check-
point inhibitors. Although the gut microbiome is a potential 
predictive marker of immunotherapy, a larger prospective study 
is needed to confirm these results.

Fatty acids
Kim et al. investigated cellular metabolome and lipidome altera-
tions related to melanoma metastasis. Their analysis showed a 
progressive increase in phosphatidylinositol species with satu-
rated and monounsaturated fatty acyl chains, as the metastatic 
potential of the melanoma cells rose, highlighting these lipids  
as possible biomarkers (71).

vitiligo and Rash
Immune checkpoint inhibitors have a rather unique adverse 
event profile, generally described as irAEs, which are most com-
monly observed in the skin, the gastrointestinal tract, the lungs, 
the liver, endocrine system, and other organs. Cutaneous irAEs 
are much more common adverse events in patients with mela-
noma than in those with other solid tumors. Although vitiligo 
is attributed to an autoantibody to melanocytes, the etiology of 
vitiligo is not understood in detail. Vitiligo occurrence has long 
been speculated to be related to tumor shrinkage in melanoma 
patients (72). Vitiligo develops in 13–26% of patients treated 
with nivolumab (73, 74), though grade III/IV disease is rare. 
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Recent studies have shown vitiligo and rash to be associated 
with a significant OS improvement in metastatic melanoma 
patients treated with immune checkpoint inhibitors (73–75). 
Furthermore, Nakamura et al. suggested that the occurrence of 
vitiligo might not be regarded as an early marker of good clini-
cal response because the mean time to vitiligo occurrence was 
approximately 5 months after starting nivolumab (73). The onset 
times of vitiligo vary considerably depending on the type of drug 
administered and patient features. Thus, when we use cutane-
ous irAEs as a biomarker for immune checkpoint inhibitors, we 
should take into consideration the characteristics of each drug.

CONClUSiON

Numerous candidate biomarkers are currently the focus of 
research, based mainly on retrospective analyses. Most notably, 
tumor mutation burden, intratumoral or immune cell expres-
sions of PD-L1, and CD8+ T  cell infiltration into the tumor 
have been documented in several cohorts. For example, not 
only melanoma but also lung carcinoma, one of the carcinomas 
which also has a high mutation burden, shows good clinical 
responses to PD-1/PD-L1 therapy. In lung carcinoma, mutation 
burden, TIL accumulation, and/or PD-L1 expression on tumor 
cells correlated with good clinical responses. However, renal 
cell carcinoma is also reportedly responsive to PD-1 therapy, 

despite having a low mutation burden, while TIL accumulation 
and PD-L1 expression did not correlate with treatment effective-
ness. These observations suggest that these factors are not always 
applicable to predicting clinical benefits. Taking into account the 
complex interactions between the immune system and malig-
nancies via cell surface molecules, such as immune checkpoint 
molecules, humoral factors, including proteins, cytokines, and 
so on, it is not unreasonable to speculate that a single biomarker 
would not allow clinical benefits to be predicted in all patients.  
In the near future, by applying bioinformatics technology, sev-
eral biomarkers might be combined to produce a useful scoring 
system, depending on the type of cancer, the stage, individual 
treatments, and the timing of intervention. Recent advance-
ments in assay technology, such as mass cytometry (CyTOF), 
multicolor IHC, multiplex gene analyzer, and so on (Figure 1), 
have the potential to provide an abundance of biological and/
or phenotypical observations in a range of environments. Now 
is the time to discover the candidate biomarkers which might 
comprise such a future scoring system. Finally, needless to say, 
a prospective study on a large patient population is essential.
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FiGURe 1 | Various assay systems for identifying biomarkers. Several biomarkers derived from the tumor microenvironment, peripheral blood biology, and other 
factors have been proposed as distinct biomarkers of responses to immune checkpoint blockade therapy. Recently, there have been innovative advancements  
in assay technology that have made it possible to comprehensively profile the biology and phenotype of the tumor-microenvironment, peripheral blood, and other 
factors. It would be very difficult, however, for a single biomarker to predict clinical responses and/or serve as a patient selection criterion, though multifactorial 
biomarkers including these and other novel findings might have great value for predicting clinical responses and/or patient prognosis.
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