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Abstract
Primary cytomegalovirus (CMV) infection leads to strong innate and
adaptive immune responses against the virus, which prevents serious
disease. However, CMV infection can cause serious morbidity and mortality
in individuals who are immunocompromised. The adaptive immune
response to CMV is characterized by large populations of effector-memory
(EM) T cells that are maintained lifelong, a process termed memory
inflation. Recent findings indicate that infection with CMV leads to
continuous differentiation of CMV-specific EM-like T cells and that
high-dose infection accelerates this progression. Whether measures that
counteract CMV infection, such as anti-viral drugs, targeting of latently
infected cells, adoptive transfer of CMV-specific T cells, and vaccination
strategies, are able to impact the progressive differentiation of
CMV-specific EM-like cells is discussed.
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Introduction
Human cytomegalovirus (HCMV) is a highly prevalent virus 
that establishes a state of persistent infection1. Primary infection 
rarely causes severe disease in immunocompetent individu-
als. However, infection of immunocompromised individuals 
(for example, untreated HIV and transplant patients) or  
congenitally infected children ultimately can result in serious 
disease and mortality2. CMV is also considered to play a role in  
immune senescence, although its role herein is controversial3,4.

During primary HCMV infection, there is a strong natural killer 
cell response, which is succeeded by the formation of humoral 
and cellular immunity5. CMV immunity comprises neutraliz-
ing antibodies and the generation of CMV-specific CD4+ and 
CD8+ T cells recognizing an extensive range of viral proteins. 
On average, the T-cell response to CMV is exceptionally high. 
About 10% of the memory T-cell compartment in blood is CMV  
specific6 and therefore HCMV is considered one of the most 
immunogenic pathogens for humans. However, the range of  
T-cell frequencies in the blood of infected individuals is quite 
variable, ranging from barely detectable to very high (even  
above 40%), and this variance is likely caused by differences 
in the infectious dose and host-intrinsic factors. Importantly, 
HCMV infection has been demonstrated to be a major driver  
of the variation in the immune system by systems-level analysis7.

Despite robust primary immune responses leading to control of 
primary infection, the virus is never cleared. The establishment 
of latent infection and subsequent recurrent viral reactivation 
from latency are related to numerous sophisticated immune 
evasion strategies of the virus. For example, CMV-encoded  
genes impair major histocompatibility complex (MHC) class I 
and II-restricted antigen processing and presentation, which sup-
presses CD8+ and CD4+ T-cell recognition8,9. CMV also prevents 
the activation of T cells by down-modulating co-stimulatory  
ligands on infected antigen-presenting cells10,11.

Although latent infection suggests a silent state, it has become 
evident that changes in the phenotype of virus-reactive cells 
occur during the course of persistent infection and that these 
changes are related to factors such as the initial dose of viral 
inoculum and aging. Here, we discuss recent findings regard-
ing the differentiation of CMV-specific T cells and interventions 
that counteract CMV-associated perturbations that may impact  
T-cell differentiation.

Progressive differentiation of cytomegalovirus-
specific effector-memory T cells
The T-cell response to CMV is exceptional because of the 
large numbers of functional effector-memory-like (EM-like) 
cells that are induced and maintained lifelong in blood and tis-
sue. This phenomenon, termed memory inflation12–14, relates to 
the low-level persistence of the virus, as demonstrated by viral 
latency and intermittent viral reactivation. In healthy hosts, the  
infectious dose is a strong determinant of the degree of memory 
inflation that occurs15. The circulating EM-like T cells that are 
induced upon CMV infection express markers such as KLRG1  
and CD44, whereas expression of CD62L, CD127 (IL-
7Rα), and the co-stimulatory molecules CD27 and CD28 is  
downregulated or lost16–18. In tissues, not only circulating EM-like 

CMV-specific T cells but also CMV-specific non-recirculating 
tissue-resident memory (TRM) T cells are present. These TRM 
T cells, considered a distinct memory population19, are charac-
terized by CD69 expression and, depending on the tissue, also 
express CD10320. CMV-specific memory T cells with a central-
memory (CM)-like phenotype (CD62L+, CD127+, CD27+, CD28+,  
KLRG1−, and IL-2+) also exist and are thought to dominantly 
contribute to population expansion upon re-challenge21. Systemic 
control of CMV infection likely depends on the collective  
contribution of the circulating and non-circulating CMV-specific  
T cells.

With the use of novel computational tools that allow the analysis 
of cytometry data with much finer detail22,23, we recently  
discovered that CMV infection continuously affects the differen-
tiation of the virus-specific EM-like cells24. Inflationary T cells 
seem to undergo progressive differentiation unremittingly, 
and this was most clearly observed upon high-dose infection.  
Quantification of inflationary CMV-specific CD8+ T cells in  
different stages of EM differentiation performed with the  
previously described Cytosplore data set24 revealed that the  
differentiation of these EM-like inflationary CMV-specific  
T cells strikingly increases over time (Figure 1). High-dose 
infection accelerated this progressive profile of EM differentia-
tion compared with a lower dose. This quantification unequivo-
cally shows that CMV infection causes progressive EM T-cell 
differentiation that continues throughout the life span of the  
host and that the grade of infection (for example, low versus 
high) impacts the degree of circulating EM T-cell differentiation. 
It is currently unknown whether TRM T-cell differentiation  
is impacted by aging and infectious dose.

Progressive EM T-cell differentiation might be dependent on the 
differentiation of naïve and CM-like T cells into EM T cells17 
but as well on the stimulation and expansion of less EM- 
differentiated cells into more differentiated populations. CD27 
expression, which is higher on less differentiated cells, gradually 
declines on the cell surface of inflationary EM T-cell popula-
tions over time. Thus, CD27 has a likely role in progressive  
EM T-cell differentiation and coincides with the requirement 
of CD27–CD70 interactions to support and maintain memory  
inflation25. Moreover, CD27-expressing memory T cells can 
restore inflationary populations during latency26. The anti- 
apoptotic molecule Bcl-2 accumulates over time and presumably 
is essential for the survival of the inflationary EM T cells27. 
Correspondingly, the half-life of inflationary EM T cells is  
considerably longer than that of effector T cells, which have 
lower Bcl-2 levels28. Together, these findings fuel the concept 
that less-differentiated EM-like T cells can accumulate into 
more differentiated EM cells and that these cells have a  
prolonged survival. Whether the cytokines IL-2 and IL-15,  
implicated in the maintenance of inflationary T cells28,29, 
also directly contribute to the differentiation of the T cells 
is unclear, but surely higher levels of CMV drive the T-cell  
differentiation to a more advanced EM phenotype.

Whether progressive EM T-cell differentiation is a non- 
functional response against the persistent presence of CMV  
antigens or a functional adaptation of the CMV-reactive T cells 
to keep control over CMV infection is unknown, but it may 
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Figure 1. Progressive differentiation of cytomegalovirus (CMV)-specific effector-memory (EM) CD8+ T cells and its relation to the 
initial viral inoculum. C57BL/6 mice were infected intraperitoneally with a low (103 plaque-forming units, or PFU) or a high (105 PFU) dose 
of mouse CMV (MCMV)-Smith. Inflationary IE3-specific CD8+ T cells in blood were detected with major histocompatibility complex (MHC) 
class I tetramer (Tet) and stained for the cell surface markers CD62L, KLRG1, CD27, and CD44, which allow discrimination between central-
memory (CM) and EM-like T cells at days 8, 90, and 200 after infection. (a) IE3-specific cells were gated (Tet+) and an equally down-sampled 
number of cells per sample was analyzed by Cytosplore. Single-marker expression of IE3-specific CD8+ T cells is shown as Approximated  
t-distributed Stochastic Neighbor Embedding (A-tSNE) scatterplots to visualize the intensity of the markers. (b) A-tSNE plot depicts the  
pooled phenotypical data of the cell surface markers visualized as cell density clusters of the IE3-specific CD8+ T cells of low- and high-
dose MCMV-infected mice for day 8, 90, and 200 time points after infection. In the A-tSNE plot, the differentiation path from the CM and 
EM phenotype is specified. The black curved line indicates the ongoing shift toward a higher advanced EM phenotype. Clusters showing 
different points in the differentiation path were selected and indicated by dashed line boxes. The percentage of IE3-specific CD8+ T cells in 
the selected clusters was determined and displayed in the corresponding bar graphs for each time point and viral inoculum.

affect cellular function and senescence. In humans, latent CMV  
infection in older individuals resulted in lower protection rates 
after vaccination with an influenza vaccine30–32; however, neutral 
effects of CMV infection were also observed33–36. Possibly 
related to some of these studies is the finding that high-dose 
but not low-dose CMV infection impairs the development of 
a heterologous anti-viral T-cell response24,37,38. In contrast to 
these possible negative outcomes of persistent CMV infection,  
recent studies are indicating positive effects. For example, it 
was shown that old mice infected with mouse CMV (MCMV) 
had a broader T-cell response compared with non-infected old 
mice after challenge with Listeria monocytogenes39. Nota-
bly, positive effects of CMV infection early after infection 
have been well documented and may relate to a heightened  
innate immune activation status24,35,40. Together, these studies 

imply that the progressive differentiation of CMV-specific EM-
like T cells may be either negatively or positively affecting host 
immunity. CMV latency and its impact on T-cell responses 
thus may reflect a virus–host balance that can be impacted by 
the infectious dose and aging. Nevertheless, it is likely that  
lowering of the viral load is key to diminishing putative  
T-cell senescence, as lower viral loads lead to a reduction  
in EM T-cell differentiation15,41.

Measures to counteract cytomegalovirus-
associated perturbations and their impact on T-cell 
differentiation
In cases where CMV-associated perturbations are known to 
be a negative factor (for example, in congenital infection and 
viral reactivation after transplantation), measures to reduce 
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the burden of CMV infection are being investigated. Several 
approaches, such as anti-viral drugs, treatments targeting 
latently infected cells, adoptive transfer of CMV-specific T cells,  
and (prophylactic) vaccines, have been developed.

Anti-viral drugs targeting CMV are commonly used for trans-
plantation patients with clinical reactivation of CMV upon 
transplantation42. In these patients, the use of anti-viral drugs 
can reduce viral load43, but not much is known about the effect 
of anti-viral drugs on the differentiation of CMV-specific EM 
T cells. Whether anti-viral therapy can be used to reduce EM 
T-cell differentiation and improve heterologous immunity  
was recently experimentally assessed by Beswick et al.44. 
Administration of valaciclovir to mice with an established 
MCMV infection resulted in a reduction of the magnitude of 
the MCMV-specific CD8+ T-cell response. This was accompa-
nied by a less-differentiated phenotype of the residual CD8+  
T cells compared with mice that received no anti-viral treatment.  
Treatment with valaciclovir also reduced influenza A viral loads 
upon challenge and reduced the differentiation of influenza-
specific CD8+ T cells. However, CMV can adapt to become 
resistant to anti-viral treatment45, suggesting that treatment  
with anti-viral drugs might not generally be effective in the long 
term.

A sophisticated way to target latent infection can be to manipu-
late the mechanisms used by CMV to avoid detection by the 
immune system46. The viral protein UL138, expressed during 
latency, results in loss of multidrug resistance-associated protein-1 
(MRP1)47. The treatment of latently infected monocytes with 
vincristine, a cytotoxic agent normally exported by MRP1, 
resulted in specific ablation of these cells. Also, other genes 
involved in CMV latency (for example, US28 encoding a cell 
surface G-protein-coupled receptor48,49 and LUNA encoding a 
motif with deSUMOylase activity50) could be targeted to clear 
CMV. Such treatments may be used to eliminate latently infected 
cells before transplantation. However, because a wide range  
of cells is latently infected during CMV infection, this ther-
apy could result in unwanted side effects. But it is likely that 
a substantial reduction in latently infected cells, if effective,  
will diminish memory inflation and the ongoing EM T-cell  
differentiation.

Adoptive transfer of HCMV-specific T cells is a method used 
to restore CMV-specific immunity in transplant recipients 
and has been shown to reduce the risk for HCMV infec-
tion or reactivation or both51,52. For this type of treatment, it is 
expected that different subsets of CMV-specific T cells being  

transferred have different effects on protective immunity and 
viral load53. Some studies have examined the relationship of the  
T-cell phenotype with the clinical outcome54–56. Positive  
correlations were found between population expansion and 
the number of CM-like cells within the transferred population. 
Weeks after transfer, the majority of the expanded CD8+ T cells 
nevertheless become highly differentiated. In-depth studies are 
required to assess the impact and level of progressive EM T-cell  
differentiation that occurs in adoptive T-cell transfer settings.

Prophylactic vaccination strategies have the potential to reduce 
the viral load of CMV. Several different CMV vaccination plat-
forms have been developed57,58. Most of these concentrated 
on eliciting antibodies but some (also) aimed to induce robust 
CMV-specific T-cell immunity59–61. Vaccination with live- 
attenuated and replication-deficient CMV vectors seems to induce  
CD8+ T-cell responses undergoing less memory inflation, includ-
ing the induction of the associated EM cell phenotype62,63. 
Vaccination with synthetic long peptides containing MCMV 
epitopes induces strong and polyfunctional CD8+ T-cell 
responses, but whereas responses to these epitopes are infla-
tionary in the MCMV setting, they are non-inflationary in the 
peptide vaccine setting, which corresponds with their reduced 
EM-like phenotype64,65. Nevertheless, such vaccines are able to 
reduce viral load upon challenge with virulent CMV. It will be  
of interest to decipher the significance of the T-cell differentiation 
phenotype in relation to the effectiveness of CMV vaccines.

In conclusion, CMV infection results in a progressive differ-
entiation of viral-specific EM T cells. The consequences of 
such a progressive differentiation may have both detrimental 
and beneficial effects on the virus–host balance and require  
further investigation. Such investigations may reveal opportuni-
ties to optimize immune function in CMV-seropositive people.  
Whether progressive differentiation is a distinctive property 
of the EM-like CMV-specific T cells undergoing inflation or 
whether progressive differentiation also occurs in other T-cell 
subsets (for example, TRM T cells) and in other infection  
settings remains to be explored.
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