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Abstract. In this paper the new approach to the forecasting the results of knowledge testing, 
proposed earlier by authors, is extended with four classes of parametric functions, the best fitting 
one from which is selected to approximate item characteristic function. Mathematical model is 
visualized by two numerical experiments. The first experiment was performed with the purpose 
to show the procedure of selecting the most appropriate item characteristic function and adjusting 
the parameters of the model. Goodness-of-fit statistic for detecting misfit of the selected model 
is calculated. In the second experiment a test of 10 items is constructed for the population with 
latent ability having normal distribution. Probability distribution of total test result and test infor-
mation function are calculated when item characteristic functions are selected from four classes 
of parametric functions. In the next step it is shown how test information function value could 
be increased by adjusting parameters of item characteristic functions to the observed population. 
This model could be used not only for knowledge testing but also when solving diagnostic tasks in 
various fields of human activities. Other advantage of this method is the reduction of resources of 
testing process by more precise adjustment of the model parameters and decreasing the standard 
error of measurement of the estimated examinee ability. In the presented example the methodology 
is applied for solving the problem of microclimate evaluation in office rooms.

Keywords: Item Response Theory (IRT), mathematical modelling, item characteristic function, 
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 1.  Introduction

Measuring the knowledge and other mental features is the problem which has it‘s particular-
ity because of difficulty to determine the object of investigation and deficiency of measuring 
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instruments. One will agree that it is much more difficult to measure person‘s attainment in 
some knowledge field than his physical properties. A very important stage is to create the appropriate 
instruments – questionnaires that allow getting maximum information about a measured feature.  
For the construction of a “good” questionnaire we must be able to choose the most informative 
subset of items from the whole item bank. This subset of items must be suited to the population 
under investigation so that the information supplied by test reaches it‘s maximum value. In this 
article we will deal with dichotomous test items, when there are only two possibilities to answer – 
test item may be responded correctly or incorrectly. In practice there can be more than two answer 
categories in questionnaires. For such cases polytomous latent variable models are developed. 
Another approach is when all incorrect answer categories are joined to one category and we de-
rive dichotomous model as well. Knowledge testing problem is the object of investigation of Item 
Response Theory (Rasch 1960). 

The last articles on IRT are concerned with computerized adaptive tests, i.e. individualized 
tests that are optimal for each individual (Eggen, Verschoor 2006); latent class analysis (LCA) – a 
statistical method used to identify a set of discrete, mutually exclusive latent classes of individuals 
based on their responses to a set of observed categorical variables (Lanza et al. 2007); new tech-
nologies such as heuristic search and machine learning approaches, including neural networks 
to automatically identify the most informative subset of test items when the item bank is very 
large (El-Alfy, Abdel-Aal 2008); tests of model misfit to validate the use of a particular model in 
IRT (Wells, Bolt 2008);  evaluation of the standard error of the estimated latent variable score 
(Hoshino, Shigemasu 2008); new IRT software development (Rizopoulos 2006).

El-Alfy, Abdel-Aal (2008) proposed a new approach of abductive network modelling to 
automatically select most informative subset of test items without serious loss of accuracy. This 
method was compared to three parameter logistic IRT model (3PL). The accuracy of IRT-based 
model was slightly better, nevertheless the new abductive network approach enable to reduce 
number of test items from 45 to 12 which classified an evaluation population with 91% accuracy. 

Van Barneveld (2007) analyzed the effect of aberrant response patterns on test con-
struction. Data was generated using two item response models  – the three param-
eter logistic IRT model (3PL) alone and combined with Wise‘s examinee persistence 
model. Item parameters were estimated using the maximum marginal likelihood estimate 
approach with Bayesian priors on the item parameters using the program BILOG-MG  
(Zimowski, Muraki, Mislevy & Bock 1996). Tests were constructed using an optimal item selec-
tion method. Items with the largest item information estimates at each of the targeted cut-off 
ability points were selected for the optimal test. Biased item parameter estimates, item and test 
information estimates were obtained from responses from poorly motivated examinees.

Wells, Bolt (2008) investigated a nonparametric method for detecting misfit when using the 
two-parameter logistic model (2PL). Two nonparametric statistics for detecting misfit based on the 
(Douglas, Cohen 2001) approach were examined. The results were compared to other well known 
goodness-of-fit statistics 2S X−  (Orlando, Thissen 2000) and BILOG‘s 2G  (Mislevy, Bock 1982). 
For all studied conditions the methods based on the nonparametric approach exhibited more power 
to detect the misfit while also controlling Type I error rate. It is hypothesized that nonparametric 
statistics provide a more informative description of the nature of misfit, which can help in diagnos-
ing the cause of misfit (e.g., guessing).
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Savalei (2006) proposed the approximation of standard normal distribution with a logistic dis-
tribution with scaling constant 1.749 based on minimizing the Kullback-Leibler (KL) information 
function. This approximation is compared with Item Response Theory logistic function, in which 
another constant 1.702 is used. The new approximation gives better fit on the tails of the distribution.

Hoshino, Shigemasu (2008) proposed a formula to evaluate the variance of the estimated la-
tent variable score when the true values of the structural parameters are not known and must be 
estimated. It is shown that the appropriate accuracy is reached when the number of subjects and 
items are both large. For all conditions considered the standard errors of ability parameters using 
the proposed method were less than those using familiar standard errors as the inverse of the test 
information.

Eggen, Verschoor (2006) investigated computerized adaptive tests (CAT), which select an 
optimal test for each individual. Such test is realized by selecting, on the basis of the results of 
previously selected items, the most informative item from the item bank. The optimal selection 
of item often means that item will be chosen for the individual student, which has a 50% of prob-
ability of answering correctly. But such tests are often too difficult for students and this fact has its 
negative side effects. To eliminate these effects two item selection procedures giving easier or more 
difficult tests were analyzed for both one (1PL) and two (2PL) parameter logistic models. The first 
procedure based on the success probability points of selected items shows good results in ability 
estimates measurement precision only for 1PL model. Another item selection procedure based 
on maximum information at shifted ability level gives good results for both 1PL and 2PL models.

Rizopoulos (2006) developed the package ltm for the well known open source statistical software 
R for the analysis of multivariate dichotomous and polytomous data using Item Response Theory 
logistic models. Parameter estimates are obtained under marginal maximum likelihood using the 
Gauss-Hermite quadrature rule. This package is suitable not only for unidimentional latent vari-
able models but also when there is a small set of latent variables which explain the observed data.

St-Onge et al. (2009) compared parametric and nonparametric Item Characteristic Curve esti-
mation methods on the effectiveness of Person-Fit Statistics (PFS). For both large and small sample 
sizes, the accuracy of the PFS was greater when used with the parametric models.

The aim of this paper is to propose the model for forecasting the results of knowledge testing 
when the best fitting item characteristic function is selected from 4 classes of parametric functions. 
Prior distribution of knowledge level of the population could be chosen from 4 classes of prob-
ability density functions. However, this model allows using parametric functions of another form, 
the main restriction of the model is that item characteristic function has to be nondecreasing and 
items have to be mutually independent.

Earlier it was shown (Krylovas, Kosareva 2008a, b) how segments of linear functions could be 
used as an item characteristic function and also as a probability density function of the population 
knowledge level. It was shown how this approach could be used to construct norms-referenced 
latent trait estimations to select test items which are optimally fitted to the examined population. 
In (Krylovas, Kosareva 2009a) the generalization of this model with wider set of item characteristic 
functions and probability density functions was presented. This model could be used not only for 
knowledge testing, but also for solving diagnostic tasks in various fields of human activities. The 
problems of decision making in the information deficiency conditions were analyzed in (Zavadskas 
et al. 2009, 2010).
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2. Rasch and normal ogive models

The well known models in latent trait testing theory are the One Parameter Logistic model 
(1PL) and normal ogive model. These models describe the conditional probability of correct 
response to the item i  given ability level p : ( )1iP x p= . This functional relation is denoted 

( )( ) 1i ik p P x p= =  and its graph is called item characteristic curve (ICC). In 1PL the logistic 
function is applied to describe this relation (Rasch 1960): 
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here ib  is the difficulty parameter of item i . The function above, which is called item char-
acteristic function, belongs to the class of logistic functions. Rasch model is taking place if 
some constraints on the model are satisfied (Molenaar 2007):

i. Unidimensionality of latent trait p . This means that p  is one-dimensional quantity 
which reflects person’s ability to answer test items correctly. At a time one mental 
property is measured, the influence of other latent traits is treated as negligible.

ii. Conditional independence of items given person and conditional independence of 
persons given item. Given the person’s ability p  the elements of the response vector 
are independent. On the other hand, person’s response to the item is independent of 
other respondent’s responses to this item. Respondents do not influence the responses 
of each other.

iii. Monotonicity of item response functions. The item response function ( )1iP x p=  is 
nondecreasing function of p.

iv. Sufficiency of total test score. The total score i
i

x∑  is a sufficient statistic for p.
Formula (1) represents generalization of Rasch model (Birnbaum 1968) were supplemen-

tary parameters are discrimination parameter ia  (2PL model) and additionally the probability 
of random guessing ic  of the item i  (3PL model):
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In 1PL, 2PL and 3PL models probabilities of correct response to the items are “S” – shaped 
functions. 2PL and 3PL logistic models satisfy only i. – iii. conditions, while condition iv. is 
generally not required.

In the normal ogive model the link function between given ability level p  and the prob-
ability is standard normal probability distribution function (Uebersax 1999):
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, 

with the same interpretation of parameters ib  and ia . We suggest using wider class of link 
functions that enables more precise approximation of ICC and as a consequence more ef-
ficient tests. 
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3. Problems and proposals for their solution

Before the examinee testing process begins each item must be calibrated according to the 
selected model. Due to the restrictions on one class of parametric functions (either on the 
logistic functions or on the standard normal probability distribution function) the calibra-
tion process results in biases of the item parameter estimates. These biases cause the biases 
in the test information function value’s estimates ˆ( )I p and consequently in the precision of 
examinee ability estimates p̂ . The other sequel of biases in item parameter estimates is that 
the standard error of measurement of the estimated examinee ability, when overestimated at 
a given ability level, results in excess number of items proposed to examinees with intention 
to reach the nominal precision (Van Barneveld 2007). This enlarges the resources of testing 
process.  

According to the formula (2) (Lord 1980) the standard error of measurement is inversely 
proportional to the square root of test information function ˆ( )I p :

 
( )2

1 1ˆ( )
ˆ( ) ˆ ˆ( ) 1 ( )i i i

i

SE p
I p a k p k p

= =
−∑

. (2)

Our proposal is that the reduction of the bias in item parameter estimates is possible 
not only by increasing the number of examinees in calibration group or/and number of 
test items proposed to the examinees but also by expanding the set of item characteristic 
functions ( )k p  which we select the best fitting one from. In the proposed model the best 
fitting ICC is selected from one of the 4 classes of parametric functions depending on one or 
two parameters. These functions are – 2 parameter logistic function restricted in the interval 
[0; 1] described by (3); arccotangent function (4); segments of linear functions (5); segments 
of 2 parabolas (6). 

 , (3)

 , (4)

 

, (5)

   (6)
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In the Figs 1–2 graphs of functions 1( )k p – 4 ( )k p  with various parameter values are 
imaged.

It is notable, that all these functions have their definition range in the interval [0; 1], so 
functions 1( )k p – 4 ( )k p are defined for ability levels from this interval. The interpretation of 
examinee’s ability level  is the proportion of maximum value of ability score ( )max 1p = , 
which the examinee possesses. In IRT the ability value (usually noted by θ ) in theory belongs 
to the interval ( ; )−∞ +∞  and in practice it is in the interval ( 3; 3)− + . The ability level of the 
examinee in IRT can not be estimated when number of correct responses to the N items 
test is equal to its minimum or maximum value ( 0  or N  respectively).  Our model enables 
estimation of the ability level in such marginal cases with the number in the interval [0; 1].  
The particular estimated ability value depends on the selected ICC of the model.

Fig. 1. Graphs of functions k1(p) and k2(p)

Fig. 2. Graphs of functions k2(p) and k3(p)
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Function (3) is the two parameters logistic function (2PL). When restricted in the interval 
[0; 1] it has the attractive property to be similar with the three parameter logistic function (1) 
for low item discrimination parameter a  and difficulty parameter b  values. This function 
obtains values greater than zero for low p values. So we get the effect of guessing without 
guessing parameter of 3PL. Likewise for low parameter a  and high parameter b values 
function’s (3) value is less than 1 for high ability levels p. This can also improve the estimate 
of ICC in some situations.

The selection of the most appropriate model from these function classes and estimation 
of item parameters that best fit the observed proportions of correct responses could be done 
as described in (Baker 2001). Examinees are grouped into ability intervals based on their 
ability scores. The interval [0; 1] is divided to J  intervals of equal length with jm  examinees 

in the j -th interval. The total number of examinees is 
1

J
j

j
M m

=
= ∑ . The examinees within 

the same interval have the same ability score jp (we have taken this point at the middle of 
the j -th interval). Let jr  examinees of ability score jp  answered the item correctly. Then 

the observed proportion of correct responses to the item at ability score jp  is ( ) j
j

j

r
P p

m
= . 

Our purpose is to select the function from 4 function classes, which will provide the best 
accuracy of the approximation to the observed proportions of correct responses to the item.

At the first step the best approximation of ICC from the 2 parameters logistic functions 
class 1( ; ; )k p a b  described by (3) is found. The initial estimates of item parameters 1a  and 

1b  are established a priori. Then values of 1 1 1( ; ; )jk p a b  are computed for all ability scores 
, 1,2,...jp j J=  and the distance 
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M
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is calculated. In the next iteration adjustments to the estimated parameters 2a and 2b , which 
improve the agreement between k1(p; a; b) and observed proportions of correct responses 
are found. So, 2 1 1 1( ) ( )d k d k<  and this process is continued until the improvement of the 
agreement becomes very small. Then current values of parameters 

1na  and 
1nb  are fixed and 

they are considered item parameter estimates for 1( ; ; )k p a b . This procedure is repeated for 
functions 2( )k p – 4 ( )k p  determined by (4)–(6) at the next steps, and the minimum value is 
chosen from the four distances

1 41 4( ) ( )n nd k d k− . The corresponding ICC is the best fitting 
model to the observed data which is chosen from 4 classes of functions (3)–(6).

Goodness-of-fit 2Χ statistic’s value for detecting misfit of the selected model is defined 
as follows:
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J j j
j

j j j

k p P p
m
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−
Χ =

−
∑ , (8)

here ( )k p  is the best fitting model ICC, found in previous step.
2Χ statistic has 2χ distribution with 1J s− −  degrees of freedom when ( )k p  is suitable for 

the observed data. Here J  is the number of grouping intervals, s  is the number of parameters 
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of the model under investigation. For example, 1s =  for the arccotangent function (4) and 
2s =  for the functions (3), (5), (6). The observed value of statistic (8) is compared with cri-

terion value which is equal to 2χ distribution with  1J s− −  degrees of freedom critical value 
2
0.05( 1)J sχ − − . If calculated X2 statistic’s value is greater than criterion value 2

0.05( 1)J sχ − −  
then corresponding ICC does not fit the data and vice versa. There is the requirement to have 
more than 5 observations in each interval for X2 statistic (Bagdonavicius, Kruopis 2007). When 
number of the observed data in some interval is less than 5, the adjacent intervals may be joined 
together and J equals to the number of intervals after concatenation.

4. Experiment 1

The primary aim of this experiment is to demonstrate how the best fitting ICC could be selected 
from 4 classes of parametric functions (4)–(6). Suppose that the ability level p  has Beta dis-
tribution (3;3)B . Beta distribution is convenient to use for approximation of the ability level 
distribution because it’s definition range is the interval [0; 1] and it could be either symmetric 
or not – depending on the parameter values. 3000 observations were randomly generated from 
the Beta distribution (3;3)B . Item responses drawn from Bernoulli distribution with probabilities 

2( ;1)k p  (arccotangent function (4) with parameter 1a = ) were generated for 1,2,...,3000j = . The 
data were grouped into 31 equal length intervals according to the ability scores. The observed 
proportions of correct responses were calculated for each group. Then the iterative process of 
unknown parameter a  value adjustment was made by minimizing distances 2( )d k . The same 
procedure was performed for functions from other function classes 1( ; ; )k p a b , 3( ; ; )k p a b , 

4 ( ; ; )k p a b . The obtained values of parameter estimates, distances ( ),
in id k  i = 1,2,3,4, values 

of X2statistic (8) for detecting misfit of the selected model and criterion values are presented 
in Table 1.

The best adjustment to the observed proportions of correct responses was achieved with 
the function 2( ; )k p a  and parameter value estimate ˆ 0.96a = . Very similar result was obtained 
with the modified logistic function 1( ; ; )k p a b  and parameter estimates   and 
arccotangent function 4 ( ; ; )k p a b with  . The adjustment of the best fitting 
function 3( ; ; )k p a b  to the observed data was worse, values of X2 statistic exceeded criterion 

Table 1. The best fitting function’s k1(p) – k4(p) parameter values estimates, distances  , 
X2 statistic values and criterion values, when p has Beta distribution B(3;3) and actual ICC is generated 
from k2(p;1)

â b̂ ( )
in id k 2Χ Criterion value

2( ; )k p a 0.96 – 0.032 174 23.879 05 37.65*

1( ; ; )k p a b 1.23 0.49 0.033 303 22.661 93 36.415*

3( ; ; )k p a b 0.13 0.85 0.047 247 40.201 87 36.415*

4( ; ; )k p a b –0.04 1.02 0.034 40 20.612 24 36.415*

* there were joint intervals.
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value, so the conclusion about the misfit of the model 3( ; ; )k p a b  is done. It is notable that due 
to the randomness of the experiment the best accuracy of the distance with the function from 
the class 2( ; )k p a  wasn’t reached with the true parameter value a = 1 though the number of 
observations is large (3000).

5. Mathematical model of experiment 2

Let us suppose that the probability distribution of knowledge level p  is known:

 ( )
0

( ) ,
x

P p x f p dp≤ = ∫  here ( ) 0f p =  for [0;1]p∉ .

The model was applied to 4 classes of probability density functions ( )f p : segments of 
linear functions 1( )f p , Beta distribution 2( )f p , Normal distribution when normalized in the 
interval [0; 1] 3( )f p  and histogram function 4 ( )f p . These functions are defined for [0;1]p∈  
and their parameters are chosen in such way that functions satisfy two features of probability 
density functions:
 ( ) 0f p ≥ , for [0;1]p∀ ∈ , (9)

 

1

0
( ) 1f p dp =∫ . (10)

Segments of linear functions 1( )f p  are represented by trapezium or triangle depending 
on the parameter values (Krylovas, Kosareva 2008a). Beta distribution probability density 
function initially satisfies features (9) and (10). The probability density function of normal 
distribution is restricted with [0;1]p∈  and multiplied by suitable normalize constant so that 
the feature (10) holds. Histogram is also defined for [0;1]p∈ . 

Graphs of functions 1( )f p – 4 ( )f p  with various parameter values are represented in the Fig. 3.
If N  test items are given to the examinee, the total test result S  would be the number 

of correctly responded items. Random variable 
1

N
i

i
S X

=
= ∑ is gaining values from 0 to N . The 

responses to the test items for the fixed latent ability p  due to the condition ii) stated above 
are independent random variables iX  having Bernoulli distributions with probabilities

. So S  has generalized Binomial distribution (Bagdonavicius, Kruopis 2007) 
with the probabilities , which are equal to the coefficients near 
the corresponding x degrees in the generating function polynomial of the random variable S:

 

2
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1
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N N
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The probability distribution of total test result S  in the whole population is received by 
integrating probabilities ( )ip p  multiplied by the probability density function ( )f p :

 
.

The test information function I  is described as follows:

 1 2
0

( , ,..., ; ) ln
N

n i i
i

I k k k f p p
=

= −∑ . (11)

The normalized value of the function I  is the percentage of the test information func-
tion (11) from the maximum value, which is reached when all probabilities are equal to

1( ) , 0,1,2,...,
1

P S i i N
N

= = =
+

. Our purpose is to choose test items that maximize the value 

of the test information function.

Fig. 3. Graphs of functions 1( )f p – 4( )f p
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6. Experiment 2

The probability distribution of total test result S  and values of the test information function 
for distribution classes f1(p)– f4(p).. and various combinations of item characteristic functions 
(3)–(6) could be calculated according to the model. On the other hand the distribution of total 
test result S  was obtained by Monte Carlo method. Data were simulated for M (700, 1200, 
1800, 2500 and 3000) examinees with p  values drawn from Normal distribution (0.2;0.2)N  
normalized in the interval [0; 1]. Examinees were responding to 10 test items. Items were 
selected by choosing 2 or 3 diagnostic operators from each function class 1( )k p – 4 ( )k p .

Let ( )
0

ˆ ˆ;
N

M i iM
i

d P P p p
=

= −∑  be a measure of distance between the distributions obtained 

by the model ( )P  and by generating the responses of M examinees ( )ˆ
MP . 50 random samples 

were generated to calculate maximum, average values and standard deviations (STD) of the 
distances ( )ˆ; Md P P  ( 50n = ). The results are presented in Table 2. The same trend of the re-
sults was observed for other probability density functions 1 2 4( ), ( ), ( )f p f p f p  of latent ability 
and various combinations of item characteristic functions (3)–(6), so the conclusion about 
the stability of these results could be drawn.

Maximum values, averages and standard deviations of ( )ˆ; Md P P  are decreasing as the 
sample size increases. It was shown in this data simulation example that the mathematical 
model describes real processes correctly. This model when applied for ICC functions chosen 
from 4 parametric classes of functions guarantees better approximation precision of the 
observed ICC function and as a consequence better accuracy of the probability distribution 
function of total test result S. 

Probability distribution of total test result S  and the value of the normalized test informa-
tion function I  (11) for the described data calculated by the model are presented in Table 3. 
The histogram of probabilities is shown in Fig. 4.

Table 2. Maximum values, averages and standard deviations of ( )ˆ; Md P P  calculated for 10 item test with 
p  drawn from Normal distribution (0.2;0.2)N , normalized in the interval [0;1]

Sample size M  Average ( )ˆ; Md P P STD ( )ˆ; Md P P ( )ˆmax ; Md P P

700 0.088 9748 0.022 660 155 0.1527
1200 0.072 717 4 0.017 215 457 0.1165
1800 0.058 508 62 0.016 722 36 0.093 77
2500 0.046 498 24 0.013 388 334 0.079 48
3000 0.043 409 16 0.010 700 308 0.073 63

Table 3. Probability distribution of total test result S  and the value of the normalized test information 
function I  for 10 item test and p values drawn from normal distribution (0.2;0.2)N  normalized in 
the interval [0;1]

I Probability distribution of total test result S

0 1 2 3 4 5 6 7 8 9 10
0.92 0.1598 0.1978 0.1600 0.1193 0.0893 0.0713 0.0618 0.0532 0.0419 0.0298 0.0161
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The test is sufficiently good for this population, the value of the test information function 
reaches 92% of its maximum value.  Nevertheless, we can see from the histogram that the 
test is too difficult for this group of examinees as the probabilities of lower grades exceed the 
probabilities of higher grades. We can increase the value of the test information function by 
substituting difficult items with easier ones (for example, by reducing parameter’s a  value in

2( ; )k p a ) or substituting items with low discrimination parameter values with items that have 
higher values of this parameter. In this experiment parameters of 4 items were changed:

 2( ; ) : 0.5 0.3k p a a a= ⇒ = ,

 1( ; ; ) : 0.3, 0.8 0.1, 0.8k p a b a b a b= = ⇒ = = ,

 1( ; ; ) : 0.2, 0.5 0.1, 0.5k p a b a b a b= = ⇒ = = ,

 4 ( ; ; ) : 0.3, 0.8 0.1, 0.6k p a b a b a b= = ⇒ = = .

The results of the new test are presented in Table 4 and Fig. 5. The value of the improved 
normalized test information function is 0.96.
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Fig. 4. The histogram of probabilities of total test result S

Table 4. Probability distribution of total test result S  and the value of the normalized test information 
function I  of the improved test

I Probability distribution of total test result S
0 1 2 3 4 5 6 7 8 9 10

0.96 0.1408 0.1638 0.1339 0.1113 0.0940 0.0787 0.0684 0.0639 0.0612 0.0532 0.0307
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7. Case study: some examples of diagnostic operators for evaluation of  
microclimate in office rooms 

We will now show how the proposed model could be applied for solving a practical 
decision-making problem. It is necessary to emphasize that the example is fitted only for 
demonstrative purposes and we do not try to reach very precise results. This is because 
of insufficient number of observations (14) and shortage of test length (only 3 items). In 
practice if one wants to obtain good precision in parameter calibration procedure the 
recommended number of observations is 500. Nevertheless our method gives suitably 
accurate results in this example.

In (Zavadskas, Turskis 2010) the problem of evaluation of microclimate in office rooms 
was solved by applying ARAS method for multicriteria decision-making. 6 microclimate 
evaluation parameters were analyzed in the paper: 1) air turnover inside the premises;  
2) air humidity; 3) air temperature; 4) illumination intensity during work hours; 5) air flow 
rate; 6) dew point. According to these parameters and estimates of 38 experts comparison 
criterion of 14 office rooms (denoted by p) was calculated. In the example below 2 problems 
will be solved – office rooms will be grouped into clusters according to the test results 
and on the next step the comparison criterion p  for 14 office rooms will be evaluated.

Let us denote NR – number of room, RH – relative air humidity, T – temperature, 
I – illumination intensity during work hours (parameters RH, T and I will be used to 
construct diagnostic operators), R – rank of the office room. All parameter values are 
presented in (Zavadskas, Turskis 2010). Notice that only three of six parameters which 
are given in Table 5 will be used.
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Fig. 5. The histogram of probabilities of total test result S  for improved test
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Comparison criterion p  was calculated using 6 parameters. As we see from Table 5, 
according to the 2 parameters RH and T, estimations of rooms 2 and 3, 5 and 6, 8 and 9, 11 
and 12 will coincide. Let us construct the test from 2 dichotomous items KRH (RH > = 44), 
KT (T > = 20). In Table 6 the results of two items test are presented.

Therefore 2 items test lets us group office rooms into three clusters correctly enough. Ac-
cording to the criterion p, NR4 in the group TS2 = 0 must be substituted with NR10. NR12 
in the group TS2 = 2 must be substituted with NR1. However there are not enough data in 
the 2 item test to distinguish NR11 from NR12.

With the intention to improve the test a third item KI (I > = 320) will be added to it. The 
new 3 item test denoted by TS3 will give 4 clusters, represented in Table 7.

Table 5. Measurement results in 14 rooms from (Zavadskas, Turskis 2010)

NR RH (%) T (oC) I (lx) p R
1 46 18 390 0.671 4
2 32 21 360 0.656 6
3 32 21 290 0.627 10
4 37 19 270 0.632 9
5 38 19 240 0.546 14
6 38 19 260 0.558 13
7 42 16 270 0.566 12
8 44 20 400 0.772 2
9 44 20 380 0.773 1

10 46 18 320 0.6 11
11 48 20 320 0.677 3
12 48 20 310 0.663 5
13 49 19 280 0.633 8
14 50 16 250 0.651 7

Table 6. The results of 2 items test KRH (RH > = 44), KT (T > = 20)

The number of positively responded items TS2 Rooms, which correspond to this value of TS2
TS2 = 0 NR4, NR5, NR6, NR7
TS2 = 1 NR1, NR2, NR3, NR10, NR13, NR14
TS2 = 2 NR8, NR9, NR11, NR12

Table 7. The results of 3 items test KRH (RH > = 44), KT (T > = 20), KI (I > = 320)

The number of positively responded items TS3 Rooms, which correspond to this value of TS3
TS3 = 0 NR4, NR5, NR6, NR7
TS3 = 1 NR3, NR13, NR14
TS3 = 2 NR1, NR2, NR10, NR12
TS3 = 3 NR8, NR9, NR11
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Group TS3 = 0 coincides with TS2 = 0. TS3 = 3 correctly includes 3 rooms NR8, NR9, 
NR11 possessing highest ranks. TS2 = 1 is spited into 2 groups TS3 = 1 and TS3 = 2. The 
next improvement is that NR12 goes to TS3 = 2. The only improvement required is to move 
NR10 from TS3 = 2 to TS3 = 0. 

So, third item lets us distribute office rooms into 4 groups more precisely. However there 
is no reason to expect better results of ranking comparing with ARAS method, because only 
3 of 6 parameters were used. Better results could be achieved by including additional items 
to the test.

The comparison of classification results obtained by 3 items test (4 clusters) and by ARAS 
method is represented in Fig. 6.

It is notable, that theoretical characteristics of diagnostic operators depend on the chosen 
mathematical model (Krylovas, Kosareva 2009b). It is important that this methodology has 
only natural restrictions on the shape of diagnostic operator that assures the principle of 
diagnostic operator’s validity – subject with higher comparison criterion value has bigger 
probability to respond to the test item positively. Thresholds of diagnostic operators (44 for RH, 
20 for T and 320 for I) are selected so that approximately one half of testees would positively 
respond to the item. In this case test information function (11) achieves it‘s maximum value.  

The best approximation to the probability of positive response to the first item KRH 
(RH> = 44) was selected from the class of two parabolas segments functions (6), where  
a = 0.53, b = 0.75. In Fig. 7 best approximations to the first item empirical distribution func-
tion P(RH> = 44|p) selected  from 4  function classes (3)–(6) are represented. 

Fig. 6. The comparison of classification results obtained by 3 items test and ARAS method
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Distances 1 1 4 1( ) ( )d k d k− were calculated for the data grouped in 5 intervals by the for-
mula  (7): 1 1( ) 0.0590d k = , 2 1( ) 0.4339d k = , 3 1( ) 0.0594d k = , 4 1( ) 0.0547d k = . The closest to 
the empirical distribution function is 2 parabolas function ( 4 1( ) 0.0547d k = ) with parameter 
values 0.53, 0.75a b= = . It‘s graph is represented by dark blue line in Fig. 7.

Theoretical characteristics of the second KT (T> = 20) and third KI (I> = 320) diagnostic 
operators coincide, since coincide their empirical distribution functions. The best approxi-
mation was selected from the logistic function class (3), where 120, 0.67a b= = . So, we have 
calibrated three item characteristic functions 1 3( ) ( )k p k p−  and are ready to go to the next step. 

Quantitative evaluation of comparison criterion value p could be made by applying 
maximum likelihood method (Harris, Stocker 1998). For each office room the observed 
response vector is ( )1 2 3, ,w w w . Here 0iw =  in case of negative response to the item i  and 

1iw =  in case the item i  was answered positively. Maximum likelihood function is equal to 
the probability of the observed response vector:

 
3 1

1
( ) ( ) (1 ( ))i iw w

i i
i

l p k p k p −

=
= −∏ .

Criterion value estimation p̂  for each office room is the value that maximizes loglikeli-
hood function (12), i.e. natural logarithm of likelihood function: 

 
. (12)

Estimated criteria values p̂  and rank values R̂  are presented in Table 8.

Fig. 7. Approximations to the function P(RH> = 44|p) from the logistic, 
two parabolas, segments of linear and arccotangent function classes
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Since responses to all 3 items are identical for rooms NR4, NR5, NR6, NR7 and for NR8, 
NR9, NR11, also for NR13, NR14, etc., estimated criteria values p̂  coincide for rooms in these 
groups. Value of the Spearman’s rank correlation coefficient between p and p̂  equals 0.841. 
We can see that even 3 item test gives estimated criteria values accurate enough. Better results 
could be expected for tests with more items.

8. Conclusions

In this paper the investigation of mathematical model of forecasting the results of knowledge 
testing proposed by the authors in (Krylovas, Kosareva 2008a, b; 2009a) is continued. This 
model does not require apriori information about probability distribution of ability level in 
the population of examinees and allows selecting item characteristic functions from a variety 
of forms. This enables to apply the model for the different probability distribution functions 
which occur in practice.

In the paper the Monte Carlo experiments were performed to show the technique of 
evaluating the best fitting parameters of the model. The unknown parameters of the item 
characteristic function were selected by the method proposed by (Baker 2001). Then the 
best fitting function was chosen from four function classes. Values of X2 goodness-of-fit 
statistic for detecting misfit of each model were calculated. The experiment demonstrated 
that parameters of the model could be steadily reconstructed using standardized statistical 
procedures when the number of numerical experiments is rather big. These results show that 
in cases when the number of real experiments was not very big, the proposed model would 

Table 8. Criteria values p, corresponding estimated values p̂  and response vectors for 14 office rooms

NR p p̂ 1w 2w 3w

1 0.671 0.67 1 0 1

2 0.656 0.68 0 1 1

3 0.627 0.67 0 1 0

4 0.632 0.54 0 0 0

5 0.546 0.54 0 0 0

6 0.558 0.54 0 0 0

7 0.566 0.54 0 0 0

8 0.772 0.72 1 1 1

9 0.773 0.72 1 1 1

10 0.6 0.67 1 0 1

11 0.677 0.72 1 1 1

12 0.663 0.67 1 1 0

13 0.633 0.66 1 0 0

14 0.651 0.66 1 0 0
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still enable one to construct efficient tests for attainment measuring. This is the object of the 
authors’ further investigations.

In the second numerical experiment the responses to 10 items test with ICC from four 
function classes and increasing number of examinees were generated for normal-ability popula-
tion. The probability distribution of total test result and test information function value were 
calculated. It was shown that the results of the test could be efficiently improved by selecting 
relevant parameters of ICC. Obviously, the set of ICC functions, from  which we choose the best 
fitting one,  could be expanded with other classes of parametric functions. It must be mentioned 
that the precision of the results depends not only on how good item characteristic curves are ap-
proximated but also on the precision of probability density function of p value approximation.

The proposed mathematical model could be used not only for knowledge testing but also 
for solving diagnostic tasks in various fields of human activities – medicine, sports, geology, 
technical diagnostics and others. As an example, evaluation of microclimate in office rooms 
was performed by applying this methodology.
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ŽINIŲ TESTAVIMO PROGNOZĖS MATEMATINIO MODELIO TYRIMAS SKAITINIU 
EKSPERIMENTU

N. Kosareva, A. Krylovas

Santrauka. Šiame straipsnyje žinių tikrinimo rezultatų prognozės matematinis modelis, pasiūlytas anks-
tesniuose autorių darbuose, praplėstas keturiomis parametrinių funkcijų klasėmis, iš kurių parenkama 
tinkamiausia funkcija klausimo charakteristinei funkcijai aproksimuoti. Matematinis modelis vizualizuo-
jamas atliekant du skaitinius eksperimentus. Pirmojo eksperimento tikslas buvo parodyti tinkamiausios 
klausimo charakteristinės funkcijos ir šio modelio parametrų parinkimo procedūrą. Siekiant nustatyti 
modelio tinkamumą, buvo skaičiuojama suderinamumo kriterijaus statistikos reikšmė. Antrajame eks-
perimente buvo sukonstruotas 10 klausimų testas populiacijai, turinčiai normalųjį žinių lygio skirstinį. 
Testo rezultatų tikimybinis skirstinys ir testo informacijos funkcijos reikšmė buvo apskaičiuojamos, kai  
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klausimo charakteristinės funkcijos parenkamos iš keturių parametrinių funkcijų klasių su skirtingomis 
parametrų reikšmėmis. Kitame žingsnyje parodyta, kaip galima padidinti testo informacijos funkcijos 
reikšmę parenkant klausimo charakteristinių funkcijų parametrus, atitinkančius stebimą populiaciją. 
Šis modelis galėtų būti pritaikytas ne tik testuojant žinias, bet ir sprendžiant diagnostinius uždavinius 
įvairiose žmogaus veiklos srityse. Kitas šio metodo privalumas yra testavimo proceso sąnaudų sumaži-
nimas mažinant vertinamo žinių lygio standartinę matavimo paklaidą. Pateiktas šios metodikos taikymo 
pavyzdys sprendžiant mikroklimato biuro patalpose vertinimo uždavinį. 

Reikšminiai žodžiai: užduoties sprendimo teorija, matematinis modeliavimas, klausimo charakteristinė 
funkcija, generuojančioji funkcija, Monte Karlo metodas.
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