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We investigate the dynamics of a non-linear network with noise, periodic forcing and

delayed feedback. Our model reveals that there exist forcing regimes—called persistent

entrainment regimes—in which the system displays oscillatory responses that outlast

the termination of the forcing. Our analysis shows that in presence of delays, periodic

forcing can selectively excite components of an infinite reservoir of intrinsic modes and

hence display a wide range of damped frequencies. Mean-field and linear stability analysis

allows a characterization of the magnitude and duration of these persistent oscillations,

as well as their dependence on noise intensity and time delay. These results provide new

perspectives on the control of non-linear delayed system using periodic forcing.
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INTRODUCTION

Brain stimulation has become increasingly popular in neuroscience to support a wide variety of
experimental and clinical interventions [1–4], being used to guide and/or entrain populations
of neurons with periodic electromagnetic signals. In many experiments, outlasting responses
exceeding the duration of the stimulation period have raised much attention. Many studies have
shown that following rhythmic stimulation, altered neuronal synchrony can be measured for
periods lasting from seconds to hours after stimulation [5]. Such transient responses have been
suggested to support some of the reported physiological and cognitive changes triggered by
stimulation [6] and much efforts have been deployed to stabilize stimulation-induced alterations in
brain dynamics. More recently, periodic stimulation has been used to entrain brain oscillations for
extended periods of time, in which neural synchrony remains locked to the stimulation frequency
even after it has been turned off in a state dependent way [7, 8]. However, it remains unclear how
such rhythmic stimulation combines with the endogenous oscillatory brain activity to produce
the observed aftereffects. Various mechanisms such as reverberation [9], multistability [10], and
synaptic plasticity [11] have been suggested as mediators of these effects.

To better understand this phenomenon, we consider a network of neural populations with
delayed feedback implementing a particular type of dynamic memory. Such delayed feedback
systems appear not only in neural system but also in optics [12, 13], regulatory networks [14],
postural andmechanical control [15], as well as electronic logic gates [16].We use this type ofmodel
to study the effect of periodic forcing on neural activity, especially transient responses observed
after forcing offset. We investigate how persistent entrainment arises and how it relates to the time
delay and the intensity of the noise driving the populations. Our analysis shows that periodic forcing
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can selectively excite intrinsic oscillatory modes that are
part of the system’s reservoir of resonances, and provoke
damped oscillatory perturbations that outlast the forcing
time. In doing so, we also present a novel analysis of
resonant forcing phenomenon in a delayed feedback network,
a topic that has only received limited attention in contrast
to non-delayed dynamical systems (see e.g., [17] for a study
of resonances in the context of chemotherapy for delayed
hematological dynamics). We use mean-field theory and linear
stability analysis to quantify the sensitivity of our network to
forcing frequency and the duration of persistent oscillations
that go on after the stimulation has been removed. We
propose to capitalize on this mechanism to optimize the
effect of rhythmic stimulation and amplify post-stimulation
effects.

MODEL

In the present work, we analyze the dynamics of a network of
globally (i.e., all-to-all) interacting inhibitory neural populations
whose membrane potentials ui(t) evolve according to the
following set of non-linear differential equations

s−1 d

dt
ui (t) = −ui (t) + N−1

N
∑

j = 1

wijf [uj(t − τ )]+ S (t)

+
√
2Dξi (t) (1)

where s = 10ms is the membrane time constant and
where τ is a variable mean conduction delay. The network
schematic is illustrated in Figure 1. The firing rate function f
has a non-linear sigmoid shape and is defined by f [ui] =
(

1+ exp [−βui]
)−1

. The synaptic weights wij are such that <

wij >NxN= g, where g is the mean synaptic strength. In the
present work, we assume a network of inhibitory populations,
and thus wij < 0 for all i, j. The activity of individual populations
is perturbed by recurrent input, independent Gaussian white
noise ξi of intensity D and periodic forcing S (t) = S cos(ωt)

FIGURE 1 | Driven nonlinear network model. (A) Schematic illustration of the network with global periodic forcing S (t) driving the activity of N recurrently connected

units with time delay τ . One unit is highlighted in red, with local connections (only a limited set are shown). (B) Activity of the individual nodes (light gray lines) in

absence of forcing (i.e., S (t) = 0) for the network governed in Equation (1). The mean network activity u(t) is also plotted (bold line), showing that the network

parameters are such that the network exhibits an endogenous oscillation. Here τ = 200ms, g = −3, D = 0.1, and s = 10ms. (C) Effective non-linear response

function changes as noise intensity increases. Increasing D linearizes the response function.

that drives all nodes equally. With the set of parameters chosen,
the network exhibits slow non-linear oscillations as depicted in
Figure 1B. The intensity of the noise controls the amplitude
of the limit cycle oscillations by tuning the stability of the
asynchronous state. For low values of noise intensity D, the
network stabilizes into strong non-linear oscillations, but when
noise increases, synchronous oscillations in Equation (1) are
gradually suppressed and the network becomes asynchronous.
This relationship between internal noise and oscillatory activity
is in line with the task-dependent desynchronization observed
in cortical populations during sensory processing and movement
[e.g., [18]].

Whenever noise in the system is sufficiently small (i.e.,D≪ 1)
one may express the dynamics of individual nodes in Equation
(1) as fluctuations around a network average u(t) i.e.,

ui (t) = u (t) + νi(t) (2)

where the local fluctuations νi obey the Langevin equation

s−1 d

dt
vi (t) = −vi (t) +

√
2Dξi (t) (3)

In this regime, wemay easily derive themean-field representation
of the network dynamics in presence of global periodic forcing
and independent noise sources. The mean field is given by the
scalar non-linear delay-differential equation [19, 20]

d

dt
u (t) = −u (t) + g F [u (t − τ)]+ S(t) (4)

with the noise-corrected response function F [u] = 1
2 (1 +

erf [ u√
(2D) ]) derived under the limit of large β , as seen in

Figure 1C [20]. The mean field description in Equation (4) is
a delayed oscillator with periodic forcing that represents the
collective evolution of a network of neural populations and
has been used to study stochastic non-linear oscillations in
recurrent networks [19, 20]. In the analysis that follows, we focus
our attention on the dynamics in Equation (1) and investigate
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FIGURE 2 | Example of persistent entrainment and sensitivity to stimulation frequency. (A) Activity in the network (Equation 1) before, during and after forcing is

applied. The network mean activity (bold line) is shown alongside individual node responses (light gray lines). Before the forcing onset, the network displays

synchronous oscillations of about 5Hz. Sinusoidal forcing at a driving frequency of ω = 11Hz is applied at t =2 s for a duration of 2 s and stops afterwards. After

forcing (orange line), the network mean activity relaxes back to its baseline oscillatory state rapidly. The bottom panel shows the power spectral density of the

post-forcing activity (from which the mean was subtracted) for t within the interval (4, 6 s). A clear peak at 5Hz can be seen, indicating that the system’s response after

forcing offset is dominated by its intrinsic, pre-forcing, frequency. (B) When periodic forcing with a frequency of ω = 13Hz is applied, the response amplitude is

significantly increased. After the forcing offset however, the system displays persistent entrainment at the forcing frequency: the network activity is dominated by 13Hz

oscillations that lasts for a period far exceeding the system time delay τ . This can also be seen from the strong peak of the power spectral density at 13Hz (bottom).

(C) When the forcing frequency is increased to ω =15Hz, an intermediate form of persistent entrainment can be observed. The system’s activity relaxes back to its

pre-forcing state, but damped oscillations at 13Hz (i.e., not 15Hz) can be observed. This is also revealed in the power spectral density plot (bottom) where two peaks

can be seen: one at 4Hz (intrinsic frequency) and one at 13Hz (*). In all cases, the model parameters are the same except for the stimulation frequency with

τ = 100ms: g = −3, D = 0.1, and s = 1.

properties of persistent responses analytically using Equation (4)
while varying stimulation parameters and noise intensity.

PERSISTENT ENTRAINEMENT AND
BUFFERING OF PERIODIC SIGNALS

In the presence of periodic forcing, Equation (1) exhibits
frequency-selective and persistent entrainment: oscillatory
forcing-induced responses, whose duration exceeds the delay
τ , can be observed after the forcing offset and for which
the dynamics differ significantly from the one seen in the
autonomous regime (i.e., before the forcing onset). This form
of forcing buffering allows fluctuations due to the forcing
to outlast the stimulation application; in fact, the forcing is
being transiently memorized by the system. An example of
this persistent entrainment effect is shown in Figure 2. Prior
to the forcing onset, Equation (1) displays slow, non-linear
oscillations at a frequency of about 5Hz. But after the forcing
offset (i.e., in the post-forcing period) autonomous oscillations
appear at frequencies close to the forcing frequency. This form of
spectral multistability, in which post-forcing activity differs from
pre-forcing activity, appears to be frequency-selective. Indeed,
as shown in Figures 2A,C, slightly different forcing frequencies
did not trigger the same degree of persistent entrainment.

The persistence of these oscillations appears to be linked to
intrinsic resonance. In Figure 2B, the persistent frequency (i.e.,
peak frequency of the persisting oscillations in the post-forcing
period) is the same as the forcing frequency. In addition to the
increased duration of the entrainment, the system’s amplitude
during forcing is significantly larger compared to the other
frequencies presented (Figures 2A,C), suggesting the presence
of a resonance. In addition, Figure 2C shows that once the
forcing stops, not only does the system relaxes back to its
baseline oscillatory state, but the system also displays additional
damped oscillations at a frequency of 13Hz corresponding to the
resonant frequency seen in Figure 2B.

LINEAR STOCHASTIC STABILITY WITH
TIME DELAY

To better understand the phenomenon observed in Figure 2B

and how it relates to the system’s parameters, we performed a
thorough stability analysis and investigated the effect of delay and
noise on the linear eigenmodes of Equation (4). In absence of
stimulation (i.e., S (t) = 0) and for g < 0, this equation possesses
a unique equilibrium uo which satisfies the implicit relationship

uo = g F [uo] (5)
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Stability of the equilibrium state uo is determined by considering
small fluctuations around the fixed point to obtain the linearized
dynamics. The linearized dynamics for Equation (4) with
S (t) = 0 are then written as:

d

dt
u (t) = −u (t) + R u(t − τ ) (6)

where R = g F
′
[uo] = g√

2πD
exp[− u2o

2D ]. Although the equation

above is linear in terms of u, it is non-linear with respect to the
noise intensity D and fixed point uo. Using the ansatz u (t) =
ũ eλt | λ∈ C, Equation (6) can be expressed in the form λ =
−1 + Re−λτ , from which we obtain the typical transcendental
characteristic equation that defines the eigenvalues λ of Equation
(6) in presence of delay [21],

λ =
W (R τeτ )

τ
− 1 (7)

where W is the Lambert function. The roots λk = αk +
i ωk| αk = Re [λk]∈ R, ωk = Im [λk]∈ R of the characteristic
equation above form the spectrum 3 = {λk} of the mean-field
in Eq. (4) and determine its linear stability. These eigenvalues
correspond to branches of the Lambert function Wk, where k =
0,±, 1,±2, .. ± ∞ index pairs of roots with increasing order.
Associated modes vk = Cke

λkt| Ck ∈ C, λk ∈ 3 span the stable
(S), center(C) and unstable(U) manifolds i.e., 3 = S ⊕ C

⊕

U.
Solutions of Equation (1) possess the mode expansion [22],

u (t) =
∞
∑

k = −∞
Cke

λkt =
∞
∑

k = −∞
Cke

αkteiωkt (8)

In this framework, the solution u(t) consists of a superposition
of infinitely many oscillatory modes with damping rate αk

and eigenfrequencies ωk. Stable limit cycle solutions emerge
whenever a supercritical Hopf bifurcation occurs for which a
pair of critical eigenvalues cross the imaginary axis; that is,
for λk = o ≡ λc = ±i ωc|ωc=min

k
|ωk|, so that the following

equation is satisfied [23],

i ωc =
Wo (Rcτe

τ )

τ
− 1 (9)

for some critical values of Roc and for the chosen delay τ and
ωc. Here Wo is the zeroth-order Lambert function. The set of
critical values Roc and τ at the Hopf bifurcation (HB) in Equation
(9) are plotted in Figure 3. We note that as noise intensity is
increased beyond theHB, higher order eigenvaluesmay also cross
the imaginary axis, satisfying for αk = 0,

i ωk =
Wk

(

Rkcτe
τ
)

τ
− 1 (10)

The stability analysis above shows that in addition to the critical
frequency ωc observed near the HB in Equation (6), the set of
eigenmodes in Equation (8) provide a reservoir � = {ωk} of

intrinsic resonances whose elements correspond to the imaginary
parts of the eigenvalues λk of Equation (6). The analysis also
shows that this set depends on noise intensity through the
linear gain R. As such, changes in noise intensity D translate
into variations in R which directly impact the stability of the
system through changes in the elements of the spectrum 3. The
spectrum’s elements gradually transit to the stable subspace. Such
noise-induced changes in stability have been found to change
bifurcation points [24] and alter the feature of delay-induced
limit cycles [19, 25].

The effect of noise on the network eigenmodes and resonances
can be seen in Figure 3 for a particular value of the time delay.
While varying D, the system in Equation (4) can be set into
distinct non-linear regimes characterized by a variable set of
resonances. Each of these resonances reflect an excitation of
oscillatory modes whose real part is in the vicinity or the right-
hand side of the imaginary axis. The existence of these unstable
eigenmodes defines the susceptibility of the network to persistent
entrainment and mediates the outlasting responses observed in
Figures 2B,C.

For large delays τ , the purely oscillatory eigenvalues λ = iω at
the HB can be approximated as follows. The ansatz u (t) = ũeiωt

onto Equation (6) gives a system of equations pertaining to the
real and imaginary components of u (t),

Rkc cos (ωkτ) = 1 (11)

Rkc sin (ωkτ) = ω (12)

Using the fact that as τ → ∞, ωk → 0 [26] and Rkc < 0,
Equation (11, 12) give the large delay approximation ωk

∼=
(2k+1)π

τ
. Furthermore, with large delays the eigenvalues of 3

are closely distributed along an analytic curve. Defining C =
{γ (ω) + iω : ω∈ R}, where γ (ω) = − 1

2 log
(

1+ω2

R2

)

, it follows

that for each rescaled eigenvalue λ [τ ] = ατ + iω, α + iω ∈ 3,
dist(C, λ [τ ]) → 0 as τ → ∞ [26]. That is, for sufficiently large
delay, each eigenvalue λ ∈ 3 lies close to the curve C[τ ] =
{

τ−1γ (ω) + iω : ω∈ R
}

. Figure 3C graphically demonstrates
this result by plotting an instance of numerically computed
eigenvalues from Equation (6) with the rescaled curve C [τ ].
Combining this result with the large delay approximation for
each eigenfrequency, we obtain a simple analytic approximation

for each eigenvalue as λk
∼= τ−1γ (ωk) + iωk, ωk = (2k+1)π

τ
.

RESONANCE AND EXCITATION OF
OSCILLATORY EIGENMODES

To understand the interaction between the forcing and the
system’s oscillatory modes, we can examine the particular
solution in the linearized case in Equation (6) to reveal
susceptibilities to persistent entrainment. The susceptibility to
forcing of various frequencies can be characterized by computing
the resonance curves of the periodically forced linear delayed
system

d

dt
u (t) = −u (t) + Ru (t − τ) + S(t) (13)
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FIGURE 3 | Effect of noise on system’s stability and eigenmodes in the mean-field equation. (A) Increasing the amount of noise in the system (from left to right)

effectively changes the shape of the response function in Equation (4). In the linearized system, this translates into an increase in the value of the linear gain R in

Equation (6). Here, parameters in the model were chosen such that the network exhibits strong non-linear oscillations and thus increasing D linearizes the dynamics

and pushes the system toward the fixed point on the other side of the Hopf bifurcation (HB, in red). (B) For lower values of D, eigenvalues where originally located on

the right hand side of the imaginary axis. These modes were thus unstable with αk > 0. Increasing D (from top left panel to bottom right) causes a successive passage

of these eigenvalues toward the left hand side of the imaginary axis as the dynamics becomes more linear and the fixed point uo recovers stability at the Hopf

bifurcation (HB, in red). Through this process, noise can change the stability of individual eigenmodes and thus make specific eigenfrequencies more susceptible to

persistent entrainment and consequentially, to buffering. Here τ =200ms. g = −1.5 and s = 1. (C) The asymptotic curve C[τ ] =
{

τ−1γ (ω) + iω : ω∈ R

}

(red line) is

plotted with numerically computed eigenvalues from Equation (7) (black markers) at τ = 200ms. The other parameter values were set to g = −1.5, s = 1, D = 0.22

such that all eigenvalues lie on the left side of the imaginary axis. The plot demonstrates that with delay τ = 200ms, the curve captures the distribution of the

eigenvalues up to index k = 10 with minimal error.

where S (t) = S cos(ωt). To reveal resonances, we simply
consider the ansatz,

u (t) = A (ω) sin (ωt) + B (ω) cos(ωt) (14)

Substituting this into Equation (13) and solving for the
amplitudesA(ω) and B(ω), one can easily compute the amplitude
of the solutions u as

‖u‖ =
√

A (ω)2 + B (ω)2 (15)

Where

A (ω) = −
cos (ωτ)R− 1

(

R2 + 2 sin (ωτ)Rτ − 2 cos (ωτ)R+ 1+ ω2
) (16)

and

B (ω) = −S
sin (ωτ)R+ ω

(

R2 + 2 sin (ωτ)Rτ − 2 cos (2ωτ)R+ 1+ ω2
)

(17)

Inserting Equations (16, 17) into Equation (14) yields the desired
resonance curve

‖u‖ =
S

√

−2 sin (ωτ)Rω − ω2 + 2 cos (ωτ)R− R2 − 1

=
S

√

Re [Q (R, τ ,ω)]2 + Im [Q (R, τ ,ω)]2
(18)

where

Q (R, τ ,ω) = iω + 1+ R eiωτ (19)

which is just the characteristic equation of Equation (6) evaluated
at the forcing frequency ω. The amplitudes of the solutions thus
diverge here whenever a pair of imaginary eigenvalues cross
the imaginary axis. Resonance curves are shown in Figure 4,
where the amplitude ‖u‖ of oscillatory solutions of the linearized
system are plotted as a function of the noise intensity and forcing
frequency. As the delay is increased, one can see that the density
of resonant frequencies increases; this is related to the behavior
of the density of modes for the autonomous system [27]. Solution
amplitudes increase and then diverge when the associated pair of
eigenvalues cross the imaginary axis.

The linear analysis above tells us that in Equation (15),
forced solutions possess a resonance for all eigenfrequencies
ωk. However, it remains unclear how these resonances relate to
one another with respect to persistent activity. Figure 4 shows
that the resonance peak amplitude varies as a function of noise,
suggesting that specific frequencies have greater amplitude than
others when it comes to transient activity. Note the tendency
of the different mode frequencies to line up with harmonics of
the fundamental network frequency ωo as the delay increases
[27]. To understand how persistent entrainment scales with
forcing frequency, we chose a given noise intensity and examined
the duration of persistent responses in Equation (1) while
exciting individual modes with forcing frequencies aligned with
those computed in Equation (10) on the basis of the linear
stability analysis. The results are shown in Figure 5, where
one sees that the system possesses a reservoir of resonances
that can be individually excited to induce outlasting responses.
The square wave limit cycle solution seen prior to forcing
onset characterizes the oscillatory response of system with large
delays [13]. These results show that the duration of persistent
entrainment is inversely proportional to forcing frequency:
slower frequencies produce more persistent effects. This result
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FIGURE 4 | Resonance curves with variable delays and noise values for the linearized system in Equation (11). The system possesses a reservoir of resonances,

corresponding to peaks in the amplitude of forced solutions. As noise in increased, the linear gain R changes and eigenmodes (whose frequencies are highlighted by

the dashed lines) sequentially cross the imaginary axis, leading to a sequence of divergent linear modes (gray circles). The density of resonant frequencies—the

number of peaks per unit frequency—increases with time delay. Aside from the divergences observed at the critical points, the relative amplitude of slower frequencies

increases as noise increases: slow eigenmodes become prevalent while faster ones are damped, as seen from the passage of eigenvalues toward the left hand side of

the imaginary axis in Figure 3. The delays used were: (A) τ = 25ms; (B) τ = 50ms; (C) τ = 100ms; and (D) τ = 200 ms. Here g = −1.5 and s = 1.

highlights the difference between the linear and non-linear cases.
Linear stability predicts, through resonance curves computed
in Equation (18) that the amplitude of forced solution is
proportional to the proximity to the imaginary axis, a fact that is
quite clear in Figure 4. However, Figure 5 shows that eigenvalues
situated far to the right from the imaginary axis causes more
persistent responses.

To better characterize how the amplitude of persistent
responses change as a function of forcing frequency, we
numerically computed the power spectral density of persistent
responses (after forcing offset) for all pairs of values of noise
intensity and forcing frequency in the mean-field model given by
Equation (4). We then computed the peak power at the forcing
frequency during that period. Results are shown in Figure 6. The
amplitude of persistent responses is larger for slower frequencies.
This is in line with what is shown in Figure 5. We note that
this scaling is also seen in Figure 4D for larger values of noise
and beyond the HB (i.e., for values of noise exceeding the
divergence associated with the dominant critical mode). We also
computed in Figure 6B the frequency associated with persistent
responses (after forcing offset) for the same set of parameters.
Buffering occurs through a restricted set of output frequencies;
independently of the forcing frequency ω, persistent entrainment
is observed at one of the system intrinsic frequencies ωk.

BUFFERING DURATION

We note that despite their persistence, persistent responses are
not stable orbits. Rather, the system’s activity will always relax

back to the oscillation defined by the dominant bifurcating
eigenvalues (i.e., the poles, responsible for the autonomous
dynamics before forcing onset). As seen in Figure 5, the
convergence time appears to depend on forcing frequency.
The speed at which excited resonances converge back to the
autonomous oscillation can be thought of as a measure of
persistence; but this is difficult to quantify given that according
to linear stability, the associated eigenmodes are unstable (i.e.,
αk > 0) and thus solutions diverge. We may nonetheless obtain
an estimate of the entrainment duration using an approximation
based on the superposition of damped oscillations. Without loss
of generality, let us consider the case where the mean activity in
Equation (13) under the absence of stimulation (i.e., S (t) = 0) is
given by a supersposition of eigenmodes

u (t) ≈
∞
∑

k = −∞
Cke

αkteiωkt =
∞
∑

k = −∞
uk(t) (20)

The principal eigenvalue λo ≡ λc = αc + iωc defines the
dominant oscillatory mode of the system and also corresponds
to the eigenmode for which αc > αk and ωc < ωk | ∀k 6= 0 and
λk ∈ 3. As such, we may rewrite the solution as

u (t)≈ eαct



Cce
iωct+

∞
∑

k = −∞, k 6= 0

Cke
(αk−αc)teiωkt



 = U(t)eαct

(21)
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FIGURE 5 | Persistent entrainment mediated by the selective excitation of unstable eigenmodes. Here, the noise intensity is set such that the first five eigenvalues are

located to the right hand side of the imaginary axis. Then, forcing with frequency ω aligned with the eigenfrequencies ωo−4 is successively applied. One can see that

the amplitude of the response during forcing is not monotonically changing with forcing frequency, suggesting the presence of non-linear resonances that arise from

the coupling of the linear modes by the system’s nonlinearities. Persistent entrainment can be observed in every case, but its duration decreases with forcing

frequency. The frequencies used were: (A) ω = 2.4Hz; (B) ω = 7.2Hz; (C) ω = 11.9Hz; (D) ω = 16.9Hz; (E) ω = 21.8Hz; Here, D = 0.1, τ = 200ms, g = −1.5 and

s = 1.

FIGURE 6 | Persistent entrainment power and frequency as a function of forcing parameters in the mean-field equation in Equation (4). (A) Power measured at the

forcing frequency after forcing offset as noise intensity is changed. Power is inversely proportional to forcing frequency. Only forcing frequencies aligned with the linear

eigenfrequencies displayed significant power. (B) Peak frequency of the persistent responses as a function of noise intensity and forcing frequency. One can see that

only a discrete set of frequencies can be expressed by the system, leading to a sequence of plateaus corresponding to the eigenfrequencies. The width of these

plateaus is fixed and does not vary for higher noise intensities, indicating that the system with exhibit persistent responses at the closest eigenfrequency closest to the

forcing frequencies. Here again τ =200ms, g = −1.5 and s = 1.

We may consider Equation (21) as an oscillator U (t) modulated
by an exponentially growing envelope eαct . Let us now consider
U (t): given that αk − αc < 0, taking the limit as t > +∞ yields
linear asymptotic dynamics of the system without forcing,

U (t) ≈ Cce
iωct (22)

We assume that a forcing S (t) = S cos (ωkt) is applied with a
frequency aligned with one of the system’s eigenfrequencies and

for a sufficiently long period of time. One may thus approximate
the activity of an excited mode once forcing is removed as,

uk (t) ≈ eαct(Cce
iωct + K(S) Cke

(αk−αc)teiωkt) (23)

for some constant K(S). As such, the oscillatory perturbation is
induced by the forcing at an effective damping rate of αk − αc

and thus at a characteristic damping time that we define as the
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buffering time: an estimate of the persistence of the excited mode
uk. It is defined by

δk =
1

|αk − αc|
≈

τ

Re
[∣

∣Wk

(

−Rτe−τ
)

−Wo

(

−Rcτe−τ
)∣

∣

]

(24)

According to this approximation, buffering time decreases as
forcing frequency increases. We also note that the critical
eigenvalue k = c has an infinite buffering time, which is
consistent since the limit cycle with frequency ωc is stable.
The dependence of the buffering time on the time delay and
linear gain is shown in Figure 7. As one can see, the persistence
duration decreases as the eigenfrequency increases. This is
analogous to what is seen in Figure 5. One can also see that
Figure 7 further confirms the delay plays a crucial role in defining
the decay rate of the persistent oscillations.

MULTIPLE STIMULATION FREQUENCIES

We have also numerically investigated the response of the
mean-field in Equation (4) to forcing with multiple frequencies
to see whether persistent entrainment could carry multiple
resonances—not only one. We have here considered the case
a dual-frequency stimulation i.e., S (t) = S1 cos (ω1t) +
S2 cos(ω2t), where ω1 and ω2 were chosen to be eigenfrequencies
of Equation (4). As shown in Figure 8, stimulation at a
combination of eigenfrequencies appears to lead to persistent
responses displaying amixture of dampedmodes. Here again, the
square-wave oscillations are a signature of large delays [13]. We
can presume that such stimuli can excite multiple eigenmodes
simultaneously, leading to composite responses built of linear
combination of unstable modes. As a corollary, this would also
mean that Gaussian white noise stimulation—whose spectrum is
flat—could elicit responses at all unstable eigenmodes. This has
yet to be shown and is left for future studies.

NETWORK SIMULATIONS WITH
REALISTIC WHOLE-BRAIN ANATOMICAL
CONNECTIVITY AND HETEROGENEOUS
DELAYS

The analytic and numerical examinations of the phenomenon
considered thus far have been done using simplified mean-field
approximations and subsequent linear analysis (Figures 3–7)
and numerical simulations of networks with topologies
equivalent to uniform connectivity (Figure 2). To emphasize
the relevance of these observations to real nervous systems with
large, complex wiring topologies, we now study the network
model described in Equation (1) using human whole-brain
connectivity data. For this we used the default connectivity
matrix freely available in the open-source modeling and
neuroinformatics platform The Virtual Brain (TVB; https://
github.com/the-virtual-brain) [28, 29]. This matrix specifies
connection weights between 74 cortical and subcortical regions,
with weights and directionality defined by chemical tracing
data from the CoCoMac database, modified to corresponding
regions in the human brain (Figures 9A,B). Additionally,
we used this model to study the effects of non-uniform
(distributed) conduction delays. Delay values were sampled
from a Gaussian distribution with a fixed mean of 100ms and
standard deviations ranging from 1 to 10. We chose those values
to see how the heterogeneous delay case departs from the unique
delay case previously studied. The sampled delays were then
assigned randomly to edges in the connectivity graph shown in
Figures 9A,B.

Dominant frequency responses of this system as a function
of noise and forcing frequency are shown in Figure 9D for five
different values of the delay distribution standard deviation σ .
For low values of σ (i.e., near-uniform delays), the networkmodel
(Figure 7D, left) shows exactly the same behavior as seen in the
mean-field model, with a discrete set of preferred frequencies
emerging in the post-stimulation period (i.e., Figure 6B). The
values of the preferred frequencies are independent of noise
level, and thus appear as continuous plateaus or bands, with

FIGURE 7 | Buffering time δ as a function of the delay τ and linear gain R for the first four eigenmodes. We used the linearized system in Equation (6) and computed

buffering times as per Equation (22). The buffering time associated with the zeroth order mode i.e., ωo = ωc is infinite and thus only the next four modes are shown

i.e., k = 1, 2, 3, and 4. The duration of persistent responses decreases as the eigenfrequency increases. The frequencies used were: (A) ω1 = 7.2Hz;

(B) ω2 = 12.0Hz; (C) ω3 = 16.9Hz; (D) ω4 = 21.7Hz. The delay is the dominant control parameter of buffering time: longer delays are responsible for more

persistent responses. Note that these panels are related to the excited modes in Figures 5B–E, but for different delays. Here g = −1.5 and s = 1.
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FIGURE 8 | Response to dual-frequency stimulation. (A) Activity in the mean-field with forcing applied at time t = 2 s for a duration of 2 s and turned off afterwards.

(B) Eigenvalues of the characteristic equation with positive imaginary part. The green lines indicate the resonances used to stimulate the system. The frequencies

shown are ω2 = 12.4Hz, ω5 = 27.4Hz. (C) Power spectral activity from the forcing region t = 2–4 s, scaled to give the relative intensity at each frequency. The peaks

of the system’s response lies near two chosen forcing frequencies. (D) Power spectral activity for the post-stimulation period i.e., t = 4–6 s. The power still peaks near

the two input resonances, but with far less intensity. Here τ = 200ms, g = −1.5, D = 0.20, S1 = S2 = 1.

the dominant frequency response being the closest out of the
allowed set to the forcing frequency. As σ is increases, the range
of available frequency responses progressively decreases, until at
σ = 10 the dominant post-forcing frequency is the same as the
natural frequency (∼4Hz) for all forcing frequencies studied.

DISCUSSION

The optimization of stimulation, in particular the control and
stabilization of its aftereffects, are important aspects of both
fundamental and clinical research on normal and abnormal
brain dynamics. Recent studies have shown that after rhythmic
entrainment, neural oscillations may remain locked to the
stimulation frequency even after stimulation offset [8, 30].
This form of persistent entrainment has been linked the
interaction of periodic signals with recurrent neuronal loops
as well as to the presence of time delay [8], but the precise
mechanism remains poorly understood. To better understand
how periodic forcing may evoke this type of oscillatory response,
we analyzed a generic non-linear neural network model with
time delay; the model also includes noise to improve its
biophysical plausibility since rhythms have different levels of
coherence. Using mean-field and linear stability analyses, our
results show that periodic forcing can be tuned to selectively
excite intrinsic resonances of the system. In turn, this triggers
persistent responses whose relaxation time exceeds the duration
of time delay. We found that the delay in our model endows
the system with an infinite reservoir of frequencies with
different stability properties. This per se is not surprising since
delays make the dynamics infinite-dimensional. However, we

have shown that periodic forcing interacts with the unstable
eigenmodes of our system, leading to bufferings of various
durations.

Our analysis further indicates that noise acts as a resonance
regulator, which can tune the response of the system by displacing
the eigenvalue spectrum in the imaginary plane and thus through
an effective change in linear stability. Through this change in
stability, different resonances can be amplified and the buffering
time can be increased. From a neuroscience perspective, this is
consistent with results reporting the dependence of rhythmic
stimulation effects on brain states. Assuming that different brain
states may be associated with different noise levels, this noise
shapes the susceptibility of neural populations to entrainment,
and consequently the persistence of oscillations beyond the end
of stimulation.

The results above are contingent upon linear approximations,
while the original system (i.e., Equation 1) is not. In particular,
for values of D where the system remains below the Hopf
bifurcation threshold (i.e., stable oscillations for smaller D in
Figure 3) solutions of the non-linear Equation (1) do not diverge,
while solutions of the linear Equation (6) do. This discrepancy
between linear and non-linear responses can be further seen in
Figure 6A where the power found at the forcing frequency after
offset is monotonically decreasing with increasing frequency; this
contrasts with the results of Figure 4 where resonance curves
show divergences at increasing intensities of noise. We add
that in the low noise limit (D → 0), the response function
converges to a Heaviside function, and the system is amenable
to a metastability analysis in which the waveform and duration of
any transient oscillations can be calculated [31].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 August 2018 | Volume 4 | Article 31

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Park et al. Persistent Entrainment in Non-linear Networks

FIGURE 9 | Persistent entrainment in a network model of large-scale human brain dynamics with realistic wiring topology and distributed delays. (A) Connectivity

matrix. Row and column tick marks indicate brain region label for each node. Upper left and lower right quadrants indicate intra-hemispheric right and left hemisphere

connections, respectively; upper right and lower left blocks show cross-hemispheric connections, which are restricted to corresponding regions in left and right

hemispheres. (B) Physical network layout from axial (left), and coronal (right). (C) Conduction delay distributions used for the network models. (D) Entrainment vs.

forcing frequency for each conduction delay distribution.

Our analysis further demonstrates that persistent entrainment
is prevalent in systems with longer time delays. Indeed, the
density of resonant frequencies (number of resonances per
frequency unit) increases with τ ; persistent frequencies represent
an increasingly larger portion of parameter space. This can be
seen in Figure 4, where the number of resonant peak—and thus
eigenfrequencies—increases with the delay. This implies that as
τ becomes very large, the high density of resonant frequencies
will converge toward a one-to-one relationship between forcing
frequency and persistent frequency, allowing the system to
implement an effective buffer of forcing signals through a very
dense set of frequencies. This is because increasing the time
delay shifts the position of the HB, allowing an increasingly large
number of eigenvalues to pass toward the right-hand side of the
imaginary axis. It remains to be seen if this phenomenon can be
observed in noisy networks of spiking neurons and in presence
of shorter time delays.

It is clear that a range of delays, arising from the variety of
feedback loops that may exist in brain networks, can support

reverberations across a range of periods for a certain time. In
particular, when delays are sufficiently large compared to intrinsic
neural response times (typically when the ratio of these time
scales exceeds 1—see [27]), multistability can arise in the sense
that different initial conditions can lead to different steady state
solutions [32]. This is apparent in the presence of a mild amount
of noise or even in the absence of input [33]. From those results,
it is expected that forcing a network such as the one considered
here could further be sustained by multistability, beyond the
basic effect described in our paper. The direct link between
multistability and persistence is an interesting topic for future
investigation.

Our work relates to other recent efforts to examine the
buffering ability of neural networks, i.e., their capacity to
temporarily store a signal over a short time delay and then
play it back through readout neurons [34]. These authors
considered the ability of a randomly connected spiking network
(as opposed to a globally coupled network studied here) to
buffer a random input signal with a short (10ms) correlation
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time. Their buffering context differs a bit from that used here.
Instead of focusing on network output that outlasts a stimulation,
their goal is to store and shift an input signal to the neural
net such that the output of the neural net is a faithful but
delayed version of the input. Integrated circuits known as bucket
brigade devices produce this effect, and have been used in the
context of delayed dynamics to investigate e.g., multistability
and the effects of noise [35]. In contrast to our network, the
internal delays of the recurrent circuitry used in Major and
Gerstner [34] is quite short, namely 1ms. Their network also
had a background Poisson spike train noise, and thus was
noisy like ours. Buffering was measured by the reconstruction
error between an injected random signal with a correlation time
of 10ms and the delayed output of the network. The error
increased with increased buffering delay (i.e., with the desired
delay between output and input), and buffering was deemed
to be quite limited for buffering times beyond the maximal
value of 20ms investigated. Their limiting buffering time was
imposed by the time scale of the network response time (20ms).
It would be interesting to explore how our network, with its
significantly longer delays, could produce a buffering of such
random input. The precise connection between the goals of time-
shifting and controlling how activity outlasts stimulation can be
sought.

Another more recent line of research at the intersection of
delayed dynamics and neural computation involves reservoir
computing designs that rely on a simple delay with a nonlinear
element [36]. Like here, this setup endows the network with
a large range of internal time scales of response, and can be
used for input classification with a neuro-inspired architecture

[37]. By a suitable assignment of segments of input signals
to nodes in a delayed loop, in conjunction with an output
weight learning rule, the network embeds the input into a larger
dimensional space where hyperplanes for separating clusters (and
hence for classifying) are more readily obtained. This reservoir
computing, like similar non-delayed versions, relies on transient
dynamics. While no explicit effort has been made to investigate
the reverberation properties of these nets (with and without
delays) after the input stops, we expect that they too would be able
to provide buffering and memory effects that outlast the input
based on the mechanisms discussed here.

It is clear that our ability to control networks to respond
to certain signals and not others, and to use such effects
as biomarkers for e.g., mental disease (see e.g., [38] in the
context of schizophrenia), is a wide-open field in which there is
much work left to do in terms of understanding the targeting
and maintenance of brain states. Our work extends these
dynamical ideas from the realm of manipulating brain states
through stimulation to long-term targeting and control of post-
stimulation states.
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