
Informatica Economică vol. 22, no. 3/2018 75

DOI: 10.12948/issn14531305/22.3.2018.07

An Ecological View on Software Reuse

Laura-Diana RADU

Department of Research, Faculty of Economics and Business Administration

Alexandru Ioan Cuza University of Iasi

glaura@uaic.ro

The increase of consumption is an important motivation for the reuse of either physical or

virtual products. As the software market has risen, software reuse has become a practice with

favourable effects for software development companies and their clients. The most important

benefits are increased productivity, reduced costs, better and easier maintenance, decreased

development lead times and the improved quality of software products. Successful reuse

depends on several technical and non-technical factors. The ecological impact of software is

an important non-technical factor of software reuse that needs to be analysed in the context of

the rapid evolution of optimization techniques. The main goal of this study is to identify

ecological perspectives on software reuse. These will complete the framework of software reuse

together with other technical factors, such as compatibility, and non-technical factors, such as

economic and ethical implications.

Keywords: Software reuse, Green software, Ecological impact, Domain engineering

Introduction

Reuse is a component of the 3Rs (Reduce,

Reuse and Recycle) promoted by

environmental organizations around the

world, such as the United States’

Environmental Protection Agency (US EPA

2014) and the United Kingdom’s Waste and

Resources Action Programme (WRAP); it is

also part of China’s Circular Economy [1].

Human consumption has increased

significantly both in terms of products as well

as services. Most of products and services are

designed, manufactured and delivered by

using hardware and software products or they

are hardware and software products. The

explosion of these technologies brings new

challenges for humanity [2] [3]. They

influence climate change, biodiversity loss,

and mineral scarcity, but their reuse could

reduce waste and new production. In the case

of software, in order to efficiently exploit the

opportunities its reuse in multiple projects, it

is very important to explicitly define this

concept and its place in life cycle phases [4].

Software reuse is the use of previously results

from all phases of their life cycle: product line

requirements, functions, architecture, design

patterns and codes [5] [6] [7] [8]. These

practices should be anticipated from the

conception and initiation phases of the

project. Morisio et al. defined software reuse

as “the systematic practice of developing

software from a stock of building blocks, so

that similarities in requirements and/or

architecture between applications can be

exploited to achieve substantial benefits in

productivity, quality and business

performance”. Using existing components for

building new applications reduces the effort of

development [9]. This includes not only the

development of new software, but also the

extraction of reusable parts of existing

applications [10]. The existence of the same

requirements in more software project allows

these practices. The availability of large

numbers of open source projects is also a

valuable source of reusable assets [11] and

offers new possibilities for software reuse.

The expected results are: increased

productivity, reduced costs, better and easier

maintenance, decreased development lead

times and improved quality of software

products. Software reuse is influenced by a

wide variety of technical and non-technical

factors. Projects evolve in order to meet new

requirements or for maintenance reasons. In

these circumstances, some changes will

influence other projects that reuse the same

components, especially in the case of library

upgrades. According to Constantinou and

1

76 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.07

Stamelos [11], software reuse is a recursive

process that supposes the selection of reusable

assets, upgrading libraries to the newest

versions and fixing bugs. A feasibility and

suitability analysis should be performed to

ensure compatibility with the new application

and compliance with customer requirements.

Software reuse has important benefits for both

companies and society. It would reduce

negative environmental effects because

companies would use less hardware and

software resources in comparison with

developing software from scratch. In order to

ensure this, reusable components must satisfy

quality criteria specifically for sustainable

software.

The rest of this paper is organized as follows.

Section 2 reviews the related work on

software reuse; section 3 presents the recent

approaches regarding green and sustainable

software and its contribution to environmental

protection; section 4 describes ecological

dimension of software reuse. Finally, section

5 concludes the paper and provides future

research directions.

2 Related work

Various studies on reusing software are

presented in the literature [7] [10] [11] [12]

[13] [14]. Additionally, software quality has

been receiving a lot of attention, especially

since the introduction of the concept of

domain engineering, a component of software

engineering [12]. The other component is

application engineering. According to Harsu,

the domain engineering has “to provide the

reusable core assets that are exploited during

application engineering when assembling or

customizing individual applications” [13].

The same author calls domain engineering

“engineering for reuse” and application

engineering “engineering with reuse”. The

process is divided in three phases presented in

Figure 1.

Fig. 1. Domain engineering phases (adapted from [13], [14])

The evolution of software engineering has

increased concerns regarding the development

of sustainable software. Creating reusable

components could positively contribute to

these concerns. However, reusing software

takes different forms. Jie et al. [12] identified

the following two categories: product reuse

and process reuse, depending on the reused

Domain analysis

• Specific domain information

is identified and captured. In

the future, the applications in

the same field will be

developed based on this

information.

Domain design

• The core

architecture is

designed for a

family of

applications

and systems.

Domain
implementation

• The componets

and tools

designed in

previous phase

are

implemented.

Informatica Economică vol. 22, no. 3/2018 77

DOI: 10.12948/issn14531305/22.3.2018.07

item. Product reuse is defined as the reuse of

previously built software components by

integrating them into the new system, while

process reuse is defined as the development of

an efficient software process and repository

that produces base knowledge. Another

classification, proposed by the same authors,

divides reuse into black-box reuse and white-

box reuse [10] [12]. In black-box reuse mode,

the components are reused directly without

any changes. In white-box reuse mode, the

components must be modified according to

new requirements. The components could be

libraries, software specifications, software

design, interfaces, prototypes, planning,

documentation, frameworks, test cases or

templates. Some components are interrelated.

For example, the reuse of source components

implicitly involves the reuse of analysis and

design.

Xin and Yang identify four types of software

reuse processes: reuse without modifying,

reuse with modifying parameters, reuse with

modifying code, design or critical level and

new software without reusing [7]. Table 1

presents the definitions of the first three types

of software reuse, since the fourth type is not

reuse, but the development of new software

from scratch.

Table 1. Types of software reuse [7]

Name Description Reuse process

decision

Reuse process

management

R
eu

se
 w

it
h
o
u
t

m
o
d
if

y
in

g

Software previously developed for

other system(s) that could be

reused without any modifying.

Reuse feasibility

analysis

Reuse type and

process choice

Software

technical status

check

Software system test

Software confirming

review

Software maintenance

R
eu

se
 w

it
h
 p

ar
am

et
er

s

m
o
d
if

y
in

g

Modifying parameters only and

reusing software in the same

form.

Software modifying

influence analysis

Software regression test

Software configuration

test review

Software system test

Software confirming

review

Software maintenance

R
eu

se
 w

it
h
 c

o
d
e

m
o
d
if

y
in

g

Modifying code, design or raising

critical level and reuse software in

this form.

Software requirement

modifying review

Software design

modifying

Software implementation

modifying

Software regression test

Software configuration

test review

Software system test

Software confirming

review

Software maintenance

78 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.07

Software reuse has advantages and

challenges. Dabhade et al. [14] identified the

following major benefits: increasing

reliability and effectiveness, accelerating the

development stage, increasing the

productivity of software, minimizing

operational and maintenance costs, enhancing

system interoperability, developing software

with less manpower, producing standardized

software, delivering good quality software

and obtaining competitive advantages.

The most important challenge is technical

compatibility with the system in which the

components are integrated or reused.

Technical compatibility is influenced by the

level of reuse [15]: at a low level (reuse of

design patterns), at a medium level (software

reuse) or at a high level (when product line

techniques are used to identify reusable

components). It is also influenced by the

architectural stability and evolution of the

software. In order to measure these features,

Constantinou and Stamelos have proposed six

metrics for two project types: those intended

to serve as reusable libraries and those that

were not designed for reuse [11]. Other

technical challenges include increased

maintenance costs when source code is not

available, the lack of tool support, the expense

of creating and maintaining reusable

components in libraries, knowledge of

requirements and reusable components, and

legal issues [10] [14].

Technical factors are crucial for software

reuse, but non-technical ones are also very

important. There are at least three non-

technical implications: economic, ethical and

ecological. Economic and ethical implications

are more evident and subject to study because

they influence business decisions. The

problem of environmental protection in the

software industry is relatively new, even

though information and communication

technology (ICT) researchers and

practitioners have been interested in

environmental protection since the end of the

last decade [16]. These concerns should

increase proportionally with the level of

infiltration of ICT in economic and social life.

They need to be analysed in accordance with

the definition and characteristics of green

software [17] [18] [19].

In order to manage software reuse efficiently,

the next section identifies and analyses

ecological elements that must be considered in

software reuse processes. These will complete

the framework of software reuse.

3 Green and sustainable software

The interest in environmental protection

through ICT has received particular attention

over the last ten years. In 2008, the concept of

green ICT was adopted in literature and

practice to reflect these concerns. Although it

has evolved and has been divided into specific

areas, the most comprehensive definition

remains the one given by Murugesan in 2008.

According to this author, green ICT is “the

study and practice of designing,

manufacturing, using, and disposing of

computers, servers, and associated

subsystems—such as monitors, printers,

storage devices, and networking and

communications systems—efficiently and

effectively with minimal or no impact on the

environment. Green IT also strives to achieve

economic viability and improved system

performance and use, while abiding by our

social and ethical responsibilities” [20].

According to Vickery [21], the interaction

between ICTs and the natural environment

can be categorized into three levels:

- Direct impacts – positive and negative

effects due directly to ICT goods and

services and related processes;

- Enabling impacts – ICT use that reduces

environmental impacts across economic

and social activities outside of the ICT

field; and

- Systemic impacts – individual and

collective behavioural change.

Most theoretical and practical initiatives have

focused on direct impact, with a particular

focus on positive and negative effects of the

hardware, as their influences on the

environment are more evident. However, in

the past few years, new initiatives have

emerged in research and practice to promote

green and sustainable software. This software

dictates how energy is consumed by any

Informatica Economică vol. 22, no. 3/2018 79

DOI: 10.12948/issn14531305/22.3.2018.07

programmable device, although the ultimate

responsibility is attributed to physical

equipment [22]. Optimization techniques aim

to develop software to improve resource

efficiency, including energy sources.

The positive effects of software on the

environment can be direct, by reducing

negative ICT impacts, or indirect, by using

software to support other business initiatives

in reducing negative environmental impacts.

In order to generate these influences, software

must be green and sustainable. According to

Dick et al. [23], green and sustainable

software is “software, whose direct and

indirect negative impacts on economy,

society, human beings, and environment that

result from development, deployment, and

usage of the software are minimal and/or

which has a positive effect on sustainable

development”. Sustainability is considered

from three dimensions: social, economic and

environmental [24]. The last dimension

corresponds to green software and can be

divided according to its direct or indirect

influences on the environment in “green by

software” and “green in software”. Table 2

presents these concepts and their impact on

the environment.

Table 2. Green software [17] [25] [26] [27]

Concept Definition Environmental impact

Green by software,

Green 1.0 or software

with indirect impact on

environment

Software that provides efficient

resources management for other

applications and software dedicated

to environmental protection and

monitoring. In this case, software is

the tool used to support

sustainability goals.

The software influences

green behaviour:

- Energy-aware

software;

- Software supporting

sustainable processes;

- Sustainable software

development.

Green in software,

Green 2.0 or software

with direct impact on

environment

Minimizing negative influences of

software development on the

environment and supporting the

complete life cycle of sustainable

software system engineering.

- Energy efficient

software

The concept of environmental protection in

the software development life cycle has two

main phases: software development and

software execution [28] [29]. In both phases,

the main form of environmental protection is

energy saving. This will have other positive

influences, such as the reduction of CO2

emissions. In software development, energy

can be saved by using more responsible ICT

equipment, identifying existing modules or

components and reusing them in new

software, avoiding recurring work [28],

switching equipment off or putting it in

standby mode when not in use and employing

refactoring strategies and self-adaptation

techniques [22]. In the design phase, the

following methods exist to increase energy

efficiency: efficient database queries (-25%

energy consumption), optimized data

management (+70% performance), flexible

computation offload (-40% power

consumption), smart use of web resources (-

8.5% energy consumption), website content

delivery (-45% energy consumption) and

software refactoring (-50% energy

consumption) [30]. In software execution,

energy can be saved by updating and reusing

applications instead of developing new ones,

selecting the most energy efficient software

on the market and monitoring and optimizing

energy consumption for all programmable

devices. In both cases, software reuse could

improve the process of software development

from both a technical and non-technical

perspective. Environmental protection is a

non-technical motivator with long-term

implications for all of society.

80 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.07

4 Ecological dimensions of software reuse

Software reuse is not new, but it still fails

frequently in commercial companies, most

often for human and organizational reasons

and sometimes for technical reasons [31].

Software engineers must find their own

benefits of reusing software. Their personal

values on environmental protection, together

with organization strategies in the same field,

could be sufficient incentives for adopting

these practices. However, previous research in

software reuse has focused most often on its

economic and technical benefits;

environmental implications have not been

studied.

Reusability is a criteria for sustainable

software [32]. Before deciding on the

software components that should be reused at

various stage of the software development life

cycle, a feasibility study on their

environmental impact is required. Even if

reuse could be technically and economically

favourable, from the viewpoint of influences

on the environment the reuse of some

software components could be less

advantageous, due to the rapid evolution of

optimization techniques. According to

Beghoura et al. [18], green constraints fit into

the category of non-functional requirements,

so they need to be explicitly defined in the

requirements specification phase and

supported by software design and

implementation. Based on their opinion, the

opportunity to reuse software must be

analysed starting with initial requirements

specifications. These could include

specifications on reducing energy

consumption or using more environmentally

friendly hardware or tools, if the client or the

company developing the application has and

applies strategies for environmental

protection. These specifications could limit

software reuse or could allow its reuse with

modifying parameters or with modifying code

and design. These practices consume more

resources in the development stage, but are

more eco-effective post-implementation. In

addition, the new components that consume

fewer resources will be reused later in other

systems. Johann et al. [33] proposed the

following activities in order to enhance an

environmentally favourable impact over the

whole life cycle: sustainability reviews and

previews for every phase, process assessment

and the sustainability retrospective.

Before reusing a component, it must be

evaluated according to environmental quality

criteria. A presentation of the environmental

impact, along with other aspects of software

sustainability, need to be described in a

sustainability journal [34]. The environmental

quality criteria must follow the same stages

and activities as quality software evaluation:

acceptance criteria, an environmental project

quality plan, environmental quality criteria

and the environmental quality assurance role

that could be achieved by auditors [26]. One

solution is the labelling of software

components and software products according

to their influence on the environment. At

present, there are some initiatives to label

green software [35], but a standardized eco-

label is still missing [36]. Previous studies

show that neither programmers nor users

request energy efficiency for their product and

this concern is missing during maintenance

[37] [38]. In order to encourage the reuse of

only green software components, these should

be evaluated according to environmental

criteria. Kern et al. proposed the following

criteria for software evaluation: efficiency,

feasibility and perdurability [35].

- Efficiency is defined as software

behaviour when it can save resources and

avoid waste [39];

- Feasibility refers to environmental impact

– resource-oriented feasibility (energy

type, energy consumption, energy

management options and carbon footprint)

and social impact – well-being oriented

feasibility (sustainability support,

accessibility and usability) [39] [35]; and

- Perdurability is “the degree to which a

software product can be modified, adapted

and reused in order to perform specified

functions under specified conditions for a

long period of time” [40].

Perdurability refers directly to software reuse.

In Standards ISO: 25010, Calero et al. [40]

identified three characteristics related to this

Informatica Economică vol. 22, no. 3/2018 81

DOI: 10.12948/issn14531305/22.3.2018.07

criteria: (1) reusability – the degree to which

an asset can be used in more than one system,

or in building other assets; (2) adaptability –

the degree to which a product or system can

effectively and efficiently be adapted for

different or evolving hardware, software or

other operational or usage environments; and

(3) modifiability – the degree to which a

product or system can be effectively and

efficiently modified without introducing

defects or degrading existing product quality

[41]. In Figure 2, perdurability aspects are

presented separately by the development and

usage phase.

Fig. 1. Criteria for sustainable software products mapping to perdurability [35]

The possible environmental impact is not the

only challenge of software reuse for

decreasing negative ecological influences.

Software development teams need to

anticipate future environmental regulations,

best practices, norms and market trends [26].

But awareness regarding environmental

protection in the software industry starts with

education. In general, green computing

elements are missing in the training of

programmers. According to Pang et al. [37],

the influence of the algorithms used on energy

consumption should be integrated into

computer programming courses in university

and school. These concerns should also be

included in software companies’ strategies

regarding environmental protection and in

specifications of products and services [42].

As a result of software reuse, the quality of the

applications and systems will be improved.

Efforts should be aimed at replacing or

modifying components with high energy

consumption or with other negative

environmental effects. A classification of the

components that could be reused according to

ecological impact would be useful. Even in

the absence of software component labelling

standards, companies could have some

internal criteria for environmental protection

for these components. Figure 2 demonstrates

how environmental concerns should be

included in the software reuse process.

Obsolesce

Functional types

Reliability

Adaptability

Fit for purpose

Reduction

Maintainability

Context coverage

Portability

Maturity

Availability

Fault tolerance

Recoverability

Installability

Replaceability

Usage-related properties

Reusability

Functional sustainability

Reduction

Modularity

Testability

Analyzability

Modifiability

Development-related properties

82 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.07

Fig. 3. Green software reuse life cycle

Starting from existing software components

and based on the premise that the client, the

developer or both are interested in developing

environment-friendly systems, resource

optimization specifications will be included in

the task repository. These specifications are

requirements that will need to be developed in

a similar manner to functional requirements

and will be tested in accordance with ICT

companies’ and clients’ strategies regarding

environmental protection.

Minimizing negative environmental impacts

should be an indicator of software quality. To

validate a favourable influence on the

environment or to reduce negative

environmental effects, the following metrics

could be used: energy consumption,

performance (response time), computing

resource utilization (hard disk, storage,

memory and I/O operations) and pollution or

CO2 generated by software usage or

development [43]. In practice, it is

recommended to use hybrid metrics to

objectively and realistically assess the effects

of developing new components versus

software reuse, as well as the correlation

between them. For example, in most cases,

energy consumption increases the volume of

CO2 in the context of significant energy use

from non-green sources.

5 Conclusions

Software reuse has a wide variety of benefits

for software companies and their clients. This

practice saves costs and time, increases the

quality of the application and improves

maintenance. In order to increase the

efficiency of ICT, it is recommended to reuse

only the software that positively influences

the environment or has a minimum negative

impact. Reusing a component is not a

guarantee for environmental benefits. This

paper presents some ecological aspects of

software reuse and the possibility of their

integration into the software development life

cycle. The integration of environmental

concerns in software development is not new,

but it has not been studied in the case of

Informatica Economică vol. 22, no. 3/2018 83

DOI: 10.12948/issn14531305/22.3.2018.07

software reuse. In the medium and long term

it will bring not only ecological benefits, but

also financial and technical benefits. In future

work, the ecological dimension of software

reuse will be used to develop a framework for

software reuse processes.

References

[1] D. R. Cooper and T. G. Gutowski, "The

Environmental Impacts of Reuse. A Re-

view," Journal of Industrial Ecology, vol.

21, no. 1, pp. 38-56, 2017.

[2] S. Necula, V. Păvăloaia, C. Strîmbei and

O. Dospinescu, "Enhancement of E-Com-

merce Websites with Semantic Web Tech-

nologies," Sustainability, vol. 10, no. 6,

pp. 1-15, 2018.

[3] D. Popescul and M. Georgescu, "Social

Networks Security in Universities: Chal-

lenges and Solutions," Annals of the

Alexandru Ioan Cuza University-Eco-

nomics, vol. 62, no. s1, pp. 53-63, 2015.

[4] Y. Verma and R. Nandakumar, "Develop-

ment of software asset management sys-

tem to facilitate software reuse," in Proc.

of. , International Conference on Software

Engineering and Mobile Application

Modelling and Development (ICSEMA

2012), Chennai, 2012.

[5] Y. Kim and E. A. Stohr, "Software reuse:

survey and research directions," J. Manag.

Inform. Syst., vol. 14, no. 4, pp. 113-147,

1998.

[6] C. W. Krueger, "Software reuse," ACM

Computing Surveys (CSUR), vol. 24, no.

2, pp. 131-183, 1992.

[7] T. Xin and L. Yang, "A framework of soft-

ware reusing engineering management,"

in Proc. 15th International Conference on

Software Engineering Research, Manage-

ment and Applications (SERA), London,

2017.

[8] M. Irshad, K. Petersen and S. Poulding, "A

systematic literature review of software

requirements reuse approaches," Infor-

mation and Software Technology, vol. 93,

pp. 223-245, 2018.

[9] V. Garcia, E. de Almeida and S. de Lemos

Meira, "A Reference Model for Software

Reuse Adoption in Companies," in Proc.

of the Doctoral Symposium at the 11th In-

ternational Conference on Software Reuse

(ICSR'2009), Falls Church, 2009.

[10] J. Sametinger, Software engineering

with reusable components, Berlin:

Springer-Verlag Berlin Heidelberg, 1997.

[11] E. Constantinou and I. Stamelos, "Ar-

chitectural Stability and Evolution Meas-

urement for Software Reuse," in Proceed-

ings of the 30th Annual ACM Symposium

on Applied Computing, Salamanca, 2015.

[12] W. Jie, T. Pei, S. Wen-qing and X.

Yan, "The Generation of Software Relia-

bility Test Cases Based on Software Re-

use," in Proc. of 6th International Confer-

ence on Computer Science and Network

Technology (ICCSNT), Dalian, 2017.

[13] M. Harsu, "A survey on domain engi-

neering," Institute of Software Systems,

Tampere, 2002.

[14] M. Dabhade, S. Suryawanshi and R.

Manjula, "A Systematic Review of Soft-

ware Reuse using Domain Engineering

Paradigms," in Proc. of International Con-

ference on Green Engineering and Tech-

nologies (IC-GET), Coimbatore, 2016.

[15] Y. Xu, J. Ramanathan, R. Ramnath, N.

Singh and S. Deshpande, "Reuse by place-

ment: a paradigm for cross-domain soft-

ware reuse with high level of granularity,"

in Top Productivity through Software Re-

use. ICSR 2011. Lecture Notes in Com-

puter Science, vol. 6727, S. K., Ed., Ber-

lin, Springer, 2011, p. 69–77.

[16] S. Mingay, "Green IT: The New In-

dustry Shock Wave," 2007. [Online].

Available: http://www.ictliter-

acy.info/rf.pdf/Gart-

ner_on_Green_IT.pdf. [Accessed 20 April

2018].

[17] C. Calero and M. Piattini, "Introduc-

tion to green in software engineering," in

Green in Software Engineering, C. Calero

and M. Piattini, Eds., Cham, Springer,

2015, pp. 3-27.

[18] M. A. Beghoura, A. Boubetra and A.

Boukerram, "Green software require-

ments and measurement: random decision

forests-based software energy consump-

84 Informatica Economică vol. 22, no. 3/2018

DOI: 10.12948/issn14531305/22.3.2018.07

tion profiling," Requirements Engineer-

ing, vol. 22, no. 1, pp. 27-40, 2015..

[19] B. Schmidt, "Sustainability

Knowledge about Software Parts in Soft-

ware Engineering Processes," in Proc. of

4th International Conference on ICT for

Sustainability, Amsterdam, 2016.

[20] S. Murugesan, "Harnessing Green IT:

Principles and Practices," IEEE IT Profes-

sional, vol. 10, no. 1, p. 24–33, 2008.

[21] G. Vickery, "Smarter and Greener? In-

formation Technology and the Environ-

ment: Positive or negative impacts?," Oc-

tober 2012. [Online]. Available:

https://www.iisd.org/pdf/2012/com_icts_

vickery.pdf. [Accessed 10 June 2018].

[22] L. Ardito, G. Procaccianti, M. Torchi-

ano and A. Vetro, "Understanding green

software development: A conceptual

framework," IT professional, vol. 17, no.

1, pp. 44-50, 2015.

[23] M. Dick, S. Naumann and N. Kuhn,

"A model and selected instances of green

and sustainable software," in What Kind

of Information Society? Governance, Vir-

tuality, Surveillance, Sustainability, Resil-

ience, Berlin, Springer, 2010, pp. 248-

259.

[24] G. Brundtland, "Report of the World

Commission on Environment and Devel-

opment: our common future," Oxford

University Press, Oxford, 1987.

[25] P. Lago, "Software dedicated exclu-

sively to environmental protection and

monitoring," 15 November 2015.

[Online]. Available:

https://www.slideshare.net/patri-

cia_lago/towards-software-sustainability-

assessment. [Accessed 10 April 2018].

[26] N. Bachour and L. Chasteen, "Opti-

mizing the value of green it projects

within organizations," in Proc. of Green

Technologies Conference, Grapevine,

2010.

[27] C. Calero and M. Piattini, "Puzzling

out Software Sustainability," Sustainable

Computing: Informatics and Systems, vol.

16, pp. 117-124, 2017.

[28] K. Sierszecki, T. Mikkonen, M. Stef-

fens, T. Fogdal and J. Savolainen, "Green

software: Greening what and how

much?," IEEE software, vol. 31, no. 3, pp.

64-68, 2014.

[29] M. Dick, J. Drangmeister, E. Kern and

S. Naumann, "Green software engineering

with agile methods," in Proc. of 2nd Inter-

national Workshop on Green and Sustain-

able Software (GREENS), San Francisco,

2013.

[30] P. Lago, "Software with a sustainable

intent," 2016. [Online]. Available:

http://www.informatics-europe.org/im-

ages/ECSS/ECSS2016/Slides/ECSS2016

_Lago.pdf. [Accessed 20 May 2018].

[31] M. Sojer and J. Henkel, "Code Reuse

in Open Source Software Development:

Quantitative Evidence, Drivers, and Im-

pediments," Journal of the Association for

Information Systems, vol. 11, no. 12, pp.

868-901, 2010.

[32] E. Kern, L. Hilty, A. Guldner, Y.

Maksimov, A. Filler, J. Gröger and S.

Naumann, "Sustainable software prod-

ucts—Towards assessment criteria for re-

source and energy efficiency," Future

Generation Computer Systems, vol. 86,

pp. 199-210, 2018.

[33] T. Johann, M. Dick, E. Kern and S.

Naumann, "Sustainable development, sus-

tainable software, and sustainable soft-

ware engineering: an integrated ap-

proach," in International Symposium on

Humanities, Science & Engineering Re-

search (SHUSER), Kuala Lumpur, 2011.

[34] S. Naumann, M. Dick, E. Kern and T.

Johann, "The greensoft model: A refer-

ence model for green and sustainable soft-

ware and its engineering," Sustainable

Computing: Informatics and Systems, vol.

1, no. 4, pp. 294-304, 2011.

[35] E. Kern, M. Dick, S. Naumann and A.

Filler, "Labelling sustainable software

products and websites: ideas, approaches,

and challenges," in Proceedings of Envi-

roInfo and ICT for Sustainability, Copen-

hagen, 2015.

[36] E. Kern, "Green Computing, Green

Software, and Its Characteristics: Aware-

ness, Rating, Challenges," in From Sci-

ence to Society, Cham, Springer, 2018,

Informatica Economică vol. 22, no. 3/2018 85

DOI: 10.12948/issn14531305/22.3.2018.07

pp. 263-273.

[37] C. Pang, A. Hindle, B. Adams and A.

Hassan, "What do programmers know

about software energy consumption?,"

IEEE Software, vol. 33, no. 3, pp. 83-89,

2016.

[38] I. Manotas, C. Bird, R. Zhang, S. D.,

C. Jaspan, C. Sadowski, L. Pollock and J.

Clause, "An empirical study of practition-

ers’ perspectives on green software engi-

neering," in Proc. of the 38th international

conference on software engineering, 237–

248, 2016.

[39] J. Taina, "Good, bad, and beautiful

software - In Search of Green Software

Quality Factors," CEPIS UPGRADE, vol.

2011, no. 4, pp. 22-27, 2011.

[40] C. Calero, M. Moraga and M. Bertoa,

"Towards a Software Product Sustainabil-

ity Model," Denver, 2013.

[41] ISO/IEC, "25010, Systems and soft-

ware engineering - Software product

Quality Requirements and Evaluation

(SQuaRE) - Software product quality and

system quality in use models," Interna-

tional Organization for Standardization,

Geneva, 2010.

[42] C. Atkinson, T. Schulze and S.

Klingert, "Facilitating greener it through

green specifications," IEEE software, vol.

31, no. 3, pp. 56-63, 2014.

[43] P. Bozzelli, Q. Gu and P. Lago, "A

systematic literature review on green soft-

ware metrics," 2013. [Online]. Available:

http://www.sis.uta.fi/~pt/TIEA5_The-

sis_Course/Ses-

sion_10_2013_02_18/SLR_GreenMet-

rics.pdf. [Accessed 21 May 2018].

Laura-Diana V. Radu (b. September 26, 1978) received his BSc in

Accounting and Information Systems (2001), M.Sc. in Business Information

Systems (2003), and PhD in Accounting (2006) from “Alexandru Ioan Cuza”

University of Iasi. Since 2009, she has been a researcher with the Research

Department, Faculty of Economics and Business Administration, Alexandru

Ioan Cuza University of Iasi. She is the author of one book, 10 chapters and

more than 66 articles. Her research interests include accounting information

systems, green information and communication technology, green information systems, smart

cities and agile project management.

