Double Roman domination and domatic numbers of graphs

Lutz Volkmann ${ }^{1}$
${ }^{1}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 17 November 2017; Accepted: 6 March 2018
Published Online: 8 March 2018

Communicated by Seyed Mahmoud Sheikholeslami

Abstract

A double Roman dominating function on a graph G with vertex set $V(G)$ is defined in [4] as a function $f: V(G) \rightarrow\{0,1,2,3\}$ having the property that if $f(v)=0$, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with $f(w)=3$, and if $f(v)=1$, then the vertex v must have at least one neighbor u with $f(u) \geq 2$. The weight of a double Roman dominating function f is the sum $\sum_{v \in V(G)} f(v)$, and the minimum weight of a double Roman dominating function on G is the double Roman domination number $\gamma_{d R}(G)$ of G. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct double Roman dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 3$ for each $v \in V(G)$ is called in [12] a double Roman dominating family (of functions) on G. The maximum number of functions in a double Roman dominating family on G is the double Roman domatic number of G. In this note we continue the study of the double Roman domination and domatic numbers. In particular, we present a sharp lower bound on $\gamma_{d R}(G)$, and we determine the double Roman domination and domatic numbers of some classes of graphs.

Keywords: Domination; Double Roman domination number; Double Roman domatic number

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [7]. Specifically, let G be a graph with vertex set $V(G)=V$ and edge set $E(G)=E$. The integers $n=n(G)=|V(G)|$ and $m=m(G)=|E(G)|$ are the order and the size of the graph G, respectively. The open neighborhood of vertex v is $N_{G}(v)=N(v)=\{u \in V(G) \mid u v \in E(G)\}$, and the closed neighborhood of v is $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex v is $d_{G}(v)=d(v)=|N(v)|$. The
minimum and maximum degree of a graph G are denoted by $\delta(G)=\delta$ and $\Delta(G)=\Delta$, respectively. The complement of a graph G is denoted by \bar{G}. Let K_{n} be the complete graph of order n and $K_{p, q}$ the complete bipartite graph with partite sets X and Y, where $|X|=p$ and $|Y|=q$. Recall that the join $G+H$ of two graphs G and H is a graph formed from disjoint copies of G and H by connecting each vertex of G to each vertex of H.
In this paper, we continue the study of Roman dominating functions and Roman domatic numbers in graphs (see, for example, [4-6, 9-12]). A double Roman dominating function (DRD function) on a graph G is defined by Beeler, Haynes and Hedetniemi in [4] as a function $f: V(G) \rightarrow\{0,1,2,3\}$ having the property that if $f(v)=0$, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with $f(w)=3$, and if $f(v)=1$, then the vertex v must have at least one neighbor u with $f(u) \geq 2$. The weight of a DRD function f is the value $\omega(f)=f(V(G))=\sum_{v \in V(G)} f(v)$. The double Roman domination number $\gamma_{d R}(G)$ equals the minimum weight of a double Roman dominating function on G, and a double Roman dominating function of G with weight $\gamma_{d R}(G)$ is called a $\gamma_{d R}(G)$-function of G. Further results on the double Roman domination number can be found in [1-3, 8].
A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct double Roman dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(v) \leq 3$ for each $v \in V(G)$ is called in [12] a double Roman dominating family (of functions) on G. The maximum number of functions in a double Roman dominating family (DRD family) on G is the double Roman domatic number of G, denoted by $d_{d R}(G)$. The double Roman domatic number is well-defined and $d_{d R}(G) \geq 1$ for each graph G since the set consisting of any DRD function forms a DRD family on G.
In this work, we study the double Roman domination and domatic numbers. In particular, we prove the lower bound $\gamma_{d R}(G) \geq\left\lceil\frac{3 n(G)}{\Delta(G)+1}\right\rceil$ for each graph G with $\Delta(G) \geq 1$. Furthermore, we present some Nordhaus-Gaddum type results on the double Roman domatic number. In addition, we determine the double Roman domination and domatic numbers for some special classes of graphs.

2. A lower bound on $\gamma_{d R}(G)$

In this section, we present a lower bound on the double Roman domination number and a consequence.

Theorem 1. If G is a graph of order n and maximum degree $\Delta \geq 1$, then

$$
\gamma_{d R}(G) \geq\left\lceil\frac{3 n}{\Delta+1}\right\rceil
$$

Proof. If $\Delta=1$, then $G=p K_{2} \cup q K_{1}$ with $p \geq 1$ and so $\gamma_{d R}(G)=3 p+2 q$. Since
$n=2 p+q$, we obtain

$$
\gamma_{d R}(G)=3 p+2 q \geq\left\lceil\frac{6 p+3 q}{2}\right\rceil=\left\lceil\frac{3 n}{\Delta+1}\right\rceil .
$$

Assume now that $\Delta \geq 2$, and let f be a $\gamma_{d R}(G)$-function. According to [4], we can assume, without loss of generality, that $f(x) \in\{0,2,3\}$ for each vertex $x \in V(G)$. If V_{i} is the set of vertices assigned i by the function f, then $\gamma_{d R}(G)=2\left|V_{2}\right|+3\left|V_{3}\right|$ and $n=\left|V_{0}\right|+\left|V_{2}\right|+\left|V_{3}\right|$. Since each vertex of V_{0} is adjacent to at least one vertex of V_{3} or to at least two vertices of V_{2}, we deduce that

$$
\left|V_{0}\right| \leq \frac{\Delta}{2}\left|V_{2}\right|+\Delta\left|V_{3}\right|
$$

It follows that

$$
\begin{aligned}
(\Delta+1) \gamma_{d R}(G) & =(\Delta+1)\left(2\left|V_{2}\right|+3\left|V_{3}\right|\right) \\
& =3 \Delta\left|V_{3}\right|+\frac{3 \Delta}{2}\left|V_{2}\right|+3\left|V_{3}\right|+\left(\frac{\Delta}{2}+2\right)\left|V_{2}\right| \\
& \geq 3\left|V_{0}\right|+3\left|V_{3}\right|+3\left|V_{2}\right|+\left(\frac{\Delta}{2}-1\right)\left|V_{2}\right| \\
& =3 n+\left(\frac{\Delta}{2}-1\right)\left|V_{2}\right| \geq 3 n,
\end{aligned}
$$

and this leads to the desired bound.
For the following corollary, we use the next proposition, which can be found in [3].
Proposition 1. Let G be a connected graph of order $n \geq 3$. Then
(1) $\gamma_{d R}(G)=3$ if and only if $\Delta(G)=n-1$.
(2) $\gamma_{d R}(G)=4$ if and only if $G=\overline{K_{2}}+H$, where H is a graph with $\Delta(H) \leq|V(H)|-2$.
(3) $\gamma_{d R}(G)=5$ if and only if $\Delta(G)=n-2$ and $G \neq \overline{K_{2}}+H$ for any graph H of order $n-2$.

Corollary 1. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ be the complete r-partite graph with $r \geq 2$ and $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$.
(a) If $n_{1}=1$, then $\gamma_{d R}(G)=3$.
(b) If $n_{1}=2$, then $\gamma_{d R}(G)=4$.
(c) If $n_{1} \geq 3$, then $\gamma_{d R}(G)=6$.

Proof. Statement (a) follows from Proposition 1 (1), and Statement (b) follows from Proposition 1 (2).
(c) Assume now that $n_{1} \geq 3$. Proposition 1 (3) implies that $\gamma_{d R}(G) \geq 6$. Let $X_{1}, X_{2}, \ldots, X_{r}$ be the partite sets of G, and let $v_{1} \in X_{1}$ and $v_{2} \in X_{2}$. Define the function f by $f\left(v_{1}\right)=f\left(v_{2}\right)=3$ and $f(x)=0$ for $x \in V(G) \backslash\left\{v_{1}, v_{2}\right\}$. Then f is a DRD function on G of weight 6 and hence $\gamma_{d R}(G) \leq 6$ and thus $\gamma_{d R}(G)=6$.

If $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ with $r \geq 2$ and $2=n_{1} \leq n_{2} \leq \ldots \leq n_{r}$, then

$$
\left\lceil\frac{3 n(G)}{\Delta(G)+1}\right\rceil=\left\lceil\frac{3(n(G)-1)+3}{n(G)-1}\right\rceil=4,
$$

and thus Corollary 1 (b) shows that Theorem 1 is sharp.

3. Double Roman domatic number

If $K_{p, p}$ is the complete bipartite graph with $p \geq 3$, then we have shown in [12] that $d_{d R}\left(K_{p, p}\right)=p$. Using the next theorem, we prove a more general result.

Theorem 2. Let G be a graph of order n. If G contains $p \geq 2$ vertices of degree less or equal $n-2$, then $d_{d R}(G) \leq n-\left\lceil\frac{p}{2}\right\rceil$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a DRD family on G with $d=d_{d R}(G)$. According to [4], we can assume, without loss of generality, that $f_{i}(x) \in\{0,2,3\}$ for each $x \in V(G)$ and $1 \leq i \leq d$. Let A_{i} be the set of vertices such that $f_{i}(x) \geq 2$ for $x \in A_{i}$ and $1 \leq i \leq d$. Since $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is a DRD family on G, we note that $A_{j} \cap A_{k}=\emptyset$ for $1 \leq j \neq k \leq d$. The hypothesis that G has $p \geq 2$ vertices of degree less or equal $n-2$ shows that there are at most $n-p$ vertex sets A_{i} with $\left|A_{i}\right|=1$ and all other such vertex sets are of cardinality at least two. This leads to

$$
d_{d R}(G) \leq n-p+\left\lfloor\frac{p}{2}\right\rfloor=n-\left\lceil\frac{p}{2}\right\rceil .
$$

Example 1. Let M be a matching of the complete graph K_{n} such that $|M|=k$ and $2 k \leq n$. Let $H=K_{n}-M$, and let $u_{1}, u_{2}, \ldots, u_{n-2 k}$ be the vertices of degree $n-1$ in H. If

$$
M=\left\{x_{n-2 k+1} y_{n-2 k+1}, x_{n-2 k+2} y_{n-2 k+2}, \ldots, x_{n-k} y_{n-k}\right\},
$$

then define the functions $f_{i}\left(u_{i}\right)=3$ and $f_{i}(x)=0$ for $x \in V(H) \backslash\left\{u_{i}\right\}$ for $1 \leq i \leq n-2 k$ and $f_{i}\left(x_{i}\right)=f_{i}\left(y_{i}\right)=2$ and $f_{i}(x)=0$ for $x \in V(H) \backslash\left\{x_{i}, y_{i}\right\}$ for $n-2 k+1 \leq i \leq n-k$. Then $\left\{f_{1}, f_{2}, \ldots, f_{n-k}\right\}$ is a DRD family on H and therefore $d_{d R}(H) \geq n-k$. Applying

Theorem 2, we deduce that $d_{d R}(H)=n-k$. This example shows that Theorem 2 is sharp for p even.
For odd p, let M be a matching and T be the edges of a triangle of K_{n} such that the edges of M and T are not adjacent. Now $K_{n}-(M \cup T)$ shows that Theorem 2 is also sharp for p odd.

Theorem 3. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ be the complete r-partite graph with $r \geq 2$ and $n_{1}=n_{2}=\ldots=n_{r}=q \geq 2$. Then $d_{d R}(G)=\left\lfloor\frac{r q}{2}\right\rfloor$.

Proof. Applying Theorem 2, we obtain $d_{d R}(G) \leq\left\lfloor\frac{r q}{2}\right\rfloor$. Let $X_{1}, X_{2}, \ldots, X_{r}$ be the partite sets of G, and let $v_{1}, v_{2}, \ldots, v_{r q}$ be the vertex set of G such that $v_{j r+i} \in X_{i}$ for $0 \leq j \leq q-1$ and $1 \leq i \leq r$. Now define the function f_{i} by $f_{i}\left(v_{2 i-1}\right)=f_{i}\left(v_{2 i}\right)=3$ and $f_{i}(x)=0$ for $x \neq v_{2 i-1}, v_{2 i}$ for $1 \leq i \leq\left\lfloor\frac{r q}{2}\right\rfloor$. Then f_{i} is a DRD function on G for $1 \leq i \leq\left\lfloor\frac{r q}{2}\right\rfloor$ such that

$$
f_{1}(x)+f_{2}(x)+\ldots+f_{\left\lfloor\frac{r q}{2}\right\rfloor}(x) \leq 3
$$

for each vertex $x \in V(G)$. Therefore $\left\{f_{1}, f_{2}, \ldots, f_{\left\lfloor\frac{r q}{2}\right\rfloor}\right\}$ is a double Roman dominating family on G and thus $d_{d R}(G) \geq\left\lfloor\frac{r q}{2}\right\rfloor$. This yields to $d_{d R}(G)=\left\lfloor\frac{r q}{2}\right\rfloor$.

In [12], we have proved the following two results.

Theorem 4. If G is a graph, then $d_{d R}(G) \leq \delta(G)+1$.

Theorem 5. Let G be a graph of order n. If $G \neq K_{n}$ and $\bar{G} \neq K_{n}$, then

$$
d_{d R}(G)+d_{d R}(\bar{G}) \leq n
$$

For a great family of graphs, we can improve the Nordhaus-Gaddum bound of Theorem 5.

Theorem 6. Let G be a graph of order n such that $\delta(G), \delta(\bar{G}) \geq 1$. If n is odd or if n is even and $\delta(G) \leq \frac{n}{2}-2$ or $\delta(\bar{G}) \leq \frac{n}{2}-2$, then

$$
d_{d R}(G)+d_{d R}(\bar{G}) \leq n-1
$$

Proof. Since $\delta(G), \delta(\bar{G}) \geq 1$, we observe that $\Delta(G), \Delta(\bar{G}) \leq n-2$.
If n is odd, then it follows from Theorem 2 that

$$
d_{d R}(G)+d_{d R}(\bar{G}) \leq\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor=n-1 .
$$

If n is even, then assume, without loss of generality, that $\delta(G) \leq \frac{n}{2}-2$. Applying Theorems 2 and 4, we obtain

$$
d_{d R}(G)+d_{d R}(\bar{G}) \leq\left(\frac{n}{2}-2\right)+1+\frac{n}{2}=n-1,
$$

and the proof is complete.

If $G=K_{p, p}$ for $p \geq 2$, then we have $d_{d R}(G)+d_{d R}(\bar{G})=2 p=n(G)$. This example demonstrates that Theorem 6 is not valid for n even and $\delta(\bar{G})=\frac{n}{2}-1$ in general. For odd n we will improve Theorem 6.

Theorem 7. Let G be a graph of odd order n. If $G, \bar{G} \neq K_{n}, K_{n}-e$, where e is an arbitray edge of K_{n}, then

$$
d_{d R}(G)+d_{d R}(\bar{G}) \leq n-1
$$

Proof. If $\delta(G), \delta(\bar{G}) \geq 1$, then the result follows from Theorem 6. Assume now, without loss of generality, that $\delta(G)=0$. Then it follows that $d_{d R}(G)=1$. Since $\bar{G} \neq K_{n}, K_{n}-e$, there are at least two edges $e_{1}, e_{2} \in E(G)$. Hence \bar{G} contains at least three vertices of degree less or equal $n-2$. We deduce from Theorem 2 that $d_{d R}(\bar{G}) \leq n-2$, and we obtain $d_{d R}(G)+d_{d R}(\bar{G}) \leq 1+n-2=n-1$.

Note that if $G=K_{n}$, then $d_{d R}(G)+d_{d R}(\bar{G})=n+1$, and if $G=K_{n}-e$, then $d_{d R}(G)+d_{d R}(\bar{G})=(n-1)+1=n$.
For some regular graphs we will improve the upper bound of Theorem 4.

Theorem 8. Let G be a δ-regular graph $(\delta \geq 2)$ of order $n=p(\delta+1)+r$ with integers $p \geq 1$ and $1 \leq r \leq \delta$. If $\frac{3 r}{\delta+1}$ is not an integer, then $d_{d R}(G) \leq \delta$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a DRD family on G such that $d=d_{d R}(G)$. It follows that

$$
\begin{equation*}
\sum_{i=1}^{d} \omega\left(f_{i}\right)=\sum_{i=1}^{d} \sum_{v \in V(G)} f_{i}(v)=\sum_{v \in V(G)} \sum_{i=1}^{d} f_{i}(v) \leq \sum_{v \in V(G)} 3=3 n . \tag{1}
\end{equation*}
$$

Since $\frac{3 r}{\delta+1}$ is not an integer, Theorem 1 yields to

$$
\begin{equation*}
\gamma_{d R}(G) \geq\left\lceil\frac{3 n}{\delta+1}\right\rceil=\left\lceil\frac{3 p(\delta+1)+3 r}{\delta+1}\right\rceil=3 p+\left\lceil\frac{3 r}{\delta+1}\right\rceil>3 p+\frac{3 r}{\delta+1} \tag{2}
\end{equation*}
$$

Suppose to the contrary that $d=\delta+1$. Then we deduce from the inequality chains (1) and (2) that

$$
3 n \geq \sum_{i=1}^{d} \omega\left(f_{i}\right) \geq \sum_{i=1}^{d} \gamma_{d R}(G)>(\delta+1)\left(3 p+\frac{3 r}{\delta+1}\right)=3 p(\delta+1)+3 r=3 n
$$

This is a contradiction and thus $d_{d R}(G) \leq \delta$.

References

[1] H. Abdollahzadeh Ahangar, J. Amjadi, M. Atapour, M. Chellali, and S.M. Sheikholeslami, Double Roman trees, Ars Combin. (to apeear).
[2] H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam, and S.M. Sheikholeslami, Trees with double Roman domination number twice the domination number plus two, Iran. J. Sci. Technol. Trans. A Sci. (to apeear).
[3] H. Abdollahzadeh Ahangar, M. Chellali, and S.M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math. 232 (2017), 1-7.
[4] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23-29.
[5] E.W. Chambers, B. Kinnersley, N. Prince, and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009), no. 3, 1575-1586.
[6] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22.
[7] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[8] N. Jafari Rad and H. Rahbani, Some progress on double Roman domination in graphs, Discuss. Math. Graph Theory (to apeear).
[9] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585-594.
[10] S.M. Sheikholeslami and L. Volkmann, The Roman domatic number of a graph, Appl. Math. Lett. 23 (2010), no. 10, 1295-1300.
[11] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136-138.
[12] L. Volkmann, The double Roman domatic number of a graph, J. Combin. Math. Combin. Comput. 104 (2018), 205-215.

