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In quantum cryptography, device-
independent (DI) protocols can be certified
secure without requiring assumptions about
the inner workings of the devices used to
perform the protocol. In order to display
nonlocality, which is an essential feature in DI
protocols, the device must consist of at least
two separate components sharing entangle-
ment. This raises a fundamental question: how
much entanglement is needed to run such DI
protocols? We present a two-device protocol
for DI random number generation (DIRNG)
which produces approximately n bits of ran-
domness starting from n pairs of arbitrarily
weakly entangled qubits. We also consider a
variant of the protocol where m singlet states
are diluted into n partially entangled states
before performing the first protocol, and show
that the number m of singlet states need
only scale sublinearly with the number n of
random bits produced. Operationally, this
leads to a DIRNG protocol between distant
laboratories that requires only a sublinear
amount of quantum communication to prepare
the devices.

1 Introduction
A quantum random number generation (RNG) pro-
tocol is device-independent (DI) if its output can be
guaranteed to be random with respect to any adver-
sary on the sole basis of certain minimal assumptions,
such as the validity of quantum physics and the ex-
istence of secure physical locations [1]. The internal
workings of the devices, however, do not need to be
trusted.

Device-independence is made possible by exploiting
the violation of a Bell inequality [2], which certifies the
random nature of quantum measurement outcomes.
As a result, DIRNG protocols necessarily consume
two fundamental resources: entangled states shared
across separated devices and an initial public random
seed that is uncorrelated to the devices and used to
determine the random measurements performed on
the entangled states. Out of these two resources, a
DIRNG protocol produces n private random bits.

The initial random seed that is consumed can be

of extremely low quantity or quality. Indeed, n pri-
vate random bits can be produced starting from an
initial string of uniform bits whose required length
has gradually been reduced in a series of works [3–6],
culminating in the result that only a constant, i.e., in-
dependent of the output length n, amount of initial
uniform random bits are required [5, 6]. Furthermore,
the initial seed does not necessarily need to consist of
uniform random bits, as it possible to design DIRNG
protocols consuming an arbitrarily weak random seed
characterized only by its total min-entropy [7].

What about entanglement, the second fundamental
resource that is consumed in any DIRNG protocol?
This quantum resource usually consists of m copies
|ψ〉⊗m of some bipartite entangled state |ψ〉 shared
between two separated devices A and B that can be
prevented at will from interacting with one another.
Though DIRNG protocols involve a single user, it is
useful for exposition purposes to view these two de-
vices as being operated by two agents, Alice and Bob,
in two remote sublaboratories. The m copies |ψ〉⊗m
can either be stored prior to the start of the protocol
inside quantum memories in Alice’s and Bob’s sublab-
oratories, or each copy |ψ〉 can be produced individu-
ally during each execution round of the protocol, say
by a source located between Alice and Bob.

All existing protocols consume at best a linear
amount m = Ω(n) of such shared entangled states |ψ〉,
as they operate by separately measuring (in sequence
or in parallel) each of these m copies, with each sepa-
rate measurement yielding at most a constant amount
of random bits. Furthermore, the states |ψ〉 are typi-
cally highly entangled states—the prototypical exam-
ple of a DIRNG protocol involves the measurement
of n maximally entangled two-qubit states |φ+〉, from
each of which roughly 1 bit of randomness can be cer-
tified using the CHSH inequality [3].

We will show that the consumption of entangled
resources can be dramatically improved qualitatively
and quantitatively. First, we show—by analogy with
the fact that the initial random seed does not need to
consist of uniform bits—that highly entangled states
are not necessary for DIRNG: instead of using n copies
of maximally entangled two-qubit pairs |φ+〉, n ran-
dom bits can be produced from n copies of any par-
tially entangled two-qubit pair |ψθ〉 = cos θ |00〉 +
sin θ |11〉 with 0 < θ ≤ π/4 (see Theorem 3 and Corol-
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lary 4).
We then turn this statement concerning the qual-

ity of the shared entangled resources into a quantita-
tive statement about the amount of entanglement that
needs to be consumed in a DIRNG protocol. The n
copies of the partially entangled state |ψθ〉 correspond
to a total of nS(θ) ebits where S(θ) = h2(sin2 θ) is the
entropy of entanglement of |ψθ〉 expressed in terms of
the binary entropy h2. Since S(θ) can be made ar-
bitrarily low by considering sufficiently small values
of θ, the above result seems to suggest that the total
amount nS(θ) of entanglement consumed can also be
made arbitrarily small as a function of n by consid-
ering sufficiently fast decreasing values for θ = θ(n).
However, if it is true that for any given θ, one can
produce n random bits from n copies of |ψθ〉 for any
n sufficiently large, the dependency between θ and n
cannot be chosen arbitrarily. This essentially origi-
nates from the fact that as θ → 0 the robustness to
noise of the corresponding states |ψθ〉, which become
less and less entangled, decreases and must be com-
pensated by increasing the number n of copies of the
states |ψθ〉 to improve the estimation phase of the pro-
tocol. There is thus a tradeoff between θ and n, which
we show can nevertheless result in a total amount of
entanglement nS(θ) = Ω(nk logn) with 7/8 < k < 1
(see Corollary 5). This amount of entanglement is sub-
linear in the number n of output random bits, funda-
mentally improving over existing protocols for which
the entanglement consumption is at best linear.

Though the protocol that we introduce consumes
a sublinear amount of entanglement, it still requires
a linear number of shared quantum resources in the
form of n copies of the two-qubit entangled states |ψθ〉.
These shared entangled states must be established
through some quantum communication between Al-
ice’s and Bob’s sublaboratories, either during the pro-
tocol itself or prior to the protocol, and will thus re-
quire the exchange of n qubits. Since this quantum
communication will typically be costly (for instance
because of high losses in the communication channel),
it represents a measure of the use of shared quantum
resources which is more operational and better moti-
vated than the entropy of entanglement. From this
perspective, however, our first protocol is not funda-
mentally different from existing protocols that also in-
volve the exchange of n qubits to produce n random
bits.

This leads us to consider a slight modification of
our protocol in which Alice and Bob initially share
m maximally entangled two-qubit states |φ+〉, which
can be established through the exchange of m qubits.
These singlets are then transformed by entanglement
dilution [8] into roughly n = S(θ)/m copies of |ψθ〉
states through local operations and classical commu-
nication (LOCC), which are then used in our regular
protocol.

However entanglement dilution is only noiseless

asymptotically, in the limit of an infinite number of
copies m→∞. For finite m, entanglement dilution is
inherently noisy. As our protocol is increasingly sen-
sitive to noise as the degree of entanglement of the
states θ tends to 0, it is not a priori obvious that
combining randomness generation with entanglement
dilution will work.

Nevertheless we show that such a two-step pro-
tocol works even though the entanglement dilution
slightly degrades the tradeoff between θ and n. Specif-
ically we exhibit a protocol that can get n output
random bits starting from a sublinear number m =
nS(θ) = Ω(nk′ logn) of initial copies of |φ+〉 states,
with 7/8 < k′ < 1. This represents a quantitative
improvement of the use of quantum resources with re-
spect to all existing protocols, analogous to the fact
that a DIRNG protocol needs only a sublinear amount
of uniform random bits.

The starting point of our work is the work [9]
wherein a family of variants of the CHSH inequality,
the tilted-CHSH inequalities, are introduced, which
seem particularly suited to generate randomness from
weakly entangled qubit states. Indeed, it was shown
in [9] that maximal violation of a tilted CHSH inequal-
ity certifies one bit of randomness and can be achieved
by entangled two-dimensional systems with arbitrar-
ily little entanglement1 This was later extended to
show that by using sequential measurements, a single
pair of entangled qubits in a pure state could certify
an arbitrary amount of randomness [11]. However nei-
ther of these works presented a protocol, including an
estimation phase and security analysis taking into ac-
count non-maximal violation, for device independent
randomness generation. In fact the results of [9, 11]
do not by themselves imply the existence of such a
protocol.

We now recall the tilted-CHSH expressions of [9],
whose properties of randomness certification in weakly
entangled states will play a central role in our proto-
col.

Tilted-CHSH game

The tilted-CHSH expressions Iβ1 are a family of Bell
expressions introduced in [9] and parameterized by a
tilting parameter β ∈ [0, 2). We start by reformulat-
ing Iβ1 as a nonlocal game, expressed in terms of a
predicate function V ∈ {0, 1}. This will put us in
the right conditions to apply the entropy accumula-
tion theorem of [12] following [13]. In this reformu-
lation, Alice is given input x ∈ {0, 1} and Bob input

1Note that not all weakly entangled states can be used
for device-independent randomness generation: for instance
there is a regime of visibility in which noisy singlet states (so-
called Werner states) are entangled but incapable of displaying
nonlocality, and hence also incapable of displaying randomness
[10].
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y ∈ {0, 1, 2} according to the joint distribution

p(x, y) =


1

4+β (x, y) ∈ {0, 1}2 ,
β

4+β (x, y) = (0, 2) ,
0 otherwise.

(1)

Alice and Bob then provide one answer each, (a, b) ∈
{0, 1}2 respectively, and the game is won if the follow-
ing predicate function V (a, b, x, y) ∈ {0, 1} returns 1:

V (a, b, x, y) =


1 (x, y) ∈ {0, 1}2 and a⊕ b = xy ,

1 (x, y) = (0, 2) and a = 0 ,
0 otherwise.

(2)
Note that in our reformulation of the tilted-CHSH
expression as a game, we have introduced for conve-
nience a third setting for Bob (y = 2) that is absent in
the original tilted-CHSH expression. This game can
be understood as a convex combination between the
CHSH game and a “trivial” game: the former’s suc-
cess criterion is a ⊕ b = xy with input probabilities
p(x, y) = 1/4 for (x, y) ∈ {0, 1}2, while the latter’s
success criterion is a = 0 with a deterministic input
(x, y) = (0, 2). While Bob can tell the two games
apart from his input y thanks to the introduction of
the third setting y = 2, from Alice’s point of view
they are not distinguishable. This makes the mixture
of the CHSH game with the trivial game nontrivial.

Given the predicate function (2), it can easily be
verified that the expected winning probability ω for
the tilted-CHSH game is linked to the expectation
value Īβ1 of the tilted-CHSH expression through

ω =
∑
a,b,x,y

V (a, b, x, y)p(x, y)p(a, b | x, y) (3)

= 1
2 + 1

8 + 2β Ī
β
1 , (4)

where p(a, b | x, y) are the probabilities characterizing
Alice and Bob’s outputs.

Note that when y = 2, Bob’s output does not affect
the outcome of the game, and Bob is free to provide
any output. We expect that it should be possible
to reformulate our results without introducing Bob’s
third setting, but we have found it simplest to pro-
ceed as above in order to follow closely the results of
[13], where non-local games are used rather than Bell
inequalities.

From the relation (4) between the tilted-CHSH
game and the tilted-CHSH expression, it follows from
the results of [9] that the winning probability ω goes
up to 1/2 + (2 + β)/(8 + 2β) for classical devices, and
1/2 +

√
8 + 2β2/(8 + 2β) = ωq for quantum devices.

This quantum value ωq is uniquely achieved (up to
local transformations and up to Bob’s measurement
operator for y = 2) by a pair of devices implement-
ing certain local measurements on a two-qubit par-
tially entangled state |ψθ〉 = cos θ |00〉+sin θ |11〉 with

tan(2θ) =
√

2/β2 − 1/2 [9]. We call this optimal pair
of devices the reference devices for the tilted-CHSH
game of tilting parameter β. In the following we will
sometimes use θ as the game parameter instead of β;
it is always understood that they are linked by the
above relation.

One important feature of the reference devices, as
highlighted in [9], is that, for any 0 < θ ≤ π/4, Al-
ice’s measurement when x = 1 returns a uniformly
distributed outcome a ∈ {0, 1} uncorrelated with the
environment, i.e., one bit of ideal randomness. Thus
by separately measuring n copies of the partially en-
tangled state |ψθ〉 = cos θ |00〉 + sin θ |11〉 according
to the reference measurements, one could in principle
generate n bits of randomness for any 0 < θ ≤ π/4.

However, the results of [9] do not immediately im-
ply this claim because they only apply to a single use
of a quantum system that is known to achieve the
maximal winning probability ωq of the tilted-CHSH
game. Thus one should first embed the tilted-CHSH
game in a proper DIRNG protocol in which no as-
sumptions are made beforehand about the quantum
systems, but where the amount of randomness gener-
ated is instead estimated from their observed behav-
ior. This requires in particular a robust version of the
results of [9], i.e., an assessment of the randomness
produced by quantum devices achieving a suboptimal
winning probability ω < ωq. Indeed, even ideal de-
vices are not expected to achieve the quantum maxi-
mum when they are used a finite number n of times
because of inherent statistical noise. We now address
this by introducing an explicit DIRNG protocol based
on the tilted-CHSH inequalities and a robust security
analysis based on the entropy accumulation theorem
(EAT) [12–14] and the self-testing properties of the
tilted-CHSH inequalities introduced in [15].

2 DIRNG protocol based on the tilted-
CHSH game
Our protocol consists of the following steps:

1. Select values for the following parameters:
• The game parameter β ∈ [0, 2);
• The number of measurement rounds n;
• The expected fraction of test rounds γ;
• A success threshold ωq − ξ.

2. Let i = 1. Choose Ti ∈ {0, 1} independently at
random such that Pr[Ti = 1] = γ. If Ti = 1,
perform a game round: measure the devices with
settings (Xi, Yi), selected at random according
to the distribution given in (1), record the out-
put (Ai, Bi) and compute Ci = V (Ai, Bi, Xi, Yi)
according to (2). If Ti = 0, perform a generation
round: measure the devices with (Xi, Yi) = (1, 0),
record the output (Ai, Bi) and let Ci = ⊥.

3. Repeat step 2 for i = 2, . . . , n.

Accepted in Quantum 2018-06-20, click title to verify 3



4. Finally, if
∑
i:Ci=1 1 ≥ nγ(ωq − ξ), the protocol

succeeds. Otherwise, it aborts.

An immediate application of Hoeffding’s inequality
[16] produces an upper bound on the completeness
error for this protocol, that is, the probability that
the ideal devices fail the protocol:

Lemma 1. Using the reference devices in the n rounds,
the completeness error for the protocol is bounded by

εc = exp
(
−2n(γξ)2) . (5)

Soundness of the protocol
We now establish the soundness of our protocol, that
is, its ability to produce a positive amount of random-
ness with high probability given that the protocol did
not abort. The security of this protocol rests on three
standard assumptions in the DI setting: that the de-
vices and their environment obey the laws of quantum
mechanics, that the random seed used to select inputs
is independent from the devices, and that the two de-
vices are unable to communicate during each round
of the protocol. Our analysis is based on the entropy
accumulation theorem (EAT) [12] following closely its
application to DIRNG in [13].

The EAT, as its name indicates, provides an
estimate of the smooth min-entropy accumulated
throughout a sequence of measurements. It implies
that the smooth min-entropy of the joint measure-
ment outcomes of our protocol scales linearly with
the number of rounds, with each round providing on
average an amount of min-entropy roughly equivalent
to the von Neumann entropy of a single round’s out-
come. In order to use the EAT, it is first necessary
to bound this single-round von Neumann entropy as
a function of the expected probability of success ω in
the tilted-CHSH game. The following Lemma, which
we derive in Appendix A from the robust self-testing
bounds for the tilted-CHSH inequality [15], provides a
bound on the conditional min-entropy, which in turn
bounds the conditional von Neumann entropy:

Lemma 2. Let ω be the expected winning probability
for the tilted-CHSH game with parameter β of a pair
of quantum devices, whose internal degrees of freedom
can be entangled with the environment E. Then the
conditional min-entropy of the measurement outcome
A for input X = 1 is bounded as

Hmin(A | E;X = 1) ≥ 1−κθ−4√ωq − ω ≡ g(ω) (6)

with κ ≤ 4
√

4 + β (4
√

2 + 61)/ ln 2 ≤ 385
√

4 + β.

The behavior of the bound with respect to ωq − ω
is optimal [17], while numerical results suggest that
the optimal dependency in θ is O(θ−2) [11]. This will
not, however, significantly affect our conclusions.

Using this bound in the EAT along the lines of [13]
(see Appendix B) yields the following theorem:

Theorem 3. Let A,B,X,Y,T,C be the classical ran-
dom variables output by the protocol, and E the quan-
tum side information of a potential adversary. Let
S = S(C) be the success event for the protocol. Let
ε′, εs be two positive error parameters. Then, for
any given pair of devices used in the protocol, either
Pr[S] ≤ ε′ or

Hεs
min(AB | XYTE;S) ≥ ντn , (7)

where ν = 1− γ(2 + β)/(4 + β),

τ = 1− κθ−4

√
ξ + 2

γ
√
n

√
1− 2 log2(εsε′)

− 2 log2 26√
n

√
1− 2 log2(εsε′) , (8)

and Hεs
min(AB | XYTE;S) is the εs-smooth min-

entropy of the output (A,B) given X,Y,T, E and
conditioned on the event S.

Given such a bound on the smooth min-entropy,
there exist efficient procedures to extract from the raw
outputs of the protocol a string of close-to-uniform
random bits whose length is of the order of Hεs

min,
with the smoothing parameter εs characterizing the
closeness to the uniform distribution.

Random bits from any partially entangled two-
qubit state
Theorem 3 directly implies the following corollary,
which shows the possibility of generating one bit of
randomness per arbitrarily weakly entangled qubit
pair:

Corollary 4. For any constant values of the proto-
col parameters θ, ξ, and γ such that κθ−4√ξ < 1
and for sufficiently large n, the protocol has vanishing
completeness error and it generates Ω(n) bits of ran-
domness from n partially entangled states |ψθ〉. For ξ
and γ approaching 0, the production of randomness in
the protocol is asymptotically equal to n.

Sublinear entanglement consumption
We now consider how, in an ideal implementation of
our protocol, the amount of shared entanglement con-
sumed is related to the amount of randomness pro-
duced. For given n, the entanglement consumption
obviously decreases with smaller values of θ. Accord-
ing to (7) and (8), the randomness produced, however,
also decreases with smaller θ, unless this decrease is
compensated by a suitable choice of the parameters γ
and ξ. Indeed, for small θ, γ should be made larger
to increase the fraction of game rounds and better
test the devices. Similarly, ξ should be smaller (i.e.,
the threshold for the protocol’s success should be set
higher) in order for Lemma 2 to certify a nontrivial
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amount of min-entropy. But the parameters γ and ξ
also appear in the completeness error (15) and thus
cannot be set completely freely if this error is to re-
main small: setting γ too low makes the estimation
of the success rate at step 4 of the protocol more un-
certain,2 and setting ξ too low makes the threshold
harder to reach. In the following corollary to The-
orem 3, we show that there exists a choice for the
parameters θ, ξ, and γ, expressed as functions of n,
such that the consumption of ebits m is sublinear in
the number of rounds n:

Corollary 5. Let λξ, λγ, λθ be positive scaling pa-
rameters such that

λθ < 2λξ . (9)
λξ + λγ < 1/2 , (10)

Let θ = n−λθ/16, ξ = n−λξ , γ = n−λγ , and constant
εs and ε′. Then, for n → ∞, the entropy bound of
Theorem 3 is asymptotically equal to n, the complete-
ness error vanishes, and the amount of entanglement
consumed is sublinear:

m = nS(θ) ∼ nθ2 log2 θ
−2 = λθ

8 nk log2 n , (11)

with k = 1− λθ/8 ∈ (7/8, 1).

The constants λθ, λξ, λγ give the rate at which the
parameters θ, ξ and γ tend to zero with increasing
n. The condition (9) expresses the fact that when the
entanglement is small, the success threshold must be
close to the maximum in order for the min-tradeoff
function to take a nontrivial value (see Appendix B).
The condition (10) expresses a tradeoff in the com-
pleteness error between how close the success thresh-
old is to the maximum and the number of rounds that
must be devoted to testing the correlations. A larger
fraction of game rounds (i.e., a larger γ) makes the suc-
cess criterion fluctuate less, which allows for a higher
threshold (i.e., a smaller ξ).

3 Using diluted singlets
As mentioned in the introduction, the use of partially
entangled states for randomness expansion enables us
to reduce the amount of qubits exchanged between
the devices when preparing their shared entanglement.
We reach this goal by applying our protocol to the out-
come of an entanglement dilution procedure, which
transforms m singlet states |φ+〉 to n ' m/S(θ) par-
tially entangled states |ψθ〉. Thus, onlym qubits need
to be transferred between the devices in order to pre-
pare the initial state |φ+〉⊗m.

2From the perspective of randomness generation, a small
value of γ is desirable as it increases the factor ν in (7) by
increasing the rate of generation rounds. However, game rounds
also contribute to the final randomness, which makes the choice
of γ = 1 possible.

We use the procedure of Bennett et al. [8], in which
Alice prepares the n pairs locally, processes Bob’s
share with Schumacher compression then teleports
them to Bob using the m singlets, who expands them
back to n qubits. Since Schumacher compression is
a lossy operation, the resulting state shared by Alice
and Bob, which we denote as Dθ,δ(|φ+〉〈φ+|⊗m) is not
exactly |ψθ〉⊗n, but it is close in trace distance (with
‖ρ‖1 = Tr|ρ|):

Lemma 6. Using perfect devices, the dilution channel
Dθ,δ maps m copies of the singlet |φ+〉 into n copies
of the partially entangled qubit state |ψθ〉 = cos θ |00〉+
sin θ |11〉 with m = (S(θ) + δ)n, up to error terms
bounded by∥∥∥Dθ,δ(|φ+〉〈φ+|⊗m)− |ψθ〉〈ψθ|⊗n

∥∥∥
1

≤ 2
√
επ + επ ≡ εprep , (12)

with
επ = 2 exp(−2nδ2/∆2) , (13)

∆ = − log2 tan2 θ . (14)

This lemma mostly follows from [8, 18]; we prove it
in Appendix C.

It follows from Lemma 6 that even a perfectly im-
plemented dilution procedure introduces some noise
in the protocol. We thus need to derive a new state-
ment for the completeness error, the probability that
perfect devices fail the protocol. Using the indis-
tinguishability interpretation of the trace distance,
if the reference state |ψθ〉⊗n passes the threshold of
the protocol with probability 1 − ε, the diluted state
Dθ,δ(|φ+〉〈φ+|⊗m), which is εprep-close to the refer-
ence, will pass the same threshold with probability at
least 1− ε− 1

2εprep [18]. Using the value of ε given in
Lemma 1 immediately implies the following:

Lemma 7. Starting from m perfect singlets, the com-
position of the dilution procedure Dθ,δ and the ran-
domness generation protocol has its completeness error
bounded by

εc = 1
2εprep + exp

(
−2n(γξ)2) . (15)

The following analogue of Corollary 5 applies to the
composition of entanglement dilution and randomness
expansion; it immediately follows from the chosen pa-
rameterization:

Corollary 8. Let δ = S(θ)c with c = nλc/8 for some
real parameter λc. Let the parameters of the protocol
be set as in Corollary 5, with the additional constraint
that

0 < λc < λθ . (16)

Starting from m singlets, the composition of entangle-
ment dilution with parameters δ and θ with the ran-
domness expansion protocol yields an entropy bound
in Theorem 3 which is asymptotically equal to n for
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n → ∞, with a vanishing completeness error, and a
sublinear consumption of entanglement:

m = n (S(θ) + δ)

∼ n1+λc/8θ2 log2 θ
−2 = λθ

8 nk
′
log2 n , (17)

with k′ = 1− (λθ − λc)/8 ∈ (7/8, 1).

In addition to the tradeoffs (9) and (10), which we
discussed after Corollary 5, the bound λc > 0 ensures
that the completeness error vanishes (which requires
that επ, defined in (13), also vanishes). The upper
bound λc < λθ ensures that the dilution process in-
creases the number of states, i.e., n > m.

4 Robustness to noise
While we have shown above that the inherent noise
associated to dilution is tolerated by our protocol, we
implicitly assumed that the quantum devices them-
selves are noise-free. Indeed the completeness error
given by Eq. (5) is evaluated assuming quantum de-
vices with an expected winning probability equal to
the quantum maximum ωq. If the quantum devices
are noisy, for example due to faulty measurements,
and have instead a suboptimal winning probability
ω = ωq − ζ with ζ < ξ, then the completeness error
becomes

εc = exp
(
−2nγ2(ξ − ζ)2) . (18)

It is easy to see that a sublinear entanglement con-
sumption remains possible with such noisy devices,
provided the noise parameter ζ decreases with n as
ζ = n−λζ for some suitable scaling parameter λζ .
However, realistic devices will be subject to a con-
stant amount of noise, rather than an asymptotically
vanishing one. In this case, the protocol as described
so far breaks down. This is most easily seen from
Lemma 2: it is clear that θ can only be taken as low
as values of the order of (ωq−ω)1/8 = ζ1/8 to get a non-
trivial bound on the min-entropy. Nevertheless, given
a small enough finite upper bound on the amount of
noise ζ, partially entangled qubit pairs with an appro-
priate value of θ < π/4 can still be used to produce
a linear amount of randomness with a yield per ebit
higher than 1 according to Theorem 3, thus improv-
ing what can directly be achieved using maximally
entangled states.

A sublinear consumption of entanglement using di-
luted singlets can be recovered even with devices
whose components fail with constant probability if
our protocol is combined with error correction and
fault-tolerant quantum computation. Indeed, accord-
ing to the threshold theorem for fault-tolerant quan-
tum computation, an arbitrary quantum circuit con-
taining G(n) gates may be simulated with probabil-
ity of error e(n) on hardware whose components fail
with constant probability at most p, provided p is

below some threshold, through an encoding that in-
creases the local dimension of each qubit by a fac-
tor poly logG(n)/e(n) [19]. In our case, the num-
ber G(n) of gates needed to perform entanglement
dilution [20] and the subsequent bipartite measure-
ments is polynomial in n. On the other hand, aiming
for a probability of error e(n) that decreases polyno-
mially in n for the simulating circuit yields a com-
pleteness error that vanishes asymptotically. The
number of ebits needed in such a fault-tolerant ver-
sion of our protocol is then multiplied only by a fac-
tor poly logG(n)/e(n) = poly logn resulting in a to-
tal number of ebits that is still sublinear in n, i.e.,
m ∼ nk poly logn.

Discussion

In summary, earlier work [9] showed that a pair of
entangled qubits with arbitrarily little entanglement
could be used to certify one bit of randomness. Here
we have carried out the further step of transforming
the intuition of [9] into DIRNG protocols in which
a sublinear amount of entanglement is consumed.
This shows that the consumption of entanglement re-
sources in DIRNG can be dramatically improved qual-
itatively and quantitatively with respect to existing
protocols. These results about entanglement are anal-
ogous to those concerning the initial random seed,
the other fundamental resource required in DIRNG.
Interestingly, the recent work [11] suggests that one
could devise DIRNG protocols that consume a con-
stant amount of entanglement. Whether the intuition
of [11] can be transformed into such a DIRNG proto-
col is an interesting open question.

In the present work, we did not attempt to mini-
mize simultaneously the entanglement and the size of
the initial seed. (Note that in our protocol, the size
of the initial random seed is determined by the pa-
rameter γ specifying the proportion of test rounds.)
Nevertheless, in the parameter regimes of Corollar-
ies 5 and 8, the entanglement and the initial seed are
both sublinear. Interestingly, it appears that our ap-
proach involves a tradeoff between entanglement and
seed consumption, given the constraints placed on λγ
and λθ in Corollaries 5 and 8. Indeed, equations (9)
and (10) imply that λθ + 2λγ < 1. Thus if λθ is
close to 1 (corresponding to a small consumption of
entanglement), λγ must be close to 0, which indicates
a high proportion γ of test rounds and, as a result,
high consumption of random seed. Likewise, if λγ is
close to 1/2, λθ must be close to 0, and the protocol
requires high entanglement and low random seed. We
leave as open questions whether there is some kind of
fundamental tradeoff between the required amounts
of random seed and shared quantum resources, and
whether the amount of quantum resources in our pro-
tocol is optimal or can be further decreased.
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A Proof of Lemma 2
Lemma 2 gives a lower bound on the conditional min-entropy in the outcome of Alice’s measurement x = 1 for
devices which achieve a certain success probability ω in the tilted-CHSH game of parameter β. We restate it
here:

Lemma 2. Let ω be the expected winning probability for the tilted-CHSH game with parameter β of a pair
of quantum devices, whose internal degrees of freedom can be entangled with the environment E. Then the
conditional min-entropy of the measurement outcome A for input X = 1 is bounded as

Hmin(A | E;X = 1) ≥ 1− κθ−4√ωq − ω ≡ g(ω) (6)

with κ ≤ 4
√

4 + β (4
√

2 + 61)/ ln 2 ≤ 385
√

4 + β.

Proof. To derive this bound, we use our self-testing result for the tilted-CHSH inequalities [15]. The robustness
bounds for the self-test in [15] are rather unwieldy, so we will instead provide a crude upper bound that retains
the same asymptotic behavior in β and ω and greatly simplifies the use of the bound.

We will lower-bound Hmin(A | E;X = 1) as a function of the expected violation of the tilted-CHSH inequality,
I = Iq − ε, where Iq =

√
8 + 2β2 = 4/

√
1 + sin2 2θ is the maximal quantum value of the expression. This

min-entropy is equivalent to the guessing probability for the measurement X = 1, which is defined as

2−Hmin(A|E;X=1) = pguess(A | E;X = 1) = max
{Mg}

Pr[A = G | X = 1] , (19)

where {Mg} is a POVM on the subsystem E, which an adversary would use to measure the side information
contained in E to formulate a guess G for A [21]. Formulated in terms of a given physical state |ψ̃〉ABE and
observables Ãx ≡ Ãx ⊗ IB ⊗ IE and B̃y ≡ IA ⊗ B̃y ⊗ IE, for a given adversary POVM {Mg} we have

Pr[A = G | X = 1] =
∑

a∈{0,1}

〈ψ̃| IA + (−1)aÃ1

2 ⊗ IB ⊗Ma |ψ̃〉 (20)

= 1
2 + 1

2 〈ψ̃| Ã1 ⊗ IB ⊗ (M0 −M1) |ψ̃〉 ≡ 1
2 + 1

2 〈Ã1C〉 , (21)

letting C = M0 −M1, which is bounded as ‖C‖∞ ≤ 1. (From here on we will sometimes use a shorter notation
where instead of e.g. IA⊗ IB⊗C, we simply write C.) We will now relate this expression to the reference system
using self-testing.

Using the notation of [15], the self-testing result shows that any pure state |ψ̃〉ABE measured by Ãx and B̃y in
such a way that the tilted-CHSH inequality for these observables is violated up to Iq − ε obeys3

‖Φ(|ψ̃〉ABE)− |ψθ〉A′B′ ⊗ |junk〉ABE‖ ≤ 2δ̄ , (22a)
‖Φ(Ã1 |ψ̃〉ABE)−A1 |ψθ〉A′B′ ⊗ |junk〉ABE‖ ≤ 2δ̄ + 2δA

a , (22b)

where Φ = ΦA ⊗ ΦB ⊗ IE is a local isometry acting on Alice and Bob’s subsystems which introduces and
transforms ancillary qubits A′ and B′, |ψθ〉 is the reference state (see main text), A1 is the reference observable
that yields one bit of randomness, and the error bound parameters δ̄, δA

a = O(
√
εθ−4) are explicitly defined in

[15]. Effectively, this isometric transformation extracts a state onto A′B′ which is close to a copy of the reference
state and almost decorrelated from the initial system ABE. Likewise, the isometry approximately maps the
physical observables’ action on the physical state in AB to ideal actions on the reference state in the ancillary
registers A′B′.

From this result, we see that the guessing probability with respect to |ψ̃〉 (which is by isometry identical to the
guessing probability for Φ(|ψ̃〉)) is close to the guessing probability with respect to the reference state, for which
pguess = maxa Pr[A = a | X = 1] = 1/2 since the side information E is decorrelated from the devices A and B.
To show this approximate equality of guessing probabilities, we rewrite the last term of (21) as

〈Ã1C〉 = Φ†(〈ψ̃|)C Φ(Ã1 |ψ̃〉) (23)

using that Φ is an isometry which acts like the identity on E. We then use (22) and the triangle inequality
to transform this into 〈ψθ|A1 |ψθ〉 〈junk|C|junk〉, with additional error terms. First, we replace Φ(Ã1 |ψ̃〉) with

3In [15] the subsystem E is implicitly included in A and/or B as a purifying subsystem for the mixed state held and measured by
the devices. The statement can easily be modified to separate it without changing the proofs; the black-box measurement operators
Ãx and B̃y then act as the identity on E.
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A1 |ψθ〉 ⊗ |junk〉 with an additional error term 2δ̄ + 2δA
a since ‖Φ†(〈ψ̃|)C‖ ≤ 1, then we replace Φ†(〈ψ̃|), again

using ‖A1‖∞, ‖C‖∞ ≤ 1:

〈Ã1C〉 ≤ Φ†(〈ψ̃|)
(
A1 |ψθ〉 ⊗ C |junk〉

)
+ 2δ̄ + 2δA

a (24)
≤ 〈ψθ|A1 |ψθ〉 〈junk|C |junk〉+ 4δ̄ + 2δA

a (25)
≤ |〈ψθ|A1 |ψθ〉|+ 4δ̄ + 2δA

a . (26)

Since for the reference system 〈ψθ|A1 |ψθ〉 = 0, we find that

pguess ≤ 1
2 + 2δ̄ + δA

a (27)

We now proceed to find a simple expression of ε and θ that upper-bounds 2δ̄ + δA
a . After some careful

manipulation of the rather long expressions for δ̄ and δA
a , we find

2δ̄ + δA
a =

√
2Iq
√
ε

[√
1 + s2

2s2

(
1 + c+

√
1 + s2

)
+
√

1 + s2

4s

(
2− c+

√
1 + s2

)
+ c+

√
1 + s2

2s2 (1 + c)
(

8 + 21 +
√

1 + s2

s2 + 3 tan θ
)]

, (28)

with c = cos(2θ), s = sin(2θ), Iq = 4/
√

1 + s2. The dominating term in this bound for small θ comes from the
term in s−4, namely 2

√
2Iq
√
ε(1 + c)(c+

√
1 + s2)(1 +

√
1 + s2)s−4 = O(

√
εθ−4).

A crude upper bound on (28) is obtained by taking a s−4 factor out of the square brackets and giving rough
numerical bounds on the bounded function that remains. For instance, the factor of s−4√2Iq

√
ε in the first

term becomes s2√1 + s2(1 + c +
√

1 + s2)/2 ≤ (3
√

2/2)s2 because c +
√

1 + s2 =
√

1− s2 +
√

1 + s2 ≤ 2 for
s2 ∈ [0, 1], and

√
1 + s2 ≤

√
2. We obtain the following bound:

2δ̄ + δA
a ≤ 2

√
2
[

3
√

2
2 s2 + 1 +

√
2

2 s3 + 16s2 + 8 + 6s2 tan θ
]√

ε

s4 , (29)

where we have also bounded Iq ≤ 4 and used the following tight bounds after expanding the third term in the
square brackets of (28):

(c+
√

1 + s2)(1 + c) ≤ 4 , (30)

(c+
√

1 + s2)(1 + c)(1 +
√

1 + s2) = (1 + c
√

1 + s2)(2 + c+
√

1 + s2) ≤ 8 . (31)

The factor tan θ in the last term is simply bounded by 1. The bound we reach is the following:

2δ̄ + δA
a ≤ 2

√
2
[

1 +
√

2
2 s3 + 3

√
2 + 44
2 s2 + 8

]√
ε

s4 . (32)

Finally, the polynomial in s in square brackets is bounded by its maximum at s = 1. Eq. (27) then becomes

pguess − 1
2 ≤ 2δ̄ + δA

a ≤ (8 + 61
√

2)
√
ε

s4 . (33)

Further bounding
s = sin 2θ ≥ 2θ

π/2 ≥ θ (34)

by concavity of the sine function on [0, π/2] and substituting ε = (8 + 2β)(ωq − ω), we reach our final bound for
the guessing probability,

pguess ≤ 1
2 +

√
8 + 2β (8 + 61

√
2) θ−4√ωq − ω . (35)

Putting this together with (19), we find, using ln(1 + x) ≤ x,

Hmin(A | E;X = 1) ≥ 1− log2

(
1 + 2

√
8 + 2β (8 + 61

√
2) θ−4√ωq − ω

)
(36)

≥ 1− κθ−4√ωq − ω (37)

with κ = 4
√

4 + β(4
√

2 + 61)/ ln 2.

A numerical maximization of the factor of
√
ε in (28) shows that a tighter numerical factor of 45.13 could

replace the numerical factor 8 + 61
√

2 = 94.27 in (33), or less if the range of θ is limited.
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B Proof of Theorem 3
It is shown in [12, 13] that obtaining a bound on the smooth min-entropy produced by a generic protocol of
the type that we consider here reduces to finding a min-tradeoff function, a certain function that bounds the
randomness produced in an average round of the protocol. This function is specific to the particular game used
in the protocol and obtaining it for the tilted-CHSH game is the only part of the general analysis of [13] that
we need to tailor to our situation.

The min-tradeoff function is defined as follows. Any protocol round (i.e., step 2 in the protocol; see Section 2)
can be thought of as a quantum channel Gi mapping the state ρ = ρDE of the pair of devices D and the
adversary information E before that round to the resulting state Gi(ρ) = ρ′ = ρ′AiBiXiYiTiCiD′E after the
protocol round, which also includes explicitly the classical data that was produced in that round. In particular,
the channel Gi and the initial state ρ determine the probability distribution p ≡ (p0, p1, p⊥) for the classical
random variable Ci ∈ {0, 1,⊥}. This probability distribution is related to the randomness produced in the
protocol round: from Lemma 2 we expect that a pair of devices which succeeds at any round (Ci = 1) with
higher probability produces more entropy in its outputs. The min-tradeoff function is a function fmin(p) that
bounds the randomness produced in the protocol round solely on the basis of the probability distribution p.
Formally, a function fmin(p) is a min-tradeoff function if it satisfies

fmin(p) ≤ H(AiBi | XiYiTiE)Gi(ρ) , (38)

where H(AiBi | XiYiTiE)Gi(ρ) is the von Neumann entropy of the joint outputs conditioned on the classical
side information produced in the round and on the quantum information of the adversary E. This inequality
should hold for all channels Gi that are compatible with the protocol and for all initial states ρ such that the
variable Ci in Gi(ρ) is distributed as p.

Theorem 3, which we restate here, follows from the entropy accumulation theorem [12] and its application
to randomness generation protocols by Arnon-Friedman et al. [13]. Our proof follows that of [13], in which we
substitute a min-tradeoff function adapted to our protocol.

Theorem 3. Let A,B,X,Y,T,C be the classical random variables output by the protocol, and E the quantum
side information of a potential adversary. Let S = S(C) be the success event for the protocol. Let ε′, εs be two
positive error parameters. Then, for any given pair of devices used in the protocol, either Pr[S] ≤ ε′ or

Hεs
min(AB | XYTE;S) ≥ ντn , (7)

where ν = 1− γ(2 + β)/(4 + β),

τ = 1− κθ−4

√
ξ + 2

γ
√
n

√
1− 2 log2(εsε′)−

2 log2 26√
n

√
1− 2 log2(εsε′) , (8)

and Hεs
min(AB | XYTE;S) is the εs-smooth min-entropy of the output (A,B) given X,Y,T, E and conditioned

on the event S.

Proof of Theorem 3. We first note that Ci = ⊥ happens if and only if the protocol round is a generation round,
hence we always have p⊥ = 1 − γ and p0 + p1 = γ. Thus, as noted in [13], we are free to define fmin(p) to
arbitrary values when p0 + p1 6= γ, since such a distribution for Ci is not compatible with our protocol anyway.
On the other hand, when p0 + p1 = γ, the expected probability of succeeding at the nonlocal game in a game
round is p1/γ. In that case, we can use Lemma 2 with ω = p1/γ to set the value of fmin. Indeed,

H(AiBi | XiYiTiE) ≥ H(Ai | XiYiTiE) (39)
= H(Ai | XiE) (40)
≥ Pr[Xi = 1]H(Ai | E;Xi = 1) (41)
≥ ν g(ω) , (42)

with ν = Pr[Xi = 1] = 1− γ(2 + β)/(4 + β). In (39), we used the chain rule and the positivity of the conditional
entropy of classical information. In (40), we used that Alice’s output Ai is independent of Bob’s measurement
choice Yi and of the round flag Ti. To get (42), we used Lemma 2 and the fact that the conditional min-entropy
lower-bounds the conditional von Neumann entropy [22, Proposition 4.3].

We can thus define fmin(p) = ν g(p1/γ) when p0 + p1 = γ. For convenience, we set it to the same value when
p0 + p1 6= γ, since it can be freely chosen in that case. All in all,

fmin(p) = ν g(p1/γ) . (43)
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The EAT [12] requires affine min-tradeoff functions. Since g is convex, we can simply obtain affine lower
bounds of (43) by taking its tangent at any point. The tangent of g(ω) at the point ω = ωt is given by

ḡωt(ω) = 1− κθ−4 2ωq − ωt − ω
2√ωq − ωt

, (44)

hence the min-tradeoff function we finally use will be fmin(p) = ν ḡωt(p1/γ) for some appropriately chosen ωt.
Given such a min-tradeoff function, Lemma 9 of [13] then states that for any given pair of devices, either the

protocol succeeds with low probability Pr[S] ≤ ε′, or

Hεs
min(AB | XYTE;S) ≥ nν ḡωt(ωq − ξ)− µ

√
n (45)

with
µ = 2(log2(13) + d‖∇fmin‖∞e)

√
1− 2 log2(εsε′) . (46)

The gradient of the min-tradeoff function is simply the slope of ν ḡωt(p1/γ):

‖∇fmin‖∞ = γ−1ν
κθ−4

2√ωq − ωt
. (47)

Bounding the ceiling function as dxe ≤ x+ 1 and optimizing over the point of tangency ωt produces the final
expression (7) for the min-entropy bound of the theorem.

C Proof of Lemma 6
In Section 3, we sketched the entanglement dilution procedure of Bennett et al. [8], which defines a channel Dθ,δ
that approximately dilutes |φ+〉⊗m into |ψθ〉⊗n, with m < n ' m/S(θ).

In this appendix, we describe this procedure in detail then prove Lemma 6, which bounds its inherent error
terms. We restate the Lemma here:

Lemma 6. Using perfect devices, the dilution channel Dθ,δ maps m copies of the singlet |φ+〉 into n copies of
the partially entangled qubit state |ψθ〉 = cos θ |00〉+ sin θ |11〉 with m = (S(θ) + δ)n, up to error terms bounded
by ∥∥∥Dθ,δ(|φ+〉〈φ+|⊗m)− |ψθ〉〈ψθ|⊗n

∥∥∥
1
≤ 2
√
επ + επ ≡ εprep , (12)

with
επ = 2 exp(−2nδ2/∆2) , (13)

∆ = − log2 tan2 θ . (14)

As stated in the main text, dilution is enabled by the possibility of compressing a number of weakly entangled
states into a smaller Hilbert space at the cost of a small error. One procedure that realizes this is known as
Schumacher compression [23] and is explained in great detail in [18], from which we borrow the notation.

We will apply Schumacher compression to the second half of the global state of n weakly entangled states
|ψθ〉⊗nAA′ = (cos θ |00〉+ sin θ |11〉)⊗n. This allows us to use m < n maximally entangled qubit pairs to transport
that second half from box A to box B so that the initial m singlets are effectively transformed into n weakly
entangled pairs after decompression.

Schumacher compression works on a source of pure states {|ψi〉 , qi} which outputs the states in {|ψi〉} at ran-
dom, with respective probabilities {qi}. The goal is to pack the information output by n i.i.d. uses of the source
into a smaller Hilbert space in a way that makes it recoverable later with high fidelity—a generalization of Shan-
non’s source coding to the quantum setting. We interpret the reduced density operator σA′ = TrA |ψθ〉〈ψθ|AA′ for
the second half of one pair |ψθ〉AA′ as describing a quantum source of mutually orthogonal states—namely, the
eigenstates of σ—with probabilities given by the corresponding eigenvalues. The eigenstates of σ coincide with
the computational basis: they are |0〉 and |1〉, with corresponding eigenvalues q0 = cos2 θ and q1 = sin2 θ = 1−q0.
Using this source n times gives us the mixed state ρA′ = σ⊗nA′ = TrA |ψθ〉〈ψθ|⊗n, i.e., the reduced state of Bob’s
share of the set of n entangled pairs prepared by Alice. The eigenstates of ρA′ are the computational basis states
for n qubits, which we write as |y〉 with y ∈ {0, 1}n, where |y〉 is the tensor product of n qubits |y1〉 · · · |yn〉.
The eigenvalue associated with y is λj = (cos2 θ)j(sin2 θ)n−j for j = n(0 | y), which gives the number of zeros
in the binary string y.

Compressing a source of orthogonal states is more or less equivalent to Shannon source coding. The idea is
to consider the string y obtained after n uses of the source and only let it through when it is deemed “typical”
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enough. According to the theory of typical sequences [24], there is a family of subsets of the 2n strings y,
called the δ-typical subsets, that each contain an exponentially small fraction of strings but nevertheless have
an exponentially large probability weight. Thus, while most strings we obtain are typical, their number is
considerably smaller than 2n. The δ-typical subset is defined as

Tδ =
{
y ∈ {0, 1}n : S − δ ≤ − log2 P (y)

n
≤ S + δ

}
, (48)

where S is the entropy of the source (which is also the entropy of entanglement of a single pair |ψθ〉),

S = h2(q0) = −q0 log2(q0)− q1 log2(q1) (49)
= − log2(q0) + q1∆ , (50)

with ∆ = log2(q0/q1) = − log2 tan2 θ. Thus, a sequence y is δ-typical if and only if its sample entropy
−(1/n) log2 P (y) is δ-close to S. Since our ideal source is i.i.d., each random variable Yi is distributed in-
dependently according to the same Bernoulli distribution of probabilities {q0, q1}. Thus, the sample entropy for
a given value y can be rewritten as

− 1
n

log2 P (y) = 1
n

n∑
i=1
− log2 qyi (51)

= −n(0 | y)
n

log2 q0 −
n(1 | y)

n
log2 q1 (52)

= − log2 q0 + n(1 | y)
n

∆ . (53)

Hence, the definition of the typical set (48) can be rewritten as

Tδ =
{
y ∈ {0, 1}n : q1 −

δ

∆ ≤
1
n

n∑
i=1

yi ≤ q1 + δ

∆

}
. (54)

That is, a sequence y is δ-typical if and only if it has a frequency of 1’s that is (δ/∆)-close to the expected value
q1.

Properties of the typical set are easily derived from those two expressions of Tδ [24]. First, applying Hoeffding’s
inequality [16] for the binomially-distributed

∑
i Yi shows that the typical set has a high probability weight

Pr[Tδ] ≥ 1− επ , (55)

where we defined the projection error
επ = 2 exp(−2nδ2/∆2) , (56)

which is an upper bound on the probability of a sequence being atypical.
Secondly, in contrast to this first property, the typical set has a relatively low cardinality: the number of

typical sequences is exponentially small compared to the total number of sequences. Indeed, from the definition
(48),

|Tδ| = 2n(S+δ)
∑
y∈Tδ

2−n(S+δ) (57)

≤ 2n(S+δ)
∑
y∈Tδ

P (y) ≤ 2n(S+δ) , (58)

which is much smaller than the total number of 2n sequences if S < 1− δ and n is high.
Source coding consists in discarding atypical sequences, which occur with low probability, and encoding typical

sequences into smaller codewords. This encoding is possible because of the small cardinality of the typical set:
a sequence can simply be encoded by its index within a given ordering of the elements of the typical set, which
gives binary codewords a length of at most log2|Tδ| ≤ n(S + δ) ≡ m.

Schumacher compression applies this procedure to the quantum state ρA′ =
∑
y∈{0,1}n λn(0|y) |y〉〈y|, which

describes the output of a quantum source of pure states |y〉 with probabilities λn(0|y). In order to identify an
atypical state, a projective typicality measurement is performed, with projectors {Πδ, I −Πδ} where

Πδ =
∑
y∈Tδ

|y〉〈y| . (59)
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If the typicality measurement succeeds, the state ends up in the typical subspace spanned by {|y〉 : y ∈ Tδ},
and can be encoded in a 2m-dimensional Hilbert space by an invertible isometric map V . If instead the
measurement fails, a given typical state τ is substituted and encoded the same way. The resulting state is
therefore C(ρA′) = V [ΠδρA′Πδ + (1− Tr(ΠδρA′)) τ ]V †.

The two properties (55) and (58) of the typical set can be expressed in terms of the typical projector Πδ:

Tr(ΠδρA′) ≥ 1− επ , (60)
Tr(Πδ) ≤ 2n(S+δ) . (61)

The first property can be used in the gentle operator lemma [25, 26] to show that a successful typicality
measurement does not disturb the state by much [18]:

‖ΠδρA′Πδ − ρA′‖1 ≤ 2
√
επ . (62)

Hence, the decompressed state is close in trace distance to the original [18]:∥∥V †C(ρA′)V − ρA′
∥∥

1 ≤ 2
√
επ + επ . (63)

As Schumacher originally noted [23], this remains true when we consider the global state in AA′; the entan-
glement of the state is therefore not destroyed by compression:∥∥(I ⊗ V †)(Id⊗ C)[|ψθ〉〈ψθ|⊗n](I ⊗ V )− |ψθ〉〈ψθ|⊗n

∥∥
1 ≤ 2

√
επ + επ . (64)

Bennett et al.’s dilution procedure simply results from the composition of this compression with quantum
teleportation. The proof of Lemma 6 is therefore immediate:

Proof of Lemma 6. Defining Dδ,θ(|φ+〉〈φ+|⊗mA′′B) to be the outcome of the composition of a local preparation of
|ψθ〉〈ψθ|⊗nAA′ , followed by Schumacher compression over δ-typical sequences of A′, teleportation from A′ to B
using |φ+〉〈φ+|⊗mAB and decompression on B, Lemma 6 follows.
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