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Parkinson’s disease (PD) is a quite common neurodegenerative disorder with a
prevalence of approximately 1:800–1,000 in subjects over 60 years old. The aim of
our study was to determine the candidate target genes in PD through meta-analysis
of multiple gene expression arrays datasets and to further combine mRNA and miRNA
expression analyses to identify more convincing biological targets and their regulatory
factors. Six included datasets were obtained from the Gene Expression Omnibus
database by systematical search, including five mRNA datasets (150 substantia nigra
samples in total) and one miRNA dataset containing 32 peripheral blood samples. A chip
meta-analysis of five microarray data was conducted by using the metaDE package
and 94 differentially expressed (DE) mRNAs were comprehensively obtained. And 19
deregulated DE miRNAs were obtained through the analysis of one miRNAs dataset
by Qlucore Omics Explorer software. An interaction network formed by DE mRNAs,
DE miRNAs, and important pathways was discovered after we analyzed the functional
enrichment, protein–protein interactions, and miRNA targetome prediction analysis. In
conclusion, this study suggested that five significantly downregulated mRNAs (MAPK8,
CDC42, NDUFS1, COX4I1, and SDHC) and three significantly downregulated miRNAs
(miR-126-5p, miR-19-3p, and miR-29a-3p) were potentially useful diagnostic markers
in clinic, and lipid metabolism (especially non-alcoholic fatty liver disease pathway) and
mitochondrial dysregulation may be the keys to biochemically detectable molecular
defects. However, the role of these new biomarkers and molecular mechanisms in PD
requires further experiments in vivo and in vitro and further clinical evidence.

Keywords: Parkinson’s disease, bioinformatics, biomarkers, genes, miRNA, NAFD pathway

INTRODUCTION

Parkinson’s disease (PD) is a quite common neurodegenerative disorder with a prevalence of
approximately 1:800–1,000 in subjects over 60 years of age (Bekris et al., 2010; Lin and Farrer,
2014). The pathological hallmarks of PD are the degeneration of dopaminergic neurons in the
substantia nigra (SN) pars compacta and Lewy bodies formed by the accumulation of α-synuclein
(SNCA) in the remaining neurons (Spillantini et al., 1997; Braak et al., 2003). PD is a progressive
disease characterized by motor signs such as resting tremor, bradykinesia, muscle rigidity,
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and posture abnormalities, but though in some patients,
non-motor symptoms may appear, including depression,
anxiety, sleep disturbance, fatigue, cognitive disorders, and
gastrointestinal and sexual dysfunction (Schneider and Obeso,
2015).

Parkinson’s disease was originally thought to be a sporadic
disease caused by environmental factors such as exposure
to 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP) or
paraquat (Langston et al., 1983; Ascherio and Schwarzschild,
2016). However, epidemiological investigation in recent decades
found that approximately 10% of patients had a family history of
PD, and approximately 90% of patients had sporadic PD (Klein
and Westenberger, 2012; Ascherio and Schwarzschild, 2016). It
is generally accepted that PD is a multifactorial disease caused by
the interaction between environmental and genetic factors, and
approximately 5–10% of PD cases have a mutation in one of the
several disease-associated genes according to the report (Farrer,
2006; Kalia and Lang, 2015). Several genes have been shown to be
closely related to PD, such as α-synuclein (SNCA), leucine-rich
repeat kinase 2 (LRRK2), Parkin RBRE3 ubiquitin protein
ligase (PRKN), Parkinsonism associated deglycase (PARK7),
PTEN-induced putative kinase 1 (PINK1), and ATPase 13A2
(ATP13A2) (Bekris et al., 2010; Nuytemans et al., 2010; Klein
and Westenberger, 2012; Heman-Ackah et al., 2013). However
because these mutations do not cause disease directly, it is more
likely that they make people more susceptible to the PD when
in cooperation with other risk factors (Lesage and Brice, 2009).
In sporadic PD patients, SNCA and mitochondrial dysfunction
are the predominant components of Lewy bodies, and complex I
is found to be defective in the cytoplasm in the SN (Henchcliffe
and Beal, 2008). However, what we know about the potential
mechanism of PD is just the tip of the iceberg. At the genomic
level, it is rather difficult to analyze the disease, especially sporadic
PD, from a single gene mutation, and it is more the imbalance
in gene expression and phenotypic changes were caused by a
variety of regulatory mechanisms which act as mediators between
genotype and phenotype. microRNA (miRNA) is considered
as one of these mediators. Some deregulatory miRNAs were
detected in the humans that lead to mitochondrial dysfunction,
altered mitochondrial dynamics, oxidative stress, excitotoxicity,
and the accumulation of SNCA, consequently resulting in
neurodegeneration (Martin, 2010). Since miRNAs and its target
genes are not in a one-to-one but one-to-many relationship (Qiu
et al., 2015), the mutual regulation network between miRNAs
and target genes can provide more insight into the disease and
possible new treatments. Although the exploration of PD has
been explored for nearly a century, the pathogenesis of PD is not
yet clear.

Massively parallel microarray analysis allows for the global
assessment of more credible relationships between gene
expression and clinical manifestations in unbiased, and reveals
the etiology of such complex diseases by identifying abnormalities
in genes or pathways (Schadt et al., 2005; Scherzer, 2009).
Large-scale genetic data can be categorized and detected based
on phenotypic characteristics and produce hypotheses about
the mechanisms of disease, which may have an underestimated
role in the decoding of complex diseases (Scherzer et al., 2008).

The utility of genome-wide expression data is often subjected to
typical inconsistent analysis, non-replication, and small sample
effects in practice.

To effectively reducing the bias of small sample studies
and nominating deregulated genes, this integrated analysis
consolidated data information on multiple datasets from different
platforms. The aim of our work was to determine the candidate
target genes in PD through meta-analysis and bioinformatic
analysis of multiple datasets in gene expression and to further
combine mRNA and miRNA expression analyses to seek out
more convincing biological targets and their regulatory factors. In
this study, we found several new potential mRNAs and miRNAs
as well as one pathway in combination with the mRNA and
miRNA microarray analysis and have mapped the intrinsic roles
of genes and pathways in PD.

MATERIALS AND METHODS

Materials and Data Pre-processing
Candidate microarrays associated with PD were acquired by
retrieving the human gene expression studies deposited in the
Gene Expression Omnibus (GEO) database1. Datasets related
to PD were researched with the term “PD” of Homo sapiens
(target). By September 14, 2017, a total of 1418 datasets were
retrieved, including different types of samples and various types
of expression data. The inclusion criteria were as follows: (1)
original experimental studies; (2) human SN sample; (3) mRNA
expression profile; (4) can obtain the unprocessed raw data
(CEL files). The exclusion criteria were as follows: (1) repeated
reports from the same institute or hospital; (2) non-human SN
sample; (3) a non-expression gene chip, and the unprocessed
raw data (CEL files) of these datasets were acquired from
GEO database. All the included studies obtain relative ethics
approval. All datasets were pre-processed individually (including
background adjustment, normalization, summarization) on the
base-2 logarithm by robust multi-array average (RMA) and
annotated by converting different probe IDs to gene IDs by
using R language. We use the Bioconductor software to compute
RMA expression measures. Loaded the appropriate software
with library(affy) to read all the CEL files in the current
working directory. After loading the data, we compute the RMA
expression measure. For miRNA microarray, the unqualified
chips would be retrieved, and the samples for RNA detection
were human peripheral blood. The miRNA dataset was imported
into the Qlucore Omics Explorer (QOE) software for data
pre-processing (mean = 0, SD = 1).

Integrated Analysis of Gene Expression
Datasets
Included gene expression datasets were loaded into R language
for objective quality control by MetaQC package, which
intended to identify whether the included chip was qualified
for genomic meta-analysis. The MetaQC package provides four
quantitative quality control indexes, including internal quality

1https://www.ncbi.nlm.nih.gov/geo/
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control (IQC), external quality control (EQC), accuracy quality
control of differentially expressed (DE) gene detection (AQCg),
or pathway identification (AQCp) and consistency quality
control in genes (CQCg) or pathways (CQCp). A principal
component analysis (PCA) was performed to further visualize
the quality control results. Eligible microarrays were subjected
to threshold screening individually to obtain DE genes in PD
under specific conditions using the Linear Models for Microarray
(LIMMA) package. For integrated analysis, we further carried
out the genomic meta-analysis. Considering the feasibility of
the methods, a modified two-sample t-test by adding a fudging
parameter was used to extrapolate the P-values and Fisher’s
method was implemented for statistical analysis of significance
(Tseng et al., 2012). A corrected P-value (P < 0.05) was
considered statistically significant for the DE mRNAs. For
visualization, DE mRNAs based on specific fault discovery rate
(FDR) values (FDR < 0.0001) were plotted by the MetaDE
package (heatmap.sig.genes).

Functional Analysis of PD-Related DE
Genes
To access the prospective functions of PD-related DE genes
found in the meta-analysis, online tools such as the Database
for Annotation, Visualization and Integrated Discovery (DAVID)
(Huang da et al., 2009a,b) were used. The functional categories
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
and Gene Ontology (GO) terms were analyzed. For narrated
KEGG pathways and GO terms that enriched the target genes,
P-values less than 0.05 were defined as the cut-off criterion.
The critical assessment and integration of protein–protein
interactions (PPIs) of PD-related DE genes, including direct
as well as indirect associations, were analyzed by the STRING
database (Szklarczyk et al., 2015). The PPI networks were
visualized by Cytoscape software (Shannon et al., 2003).

Analysis of miRNA Expression Dataset
and Target Prediction
Qlucore Omics Explorer software was primarily capable of
screening for DE miRNAs (Jimbo et al., 2011). Primarily, QOE
software performed the normalized processing of mean = 0
and var = 1 for the original data, and further calculated the
corresponding standard error σ for each variable. We filtered out
the variables with small differences among samples according to
the statistics by σ/σmax. After data preprocessing, the comparison
between two groups was performed and specific filter variable
parameters were selected for statistical analysis of significance
(P < 0.001, q < 0.01, fold change > 2). The predicted target genes
of DE miRNAs were identified by three different target prediction
algorithms: miRDB2 (Wong and Wang, 2015) TargetScan 7.13

(Agarwal et al., 2015) and microT_CDS of Diana Tools4 (Reczko
et al., 2012; Paraskevopoulou et al., 2013). Unique genes with
target sites on 3′-UTR were incorporated. To reduce the false

2http://www.mirdb.org
3http://www.targetscan.org/vert_71/
4http://diana.imis.athena-innovation.gr/DianaTools

positive rate and improve persuasion, we obtained the overlap
target genes of the three algorithms mentioned above.

RESULTS

Integrated Analysis of PD Gene
Expression Datasets
Six primary datasets with available mRNA expression data for
SN samples in PD patients and controls were identified by
searching the GEO database (GSE20186, GSE8397, GSE20141,
GSE20333, GSE7621, and GSE20295). One of these eligible
datasets (GSE20295) was excluded after the quality control using
the MetaQC package and visualization by PCA (Figure 1A,
additional data were given in Online Resource Supplementary
Table S1). The remaining five original datasets (accession
numbers GSE20186, GSE8397, GSE20141, GSE20333, and
GSE7621), six microarrays in total (dataset GSE8397 contained
two mRNA chips: 39 individual tissue samples were tested using
one A and one B mRNA chip per sample), were incorporated in
our meta-analysis, for a total of 150 independent SN samples (80
PD patients and 70 controls, Table 1). Each dataset was analyzed
independently to obtain its own DE mRNAs before performing
pooled analysis. Approximately 193 DE mRNAs (hereinafter
referred to as overlap DE mRNAs) were confirmed to co-exist
in all eligible datasets. After merging the datasets, we identified
94 mRNAs (hereinafter referred to as meta-DE mRNAs) showing
consistent DE patterns using a penalized t-test by adding a
fudging parameter, and the maximum P-value and Fisher’s
method by summarizing −log (P-value) across studies were
chosen to eliminate the significant influence of the large number
of samples (Lu et al., 2010). The heatmap of the meta-DE mRNAs
was plotted and visualized by setting a particular FDR (<0.00001,
Figure 1B and additional data were given in Online Resource
Supplementary Figure S1), which demonstrated that meta-DE
mRNAs were all downregulated (meta-DE mRNAs expression
in each dataset are shown in Online Resource Supplementary
Table S2, and the details of each meta-DE mRNA are given in
Online Resource Supplementary Table S3).

Enrichment Analysis of the DE Gene
Through the enrichment analysis of KEGG pathways,
meta-DE genes were mainly involved in the Huntington’s
disease pathway, PD pathway, Alzheimer’s disease pathway,
non-alcoholic fatty liver disease (NAFLD) pathway, and the
oxidative phosphorylation pathway (Figure 2D). The results of
enrichment analysis using three categories of GO were as follows:
(1) biological processes: mitochondrial ATP synthesis-coupled
electron transport, mitochondrial membrane organization,
modulation by virus of host process, branched-chain amino
acid catabolic process, aerobic respiration, etc. (Figure 2A);
(2) molecular functions: oxidoreductase activity acting on
NAD(P)H, oxidoreductase activity of a heme group of donors,
SMAD binding, and oxidoreductase activity of a sulfur group of
donors (Figure 2B); and (3) cellular component: mitochondrial
respiratory chain, respiratory chain complex, organelle envelope
lumen, and rough endoplasmic reticulum (Figure 2C). The
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FIGURE 1 | (A) Quality control result. (B) DE genes through the method of meta-DE. (For the sake of space, only a part of the figure is shown here. The full size
figure is displayed in Online Resource Supplementary Figure S1.

TABLE 1 | Baseline characteristics of datasets.

Study Country GEO accession Platform ID Sample type Experiment type Cases/controls

Number Age at death (range) Male (%)

Zheng USA GSE20186 GPL96 SNa mRNA 14/14 70–84/52–90 \

Moran UK GSE8397-A GPL96 SN mRNA 24/15 68–89/46–81 66.6/58

GSE8397-B GPL97

Middleton USA GSE20141 GPL570 SN mRNA 10/8 63–93/47–94 50/38

Jasmine Israel GSE20333 GPL201 SN mRNA 6/6 70–87/68–88 67/67

Mullen USA GSE7621 GPL570 SN mRNA 16/9 63–87/46–90 81/44

Middleton USA GSE20295 GPL96 SN mRNA 10/18 70–82/41–94 60/61

Oliveira Portugal GSE16658 GPL7722 PBb microRNA 19/13 58–71/51–73 53/38

aSubstantia nigras. bPeripheral blood.

enrichment analysis by GO revealed that DE genes were mainly
involved in biological processes including the ATP metabolic
process and electron transfer, and the main organelles in these
processes were mitochondria, which were consistent with the
results of GO enrichment with cellular components.

In addition, we established PPI networks using the STRING
database to further investigate the functional partnership and
interaction of overlapping DE genes (Figure 3A) and meta-DE
genes (Figure 3B), respectively, and the results were visualized
by Cytoscape software. Interestingly, MAPK8, CDC42, NDUFS1,
COX4I1, RAD23B, and SDHC, respectively, were in the core
position of two PPI networks. The significant level of these six
core genes was showed in Table 2. Once these hub nodes were
expurgated, both PPI networks became inattentive. Of these core
genes, NDUFS1, COX4I1, and SDHC, were significantly linked to
mitochondrial function which means these three DE genes were
potentially related to PD. Furthermore, in addition to the known
pathways, we found a pathway (NAFLD pathway) that was not
previously reported to be closely associated with PD. Of note, two
of these core genes (MAPK8, CDC42) were significantly involved
in the NAFLD pathway.

Analysis of the PD miRNA Expression
Dataset
We identified the GSE16658 dataset with available miRNA
expression data containing 32 peripheral blood samples of PD
patients (19 samples) and controls (13 samples) by searching the

GEO database. Nineteen DE miRNAs were identified using QOE
software; among them, the top five most significant DE miRNAs
were miR-199-3p (miR-199a-3p/miR-199b-3p), miR-126-5p,
miR-29a-3p, miR-19b-3p, and miR-301a-3p (Table 3). The
miRNA target genes were obtained from experimentally
supported databases with experimentally verified and different
prediction algorithms. The consensus of the target genes of
the top five miRNAs was summarized (Figure 4, additional
data are provided in Online Resource Supplementary Table S4).
Here, we identified 11 genes coexisted in the union set of all
target genes and meta-DE mRNAs (NDUFS1, MAPK8, CDC42,
SNCA, VAPA, USP13, TIMM8B, KIF3A, KPNA6, MTCH2, and
SUB1).

Comprehensive Analysis of DE Genes
and miRNAs
To further investigate the relationship between top 5 DE
miRNAs and 11 DE mRNAs mentioned above, we plotted
their regulatory networks by Cytoscape. The results showed
that the interaction between miRNAs and genes was formed
with miR-126-5p, miR-29a-3p, and miR-19b-3p as the center
(Figure 5A). Each miRNA interacted with several meta-DE
genes, including miR-126-5p with MTCH2, VAVP, SNCA, and
NDUFS1; miR-29a-3p with CDC42, TIMM8B, and SUB1; and
miR-19b-3p with MAPK8, USP13, and KPNA6. Here, we outline
the relationship analyzed above, including genes and pathways,
particularly the main underlying pathway related to PD clustering
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FIGURE 2 | Functional enrichment analysis of meta-DE genes. (A) Cellular components of GO enrichment analysis. (B) Biological processes of GO enrichment
analysis. (C) Molecular functions of GO enrichment analysis. (D) KEGG pathway enrichment analysis.

FIGURE 3 | PPI networks. (A) PPI network of overlap DE genes. (B) PPI network of meta-DE genes. The size and color of map nodes are determined by the degree
value, which renders a gradual process by setting the small size with a low degree in green, large size with a high degree in orange.

by meta-DE genes (Figure 5B). Altogether, we extracted the most
potential biomarkers, five mRNAs and three miRNAs, as well as
one new pathway from the whole analysis as a matter of priority
(Table 4).

DISCUSSION

We utilized a careful method to standardize and unify the
cross-platform datasets of gene profiling in PD for further
integrated analyses. The integrated analysis method described

here aimed to reduce the bias of small sample studies and
nominating deregulated genes effectively. We have included six
gene expression data point from five different platforms in PD
and then performed meta-analysis using the MetaDE package in
R language for merging and gene filtering of gene expressions
(Wang et al., 2012). We identified 94 down regulated DE mRNAs
in SN samples of PD and 19 deregulated miRNAs in PB samples
of PD. Of these DE mRNAs and miRNAs, we deemed five
genes (NDUFS1, COX4I1, SDHC, CDC42, and MAPK8) and three
miRNAs (miR-126-5p, miR-29a-3p, and miR-19b-3p) worth

Frontiers in Aging Neuroscience | www.frontiersin.org 5 June 2018 | Volume 10 | Article 178

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00178 June 14, 2018 Time: 17:47 # 6

Chi et al. Integrated Analysis of Parkinson’s Disease

TA
B

LE
2

|T
he

si
gn

ifi
ca

nt
le

ve
lo

fs
ix

co
re

ge
ne

s.

m
et

aD
E

G
S

E
20

33
G

S
E

83
97

-A
G

S
E

83
97

-B
G

S
E

20
14

1
G

S
E

20
18

6
G

S
E

76
21

G
en

es
lo

g
FC

ad
j.P

.V
al

lo
g

FC
ad

j.P
.V

al
lo

g
FC

ad
j.P

.V
al

lo
g

FC
ad

j.P
.V

al
lo

g
FC

ad
j.P

.V
al

lo
g

FC
ad

j.P
.V

al

C
D

C
42

−
0.

66
36

65
75

6
0.

00
18

48
20

6
−

1.
35

44
77

73
6

1.
26

76
5E
−

19
−

0.
52

50
58

05
0.

00
17

71
28

6
−

1.
52

08
05

16
2

0.
00

49
46

43
7
−

0.
85

42
36

19
9

0.
00

00
72

5
−

0.
88

02
81

61
4

0.
00

34
90

54
7

M
A

P
K

8
−

1.
03

30
36

22
8

0.
00

01
59

25
5
−

0.
61

48
15

26
3

1.
46

E
−

13
−

1.
16

49
26

55
1

1.
36

E
−

22
−

1.
51

81
36

17
7

0.
00

02
02

71
5
−

1.
51

81
36

17
7

0.
00

02
02

71
5
−

1.
55

28
06

07
7

6.
68

E
−

08

N
D

U
FS

1
−

1.
46

53
04

47
6

0.
00

01
28

65
4
−

1.
26

49
18

05
8

4.
68

E
−

14
−

0.
47

59
42

64
5

4.
68

E
−

14
−

1.
58

27
31

58
3

0.
00

76
53

76
2
−

0.
80

69
36

95
5

0.
00

35
15

46
7
−

0.
40

64
95

10
8

0.
04

62
79

67
3

C
O

X4
I1

−
1.

03
05

93
76

8
2.

48
17

6E
−

05
−

0.
49

50
18

25
1

2.
62

E
−

09
−

0.
49

06
06

12
5

2.
62

E
−

09
−

1.
00

24
86

74
1

0.
01

26
15

61
7
−

0.
57

40
23

97
1

0.
00

00
48

4
−

0.
49

81
11

01
3

0.
00

00
01

93

R
A

D
23

B
−

1.
14

42
08

00
7

0.
00

12
36

88
6
−

0.
52

61
76

43
8

4.
33

E
−

08
−

1.
10

87
09

01
1

4.
33

E
−

08
−

1.
48

41
49

56
7

0.
00

00
85

5
−

0.
46

95
60

14
5

0.
01

78
81

86
1
−

0.
61

17
53

77
4

0.
00

01
72

39
6

S
D

H
C

0.
00

05
63

16
1
−

0.
90

25
24

57
5
−

0.
65

96
62

63
9

1.
91

E
−

10
−

0.
71

31
86

33
3

1.
44

E
−

16
−

1.
32

59
25

28
4

0.
00

30
84

89
5
−

0.
51

11
24

12
6

2.
82

E
−

05
−

0.
51

03
56

68
9

1.
18

E
−

05

exploring due to their relationship with the NAFLD pathway or
the biological process of mitochondrial function.

Previous studies have suggested that several miRNAs, such as
miR-133b (Kim et al., 2007), miR-16 (Zhang and Cheng, 2014),
miR-153 (Doxakis, 2010), miR-205 (Cho et al., 2013), miR-7
(Junn et al., 2009; Doxakis, 2010), miR-64, miR-65, and the
let-7 family (Asikainen et al., 2010), were related to PD. In our
research, 19 significantly DE miRNAs were identified including
let-7f and let-7g (Asikainen et al., 2010), which were confirmed
previously and several new miRNAs. To further verify the results
of our integrated analysis in a more comprehensive way, we
compared the target genes predicted by the top five DE miRNAs
with the analyzed DE mRNAs, and we initially conjectured that
miR-126-5p, miR-19-3p, and miR-29a-3p were more likely to
participate in the pathogenesis of PD.

The enrichment analysis by GO revealed that DE genes
were mainly involved in biological processes including ATP
metabolism process and electron transfer, and the main
organelles in these processes were mitochondria, which was
consistent with the results of GO enrichment with cellular
components. Mitochondrial dysfunction is closely linked to
the occurrence and development of PD (Stoessl, 1999; Koyano
et al., 2013). Damage to the electron transport chain, the
inhibition of complex I activity, mishandling of calcium,
enhanced sensitivity to mitochondrial toxins, oxidative stress,
and dysfunctional mitochondrial dynamics could contribute to
neuronal dysfunction and participate in the pathogenesis of
PD (Schapira et al., 1990; McCoy and Cookson, 2012). As an
important energy-producing organelle in cells, mitochondria
oxidize carbon and further produced ATP through oxidative
phosphorylation (Wallace et al., 2010). Accordingly, damage to
mitochondria in any process may disrupt the energy balance and
promote the occurrence of the disease. Combining the results
of two PPI networks, the core genes linked to mitochondrial
function included three mitochondrial-localized genes (NDUFS1,
COX4I1, and SDHC).

Both NDUFS1 and COX4I1 are located at the mitochondrial
inner membrane and play an integral role in the electron
transport chain. It was noted that pyrroloquinoline quinone
can protect SH-SY5Y cells from the cytotoxicity induced by a
mitochondrial complex I inhibitor (Zhang et al., 2014). However,
silencing NDUFS1 in midbrain neurons or SH-SY5Y cells
reduced the neuroprotective effect of pyrroloquinoline quinone
(Zhang et al., 2016), which means that the down regulation
of NDUFS1 may be detrimental to mitochondrial function. As
a core subunit of ubiquinone oxidoreductase, the deregulation
of NDUFS1 might result from the pathogenesis of PD by
undermining mitochondrial function. In addition, production
coded by COX4I1 is the terminal enzyme of the mitochondrial
respiratory chain. A large-scale study of PD gene expression
profiling demonstrated that COX4I1 was downregulated in
whole-blood in patients with PD (Shamir et al., 2017). The
consensus of deregulation both in blood and SN indicated
that COX4I1 may be a potential biomarker in PD. There is
currently no significant evidence that SDHC is involved in
the pathogenesis of PD. However, its coding product as a
member of nuclear-encoded subunits that comprises succinate
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TABLE 3 | The DE miRNAs.

miRNA ID Mature miRNA P-value Fold change Sequence

hsa-miR-199b-3p miR-199b-3p 3.14E−05 2.18189 UAGCACCAUUUGAAAUCGGUUA

hsa-miR-126-5p miR-126-5p 4.59E−05 3.01653 CAGUGGUUUUACCCUAUGGUAG

hsa-miR-29a miR-29a-3p 0.000180049 2.01085 UGAGGUAGUAGAUUGUAUAGUU

hsa-miR-19b miR-19b-3p 0.0001859 2.4704 UAUUGCACAUUACUAAGUUGCA

hsa-miR-301a miR-301a-3p 0.000211687 2.47262 UGAGGUAGUAGUUUGUGCUGUU

hsa-miR-19a miR-19a-3p 0.000280255 2.60849 UGUGCAAAUCUAUGCAAAACUGA

hsa-miR-142-5p miR-142-5p 0.000282505 2.14868 UGUAAACAUCCUUGACUGGAAG

hsa-miR-101 miR-101-3p 0.000402333 2.63582 UAAGGUGCAUCUAGUGCAGUUAG

hsa-miR-30e miR-30e-5p 0.000508645 2.82353 UAAGGUGCAUCUAGUGCAGAUAG

hsa-miR-140-5p miR-140-5p 0.00069842 2.20528 UGUAGUGUUUCCUACUUUAUGGA

hsa-let-7g let-7g-5p 0.000811595 2.22691 CAUUAUUACUUUUGGUACGCG

hsa-miR-142-3p miR-142-3p 0.00086 2.55601 UAGCACCAUUUGAAAUCAGUGUU

hsa-miR-105 miR-105-5p 0.000997507 2.24747 ACAGUAGUCUGCACAUUGGUUA

hsa-let-7f let-7f-5p 0.00123097 2.06713 UGAGGUAGUAGUUUGUACAGUU

hsa-miR-32 miR-32-5p 0.00138919 2.43632 CAUAAAGUAGAAAGCACUACU

hsa-miR-18b miR-18b-5p 0.0014553 2.15171 UAGCUUAUCAGACUGAUGUUGA

hsa-miR-18a miR-18a-5p 0.00163672 2.1271 UCAAAUGCUCAGACUCCUGUGGU

hsa-let-7i let-7i-5p 0.00175562 2.10813 UACAGUACUGUGAUAACUGAA

hsa-miR-21 miR-21-5p 0.00226262 2.47414 UGUGCAAAUCCAUGCAAAACUGA

FIGURE 4 | Summary results of the consensus of targets genes of top five miRNAs.

FIGURE 5 | The interaction between miRNAs and genes. (A) The relationship of gene–gene and gene–miRNA. (B) The outline of the interaction between the
significant KEGG pathways of meta-DE genes and miRNAs.

dehydrogenase (also known as mitochondrial complex II) is
a key enzyme complex of the tricarboxylic acid cycle and
aerobic respiratory chains of mitochondria, which shows that the
relationship between SDHC and PD deserves further study.

Kyoto Encyclopedia of Genes and Genomes pathway
enrichment analysis for meta-DE genes shows that the genes
relate to the neurodegenerative disease signaling pathway,
including PD, Alzheimer’s disease and Huntington’s disease,
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TABLE 4 | Priority genes, related miRNAs, and functions.

Gene Gene name Genomic location Related miRNA Predicted PD-related function

NDUFS1 NADH: Ubiquinone oxidoreductase core subunit S1 2q33.3 miR-126-5p Mitochondrial function

COX4I1 Cytochrome C oxidase subunit 4I1 16q24.1 \ Mitochondrial function

SDHC Succinate dehydrogenase complex subunit C 1q23.3 \ Mitochondrial function

CDC42 Cell division cycle 42 1p36.12 miR-29a-3p NAFLD pathway

MAPK8 Mitogen-activated protein kinase 8 10q11.22 miR-19b-3p NAFLD pathway

and the NAFLD pathway. Neurodegenerative diseases share
fundamental processes, such as mitochondrial anomalies
and oxidative stress, in spite of their distinct pathological
and clinical features (Di Carlo et al., 2012). Simultaneously,
cholinergic deficit is a common pathogenesis among these
three diseases and leads to analogous clinical manifestations
such as dyskinesia (Pepeu and Grazia Giovannini, 2017). These
prevailing conclusions support the effectiveness and validity of
our integrated analysis.

Here, we proposed that the NAFLD pathway may probably
be a new PD-related pathway that has been reportedly linked
to neurodegeneration, especially AD. The study of APP-Tg mice
indicates that NAFLD offers the opportunity to accelerate the
symptoms of AD (Kim et al., 2016). A long-term high-fat
diet induces systemic inflammation that stimulates the central
nervous system to cause neurodegeneration (Kim et al.,
2016). Studies that explore the association of NAFLD with
PD are currently lacking, however, evidence from clinical
and experimental investigations is mounting that alterations
in lipid metabolism participate in the pathogenesis through
direct crosstalk between lipids and SNCA (Ruiperez et al.,
2010). Noticeably, two meta-DE genes (MAPK8 and CDC42)
(Sharma et al., 2012; Wang et al., 2016), including their
related miRNAs (miR-19b-3p and miR-29a-3p, respectively),
participate in the NAFLD pathway. An in vivo and in vitro
study confirms that miR-29 can significantly inhibit HMGCR
expression by targeting 3′-UTR of HMGCR mRNA and
participate in the accumulation of free cholesterol in the
livers of mice with non-alcoholic steatohepatitis (Liu et al.,
2017). Therefore, miR-29 may be an important regulator of
hepatic cholesterol homeostasis and a potential therapeutic
target for the treatment of NAFLD and other liver diseases
associated with free cholesterol accumulation. According to our
integrated analysis, it is reasonable to assume that miR-29a-3p
is involved in the development and progression of PD
through the expression of MAPK8 in the NAFLD pathway.
Paradoxically, the inhibition of the MAPK8 (also named JNK1)
was reported to be a neuroprotective factor (Busquets et al.,
2017) which seems contradictory to our analytic results. The
reasons for this phenomenon are obscure and need further
verification and exploration. Some reports have illustrated
the role of CDC42 in the pathophysiology of inherited PD
(Musilli et al., 2016), and similarly, CDC42 is deregulated in
NAFLD (Wang et al., 2016) which may significantly indicate
the pivotal role of CDC42 in PD especially though the
potential NAFLD pathway. Its related miRNA (miR-19b-3p)
may participate in neurodegeneration by modulating neural

cell apoptosis (Wang et al., 2016). We hereby propose that it
is meaningful to conduct in-depth follow-up studies on the
relationship between the NAFLD pathway and PD to elucidate
the pathogenesis of PD and find new therapeutic targets or
preventive measures.

This study has several limitations. One is the limited number
of included datasets, especially the miRNA datasets. The other
is the limited sample size. In the preliminary protocol, we
intended to have brain, blood, and cerebrospinal fluid samples
included in the mRNA and miRNA microarray. However, some
of these sample types were not included in the current study
due to the insufficiency of datasets and the inaccessibility of
the raw data. Therefore, we will monitor this progress in PD.
Further investigations are required to confirm whether our new
biomarkers are potential prognostic predictors or therapeutic
targets in PD.

In summary, our integrated analysis of PD genomics
provides us with a wealth of resources to explore the
role of target genes and miRNAs in PD. Five significantly
downregulated genes (MAPK8, CDC42, NDUFS1, COX4I1,
and SDHC) and three significantly downregulated miRNAs
(miR-126-5p, miR-19-3p, and miR-29a-3p) were potentially
useful clinical diagnostic markers. Lipid metabolism (especially
NAFLD pathway) and mitochondrial dysregulation may underlie
biochemically detectable deeper molecular defects. Future work
should be focused on these two aspects to reveal the pathogenesis
of PD and to develop new therapeutic targets for the clinical
treatment of PD.
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