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Abstract 
Background: Gene signatures derived from transcriptomic data using 
machine learning methods have shown promise for biodosimetry 
testing. These signatures may not be sufficiently robust for large scale 
testing, as their performance has not been adequately validated on 
external, independent datasets. The present study develops human 
and murine signatures with biochemically-inspired machine learning 
that are strictly validated using k-fold and traditional approaches. 
Methods: Gene Expression Omnibus (GEO) datasets of exposed 
human and murine lymphocytes were preprocessed via nearest 
neighbor imputation and expression of genes implicated in the 
literature to be responsive to radiation exposure (n=998) were then 
ranked by Minimum Redundancy Maximum Relevance 
(mRMR). Optimal signatures were derived by backward, complete, and 
forward sequential feature selection using Support Vector Machines 
(SVM), and validated using k-fold or traditional validation on 
independent datasets. 
Results: The best human signatures we derived exhibit k-fold 
validation accuracies of up to 98% (DDB2,  PRKDC, TPP2, PTPRE, and 
GADD45A) when validated over 209 samples and traditional validation 
accuracies of up to 92% (DDB2,  CD8A,  TALDO1,  PCNA,  EIF4G2,  LCN2, 
 CDKN1A,  PRKCH,  ENO1,  and PPM1D) when validated over 85 samples. 
Some human signatures are specific enough to differentiate between 
chemotherapy and radiotherapy. Certain multi-class murine 
signatures have sufficient granularity in dose estimation to inform 
eligibility for cytokine therapy (assuming these signatures could be 
translated to humans). We compiled a list of the most frequently 
appearing genes in the top 20 human and mouse signatures. More 
frequently appearing genes among an ensemble of signatures may 
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indicate greater impact of these genes on the performance of 
individual signatures. Several genes in the signatures we derived are 
present in previously proposed signatures. 
Conclusions: Gene signatures for ionizing radiation exposure derived 
by machine learning have low error rates in externally validated, 
independent datasets, and exhibit high specificity and granularity for 
dose estimation.
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Molecular Diagnostics, Validation, Biodosimetry, Support Vector 
Machine, Minimum Redundancy Maximum Relevance
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Introduction
Potential radiation exposures from industrial nuclear accidents, 
military incidents, or terrorism are threats to public health1. There 
is a need for large scale biodosimetry testing, which requires  
efficient screening techniques to differentiate exposed individu-
als from non-exposed individuals and to determine the severity of  
exposure2. Current diagnostic techniques, including the cytogenetic  
gold standard3–6, may require several days to provide accurate 
dose estimates1,7 of large cohorts. To address the need for faster  
diagnostic techniques that accurately measure radiation expo-
sures, gene signatures based on transcriptomic data have been  
introduced7–10. Probit regression models of radiation response 
using 25 probes on peripheral blood samples achieved up to 90%  
accuracy for distinguishing between irradiated blood samples 
and unirradiated controls9. A 74-gene classifier based on nearest  
centroid expression levels was 98% accurate in distinguishing 
four levels of irradiation from controls10. This level of perform-
ance implies that samples exposed to different levels of radiation 
may be distinguishable based on mRNA expression levels of dif-
ferent genes. While this suggests the feasibility of transcriptional  
modeling of radiation responses, validation with external datasets 
is required to establish its reliability for rapid diagnostics. A 
caveat of these signatures is that they have not all been externally 
validated on datasets independent of the source data used for  
model development. A 29-gene signature modelled using a sup-
port vector machine (SVM) was externally validated on such 
a dataset, resulting in 80% accuracy in distinguishing higher 
(≥8Gy) from lower dose (≤2Gy) radiation exposure in novel 
samples7. Previous studies have identified biomarkers that  
distinguish irradiated (ex vivo) from unirradiated blood samples 
with high accuracies11–15. The present study derives signatures 
with improved performance on externally validated samples by  
employing a different selection of modelling techniques. The 
machine learning pipeline used here addresses some of the  
previous limitations through a more rigorous feature selection  
process and stricter validation procedures.

Previously, the Student’s t-test7, the F-test10, and correlation  
coefficients9 were used to identify potential radiation biomar-
ker genes. Although statistical criteria can distinguish genes that 
are differentially expressed upon radiation exposure, they do not  

eliminate expressed genes with redundant responses to radiation 
exposure. Redundancy increases the possibility of overfitting, 
thereby reducing the generalizability of these models to predict 
responses in independent datasets. We address this limitation with 
the information theory-based criterion for gene selection known as 
minimum redundancy maximum relevance (mRMR)16–18, which 
ranks genes according to shared mutual information between 
expression levels and radiation dose (relevance), and by minimizing  
mutual information shared by expression values of these and 
other genes (redundancy)17,18. mRMR outperforms ranking  
criteria based solely on maximizing relevance17. In contrast with  
heuristic approaches like differential expression, we only consider 
genes with evidence of a relationship to radiation response, which 
significantly limits the number of model features. Biochemically-
inspired genomic machine learning (ML) has been used to derive  
high performing gene signatures that predict chemotherapy and 
hormone therapy responses18–20. From an initial set of mRMR-
derived biochemically relevant genes, wrapper approaches for  
feature selection21 are used to find an optimal set of genes that  
predict exposure to radiation.

It can be challenging to obtain highly accurate models that per-
form well on externally validated samples for several reasons. 
Aside from biases in training data, batch effects and lack of 
reproducibility may introduce systematic and random sources of  
variability into gene expression microarray data. Different source 
datasets can impact data normalization, reducing model per-
formance. We utilize two validation procedures. The first is a  
signature-centric approach that mirrors external k-fold validation7.  
The limitation of signature-centric validation is that, while  
signatures allow for the identification of important genes associ-
ated with radiation response, a tangible model is required to gen-
erate actual diagnostic predictions. To address this limitation, we  
also use a second model-centric approach, which we term “tradi-
tional validation”. This procedure applies quantile normalization 
to training and test data before a model is fitted to the training 
data. This quantile method has been shown to be more effective 
than scaling, loess, contrast, and non-linear methods in reduc-
ing variation between microarray data22. Model validation was 
not expected to perform as well as signature validation, because  
quantile normalization is not always successful in eliminating  
variation between microarray datasets, whereas k-fold 
validation is independent of this source of variation. This  
study shows that robust model validation is a critical step in  
reproducibly predicting which individuals have been exposed to  
significant levels of radiation.

Methods
Datasets
Murine gene expression datasets23 were obtained from peripheral 
blood (PB) mononuclear cell samples of ten-week old C57B16 
mice that either received total body radiation at 50 cGy, 200 cGy, 
or 1000 cGy or were not exposed. Post-exposure, total RNA 
was isolated after 6 hours and expression was determined by  
microarray analysis using Operon Mouse V3.0.1 (Gene Expres-
sion Omnibus (GEO): GPL4783 from GSE10640[GPL4783])24 
and Operon Mouse V4.0 arrays (GEO: GPL6524 from 
GSE10640[GPL6524])24. Similar analyses were performed 
with human expression microarrays18, including datasets GEO: 

            Amendments from Version 1

In this revision, we have summarized additional studies that apply 
machine learning to identifying biomarkers of radiation exposure 
(requested by Drs. Quintens and Mysara). We corrected the 
text to address their comment that Glipr2 did not occur more 
frequently than Ms4a1 in the murine gene signatures (this was an 
oversight, since the original Figure 3 was correct). For clarity, we 
have highlighted Eif2ak4 and Ccng1, rather than Glipr2. Based 
on a reader’s suggestion, we have also determined the accuracy 
of the human signatures we derived for detection of partial 
body irradiation exposures. The human signatures have been 
validated on a partial body radiation gene expression dataset 
in an experimental baboon primate model (GEO: GSE77254). 
The revised paper includes a description of this dataset and the 
results of this analysis. 

See referee reports

REVISED
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Figure 1. Flow chart of the biochemically inspired machine learning pipeline used to derive gene signatures. In panel (v), k-fold 
validation splits data into k sections, where each section acts as a test set in turn while the remaining sections act as a training set.  
Panel (v) depicts k-fold validation for k = 3. Coloured circles represent the samples in a dataset where different colours represent different 
radiation doses. In panel (vi), quantile normalization forces data into the same distribution. To demonstrate this, thirty random genes  
were chosen to form a signature. The histograms on the left represent the distributions of expression levels of these genes in the  
pre-normalized datasets GSE1725 and GSE6874[GPL4782]. The histograms on the right represent the distribution of expression levels  
of the same genes post-normalization.

GSE6874[GPL4782]9, GSE10640[GPL6522]24, GSE172525, 
and GSE70126. GSE6874 and GSE10640 consist of PB samples  
collected 6 hours post-exposure from healthy donors and patients 
undergoing total body irradiation at 150–200 cGy analyzed with 
Operon Human V3.0.2 (GEO: GPL4782) and Operon Human  
V4.0 (GEO: GPL6522) microarrays. GSE10640[GPL6522] con-
sists of 32 patients treated with alkylator-based chemotherapy  
without radiation. GSE1725 contains lymphoblastoid cell line 
samples derived from 57 subjects treated with 500 cGy. RNA 
was extracted 4 hours after exposure. Expression was measured 
using Affymetrix Human Genome U95 Version 2 Array (GEO: 
GPL8300). GSE701 contains lymphoblastoid cell lines from  
Fondation Jean Dausset-CEPH which were irradiated at 300 cGy 
or 1000 cGy and extracted 1–24 hours after exposure. Expres-
sion was measured using the Affymetrix Human Genome U95A  
Array (GEO: GPL91). The GSE77254 dataset27 was also 
used to validate our human signatures. This dataset con-
sisted of blood samples collected from baboons that were 
either total body or partial body irradiated with Cobalt 60 at 

either 2.5 or 5 Gy. Expression for each subject was measured 1 
to 2 days after exposure and was related to their hematologic  
acute radiation syndrome (HARS) scores.

Preprocessing (Figure 1, panel i)
Rows and columns of microarray data that are less than 95% 
complete were removed and any remaining missing values were 
imputed using the nearest-neighbor algorithm. Only genes that 
are common across all datasets have been retained. Expression 
values of each probe were transformed to z-scores and the mean 
expression value of probes for the same gene have been assigned  
as the expression of each gene. Human and murine signatures  
were derived separately.

Biochemically-inspired gene selection18–20 (Figure 1, panel ii)
A literature search has been conducted to identify genes implicated 
in radiation response using the search queries “radiation genes,” 
“radiation response genes,” and “radiation signatures” on PubMed. 
Cited genes comprise those differentially expressed after radiation  
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exposure, genes present in DNA repair databases and other  
radiation signatures, and evolutionarily conserved genes that were 
highly expressed in radio-resistant species. A list of 998 genes was 
compiled28–41, Supplementary Table X) for deriving signatures.

Minimum Redundancy Maximum Relevance (mRMR) gene 
ranking11,12 (Figure 1, panel iii)
Rank is assigned by incremental selection of genes based on 
the mutual information difference (MID) criterion16,17. Highly 
ranked genes have expression information that shares mutual 
information with radiation exposure and shares little informa-
tion with expression of other genes. The MID criterion used to 
select the next ranked gene is i

1
max ( , ) ( , ) ,

| S | j S
I i h I i j∈Ω ∈

 
−  

∑  where i is a 
gene selected from Ω, the total gene space, S is the set of genes 
selected before i, |S| is the number of genes selected before i,  
I(i, h) is the mutual information between expression of gene i and  
radiation dose (h), and I(i, j) is the mutual information between 
expression of gene i and expression of gene j.

Support Vector Machine (SVM) Learning
SVM models are classifiers that use hyperplane boundaries to 
separate samples into exposure classes by maximizing the dis-
tance between the separating hyperplanes and samples of each 
class. The fitcecoc function of MATLAB 2017a’s Statistics and  
Machine Learning Toolbox42 with a SVM template was used 
to fit SVM models to training data. The fitcecoc function was 
used because it allows the fitting of multiclass models, which 
was required for analysis of murine samples that were irradi-
ated at four different exposure levels. The SVM models use the 
Gaussian radial basis function kernel and a range of selected 
box-constraint and kernel-scale parameters. The box-constraint, 
denoted by the variable C, determines how severely misclassifica-
tions are penalized during training. The kernel-scale, denoted σ,  
represents the width of the Gaussian radial basis function. These 
parameters collectively control the tradeoff between underfitting 
and overfitting43. After feature selection, a grid search is performed 
to determine the optimal (C,σ) combination for values of C  
and σ between 1 and 100000 (inclusive) by powers of 10 such that 
C ≥ σ.

Feature selection (FS) (Figure 1, panel iv)21

Greedy feature selection was used to derive signatures. Complete 
sequential feature selection (CSFS) sequentially adds genes to an 
initially empty base set. The added gene is the highest mRMR-
ranked gene that is not already included. This is repeated until 
all genes have been evaluated and the best performing subset of 
genes is identified. Forward sequential feature selection (FSFS)  
sequentially adds genes from the top 50 mRMR ranked genes 
to an initially empty base set. The added gene is the one whose  
addition improves the model by the greatest margin. Backward 
sequential feature selection (BSFS) sequentially removes genes 
from the top 30 mRMR ranked genes. The gene removed is the 
one whose removal causes the greatest improvement in the  
model. For BSFS and FSFS, we measure model improve-
ment using misclassification or log loss during k-fold validation  
(see Performance metrics section below). Genes are added or 
removed until model performance plateaus. During feature selec-
tion, C and σ parameters need to be chosen for SVM learning  

(see SVM Learning section above). Thus, each signature is  
characterized by the feature selection algorithm used, the data-
set used to derive it, and the C-σ combination used for its SVM  
models during feature selection. This leads to a large number  
of possible signatures (see Supplementary Files Y1–Y7).  
Supplementary Files Y1–Y3 and Supplementary Files Y6–Y7 
contain k-fold validation results from which the top 20 signa-
tures (evaluated using average validation log loss), in particular,  
were analyzed (Figure 2, Figure 3, Figure 6, Figure 7).

Validating signatures (Figure 1, panel v)
Stratified k-fold validation was used to validate signatures. Sam-
ples of the validation dataset were partitioned into k sets, comprised 
of an approximately equal distribution of radiation levels. For  
validation, each set was used to test a model trained on the 
remaining sets, resulting in predictions for all samples in the 
dataset. Advantages of this approach are that variation between  
datasets is not pertinent and that signatures can be validated  
on differently labeled datasets (with samples irradiated at  
different levels).

Validating models (Figure 1, panel vi)
Model validation requires separate training and test datasets 
(the training set is often used for FS). Genes from the signature 
are extracted from the training and test sets and their expression  
values are quantile normalized by sample. An important distinc-
tion between our approach and a previous study7 is that quan-
tile normalization is applied immediately before validation, so 
expression of only the genes present in the signature being vali-
dated have been normalized. By contrast, previous approaches 
perform quantile normalization over entire datasets; while 
this reduces variability in expression values within datasets,  
it also suppresses the dynamic range, with potential consequen-
tial effects on the prognostic value of expression data. After  
normalization, an SVM model was fit to training datasets and  
used to generate predictions from the test dataset.

Performance metrics (Figure 1, panel vii)
Performance was determined by comparing predicted radiation 
doses with actual radiation exposures of each sample. Metrics 
included misclassification error rate, goodness-of-fit, and multi-
class log loss. Misclassification is the percentage of samples that 
were incorrectly classified, goodness-of-fit is the average absolute  
value difference between predicted radiation exposure and actual 
radiation exposure, and multi-class log loss is 

1 1

1
ln

N M
ij iji j

y p
N = =

− ∑ ∑  
where N is the number of samples, M is the number of class labels,  
pij is the predicted probability that observation i is in class j, and 
yij is an indicator variable equal to 1 if sample i is in class j and  
0 otherwise.

Results
We discovered radiation gene signatures using the microarray  
data of human and mouse peripheral blood samples and human 
lymphoblastoid cell lines, which were validated either accord-
ing to signature (Figure 1, panel v) or with the respective model  
(Figure 1, panel vi). The murine data were obtained from a wider 
range of radiation exposure levels (0 cGy, 50 cGy, 200 cGy,  
1000 cGy) than the human whole body radiation datasets,  
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Figure 2. Heat map depicting the gene compositions of the top 20 murine signatures derived from different datasets:  
GSE6874[GPL4783] and GSE10640[GPL6524]. Gene frequency values are first scaled within datasets and then scaled across datasets  
to ensure values between 0 and 1.

which were binary comparisons of radiation effects (0 cGy  
vs. 150-200 cGy, 0 cGy vs. 500 cGy, or 300 cGy vs. 700 cGy). 
This made possible the discovery of murine gene signatures with 
finer granularity for discriminating individuals exposed to differ-
ent exposure levels, which is not currently feasible with the human 
samples.

Murine gene signatures
Table 1 displays the murine signatures derived using our pipeline 
which had the best performance metrics during k-fold validation 
on an independent dataset. In addition to the signature informa-
tion, we report the feature selection algorithm (FS Algorithm) 
used to discover the signature, the internal validation performance 
metrics (FS Misclassification fraction and FS Log Loss function).  
Validation performance metrics on external dataset(s) are indi-
cated by the Validation Misclassification fraction, Validation Log 
Loss function, and Validation goodness of fit or (GoF). In the FS  
Misclass. and FS Log Loss columns, one value is always  
N/A because signatures are derived by optimizing either  

misclassification or log loss, but never both. The remaining 
murine signatures are presented in Supplementary Files Y6 and  
Supplementary Files Y7.

A list of the most consistently appearing genes in the best perform-
ing signatures were obtained by pooling the top 20 murine signa-
tures (assessed by validation log loss) from GSE6874[GPL4783] 
and GSE10640[GPL6524], and respectively collating the top 
17 and 19 most frequent genes. The union of these two sets  
comprises 33 genes displayed in a heat map based on the fre-
quencies of each gene (Figure 2). Surprisingly, the compositions  
of signatures derived from both datasets are not as similar as 
one may expect. The genes that appear more frequently in sig-
natures derived from one dataset infrequently appear in the other  
even though both datasets consisted of the same types of  
samples irradiated at the same exposure levels.

The shared mutual information of these expressed genes with  
radiation dose (Figure 3) indicates whether only high mutual  
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Table 1. Best murine signatures assessed by K-Fold validation.

Signature (C, σ) FS1 
Algo.

FS1 
Misclass.

FS1 
Log 
Loss

Validation 
Misclass.

Validation 
Log Loss

Validation 
GoF2

a) Derived from GSE6874[GPL4783] and 5-fold Validated on GSE10640[GPL6524] (n = 75)

Phlda3 Blnk Bax Cdkn1a Cct3 Pold1 Cd79b Ei24 
Eif2ak4 Ccng1 Glipr2 Hexb Pou2af1 Swap70 

Apex1 Ptpn1 Mdm2 Tpst1 Ly6e Sdcbp (10, 10)

BSFS N/A 0.08 0.08 ± 0.00 0.29 ± 0.02 15 ± 0

Phlda3 Blnk Bax Cdkn1a Cct3 Tfam Pold1 Cd72 
Cd79b Ei24 Galt Eif2ak4 Ms4a1 Ccng1 Glipr2 

Gga2 Sh3bp5 Hexb Gcdh Pou2af1 Swap70 Apex1 
Ptpn1 Mdm2 Tpst1 Ly6e Sdcbp Lcn2 Suclg2 

(100000, 100)

BSFS 0.04 N/A 0.10 ± 0.00 0.23 ± 0.01 26 ± 1

Cdkn1a Blnk Phlda3 Sdcbp Ccng1 (1000, 100) FSFS N/A 0.13 0.17 ± 0.00 0.49 ± 0.01 12 ± 0

b) Derived from GSE10640[GPL6524] and 6-fold Validated on GSE6874[GPL4783] (n = 103)

Blnk Ccng1 Tpst1 Pole4 Eif2ak4 Atp5l (100000, 100) FSFS N/A 0.12 0.11 ± 0.00 0.35 ± 0.01 25 ± 0

Blnk Polk Sod3 Ube2v1 Eif2ak4 (10000, 100) FSFS N/A 0.22 0.20 ± 0.00 0.64 ± 0.01 18 ± 0

1FS: Feature Selection. 2GoF: Goodness of Fit.

Figure 3. Scatter plot depicting the mutual information each gene’s expression shares with radiation exposure (averaged over 
GSE6874[GPL4783] and GSE10640[GPL6524]). The size of each circle is proportional to the frequency at which the gene appears in the 
top 20 murine signatures ranked by log loss averaged over GSE6874[GPL4783] and GSE10640[GPL6524]. The genes presented match 
those of the Figure 2.

information genes appear in the best signatures or whether some 
lower mutual information genes may also be selected by our  
feature selection algorithms. The frequency of each gene among 
these signatures (represented by diameter of the circle) correlates 
with the mutual information between expression and radiation 
dose (ρ = 0.8016). However, it would be an oversimplification  
to create signatures based solely upon mutual information, 

since some genes in lower performing signatures exhibit higher 
mutual information content. Development of accurate signatures 
requires more than a collection of gene features whose individual  
expression values share information with radiation dose, since 
many of these genes may reveal similar information, and redun-
dant machine learning model features. For instance, Bax and Blnk 
are both common among the best murine signatures, even though  
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Blnk shares much more mutual information with radiation 
dose than Bax expression. Since Blnk and Bax are involved in  
completely different pathways – Bax is an inducer of apoptosis44 
whereas Blnk is involved in a B-cell antigen receptor signaling 
pathway required for optimal B-cell development45, they provide  
different types of information to the overall model. Conversely, 
we also observe that genes with high information content, such  
as Ms4a1, may appear less frequently than genes with lower  
information content, such as Eif2ak4 or Ccng1.

Although mRMR prioritizes genes with non-redundant, com-
plementary contributions, subsequent wrapper steps of forward 
and backward sequential feature selection occur independ-
ently of the mRMR ranking. mRMR reduces the list of features 
considered by these algorithms, but it is possible for only high 
mutual information genes to be selected for the final signature. 
Thus, the inclusion of lower mutual information genes, such as 
Ube2v1 and Urod, reinforces the effectiveness of the mRMR  
method.

The cellular roles of these protein products (Figure 2 and  
Figure 3) demonstrate a variety of pathways and functions  
(Figure 4), some of which have previously discussed46. These 
include DNA repair genes (Polk29 and Pold132), inducers of  

apoptosis (Ei2436, Bax36, and Phlda336), chaperonins (Cct328 and 
Cct728), cell cycle regulators (Ccng133 and Cdkn1a36), B-cell 
development genes (Cd79b24 and Blnk24), B-cell antigens (Cd729  
and Ms4a124), and a stress-response kinase that inhibits protein  
synthesis globally (Eif2ak431).

One of the best murine signatures derived from  
GSE10640[GPL4783]: Phlda3, Blnk, Bax, Cdkn1a, Cct3, Pold1, 
Cd79b, Ei24, Eif2ak4, Ccng1, Glipr2, Hexb, Pou2af1, Swap70, 
Apex1, Ptpn1, Mdm2, Tpst1, Ly6e, Sdcbp consistently achieved 
<10% misclassification error with SVM parameters C = 10, σ = 10. 
However, for samples that are incorrectly classified according to 
this signature, the misclassification percentage does not reveal the  
actual deviation from the correct dose. The confusion matrix 
visualizes the prediction accuracy of this signature on GEO: 
GSE10640[GPL6524] (Figure 5). Indeed, the performance of 
the matrix shows that the predicted errors for a small fraction 
of samples deviate from the actual exposures by no more than a  
single adjacent exposure level. Although the predictions presented 
in the confusion matrix come from a single iteration of k-fold  
validation, the standard error associated with misclassification  
for this signature is extremely low (0.0013) so this confusion 
matrix is representative of nearly all possible iterations of k-fold  
validation.

Figure 4. Depiction of the major cellular functions of most frequently appearing genes of the best murine signatures (same genes 
presented in Figure 1 and Figure 2).
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Figure 5. Confusion matrix for murine signature: Phlda3, Bax, Cdkn1a, Cct3, Tfam, Pold1, Cd72, Cd79b, Ei24, Galt, Eif2ak4, Ms4a1, 
Ccng1, Glipr2, Gga2, Sh3bp5, Hexb, Gcdh, Pou2af1, Swap70, Apex1, Ptpn1, Mdm2, Tpst1, Ly6e, Sdcbp, Lcn2, Suclg2. Numerators 
represent the number of samples in each category while denominators represent the total number of samples that were irradiated at a given 
exposure level (i.e. is the sum of the number of samples in each row).

Human gene signatures
The best performing signatures obtained from each human dataset, 
assessed by k-fold validation, are presented in Table 2. Although 
four human radiation datasets were available, GSE701 contained 
only 10 samples, which was insufficient for derivation of a unique 
gene signature. While k-fold validation removes the requirement 
for inter-dataset normalization, it assesses the ability of signa-
tures (genes) to predict radiation exposure without tying the sig-
natures to corresponding models. Each signature is characterized  
by the feature selection algorithm and its validation statistics, 
which have been averaged over the 3 independent datasets that  
were excluded from the original data used to derive the signature.

Since traditional validation typically requires separate training and 
test sets that feature samples irradiated at the same exposure lev-
els, only signatures derived from GEO: GSE6874[GPL4782] and 
GEO: GSE10640[GPL6522] could be analyzed. Table 3 presents 
the best human signatures according to this validation approach. 
This type of external validation is the most challenging due to the  
variability associated with different microarray experiments and 
batch effects of different platforms. This potentially explains the 
lower performance obtained by traditional validation (Table 3)  
compared with k-fold validation on the same datasets (Table 2). 
The remaining human signatures are described in Supplementary  
Files Y1–Y5.

To determine which human genes are most consistently selected, 
the most frequently appearing genes (11 or 12 depending on number 
of equally prevalent genes in different signatures) were compiled 
from the top 20 human signatures (assessed by lowest average 
log loss during k-fold validation) from GSE10640[GPL6522], 
GSE6874[GPL4782], and GSE1725. The union of these three 
lists indicates the relative frequencies of each gene (Figure 6).  
Figure 7 visualizes the mutual information of gene expression  
(Figure 6) shared with radiation dose.

While most genes have similar representation in signatures derived 
from different datasets, GADD45A and DDB2, in particular, are 

significantly more frequent in those derived from GSE1725 and 
GSE10640[GPL6522]. GADD45A and DDB2 are present in  
signatures derived from samples irradiated at different expo-
sures (GADD45A – 500 cGy, DDB2 – 150-200 cGy). This raises  
questions as to whether these genes have a larger influence on the 
accuracy of individual signatures and whether their expression 
is calibrated to radiation exposure levels. Removal of these gene 
features was performed to address their impact. Genes of inter-
est have been removed from each of the top 20 human signatures 
derived from various datasets and then the signatures were revali-
dated excluding these features (Table 4). The difference between 
the validation metrics preceding and following removal of a gene 
represents the weight of the gene within a signature. ΔMC, ΔLL, 
and ΔGoF represent the changes in misclassification, log loss, and 
goodness of fit, respectively.

GADD45A appears in 14 of the top 20 signatures derived from 
GSE1725. Of the 14 signatures, 10 were single gene signatures, 
as GADD45A alone was expected to sufficiently distinguish  
irradiated from unirradiated samples. In these cases, it was 
assumed that a null signature would perform as well as a predic-
tor that randomly draws predictions from a uniform distribution 
of doses. Removal of GADD45A from these 14 signatures, results 
in an average increase in misclassification, log loss, and goodness 
of fit by 0.319, 0.368, and 109 cGy, respectively (see Table 4a). 
In contrast, elimination of BAX, which only appears in 2 of the 
top 20 signatures derived from GSE1725 and results in an aver-
age increase in misclassification, log loss, and goodness of fit by 
0.018, 0.147, and 2.95 cGy respectively (Table 4e). Comparing  
the effects of removing DDB2 (Table 4c) and PRKAB1 (Table 4f) 
from the top 20 GSE10640[GPL6522] signatures confirms the 
impact of genes that frequently occur within the most accurate  
gene signatures.

However, the diagnostic contributions of GADD45A and DDB2 
expression to the radiation levels at which samples were 
exposed (500 cGy and 150-200 cGy respectively) are con-
founding. The effects on model performance resulting from 
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Table 3. Best performing human signatures assessed by traditional validation.

Signature (C, σ) FS 
Algo.

FS 
Misclass.

FS Log 
Loss

Validation 
Misclass.

Validation 
Log Loss

Validation 
GoF

a) Derived from GSE10640[GPL6522] and Validated on GSE6874[GPL4782] (n = 78)

DDB2 HSPD1 MAP4K4 GTF3A PCNA MDH2 
(1000, 10)

FSFS N/A 2.0E-14 0.14 ± 0.00 0.70 ± 0.03 25 ± 0

DDB2 GTF3A TNFRSF10B (1, 1) 0.07 0.20 ± 0.03 0.51 ± 0.00 35 ± 5

b) Derived from GSE6874[GPL4782] and Validated on GSE10640[GPL6522] (n = 85)

DDB2 CD8A TALDO1 PCNA EIF4G2 LCN2 
CDKN1A PRKCH ENO1 PPM1D 

(10000, 1)

BSFS N/A 0.42 0.08 ± 0.00 0.41 ± 0.00 14 ± 0

DDB2 CD8A TALDO1 PCNA LCN2 CDKN1A 
PRKCH ENO1 GTF3A IL2RB NINJ1 BAX TRIM22 
PRKDC GADD45A MOAP1 ARPC1B LY9 LMO2 

STX11 TPP2 CCNG1 GABARAP BCL2 GSS 
FTH1 (10000, 1000)

0.08 N/A 0.12 ± 0.00 0.31 ± 0.00 21 ± 0

Table 2. Best human signatures assessed by K-Fold validation.

Signature (C, σ) FS 
Algo.

Average 
Misclass.

Average 
Log Loss

Average 
GoF

a) Derived from GSE1725 and K-Fold Validated on GSE10640[GPL6522] (n = 85),  
GSE6874[GPL4782] (n = 78), and GSE701 (n = 10)

GADD45A DDB2 (1, 1) FSFS 0.07 0.40 24

PPM1D DDB2 CCNF CDKN1A PCNA GADD45A PRKAB1 TOB1 TNFRSF10B MYC 
CCNB2 PTP4A1 BAX CCNA2 ATF3 LIG1 CCNG1 FHL2 PPP1R2 MBD4 RASGRP2 

UBC NINJ1 TRIM22 IL2RB TP53BP1 PTPRCAP EEF1D PTPRE RAD23B EIF2B4 STX11 
PTPN6 STK10 PSMD1 BTG3 MLH1 RNPEP HSPD1 UNG PTPRC PTPRA BCL2 GSS 
SH3BP5 TPP2 IDH3B CCNH STK11 EIF4EBP2 HSPA4 FADS2 RPA3 GZMK ANXA4 

ICAM1 PPID LMO2 PPIE NUDT1 FUS POLR2A LY9 RPA1 PTS TNFRSF4 RPA2 PSMD8 
GCDH MAN2C1 PTPN2 RUVBL1 ATP5H GK CD79B MAP4K4 POLE3 PRKCH AKT2 

MOAP1 CCNG2 ALDOA SRD5A1 HAT1 XRCC1 EIF2S3 RAD1 UBE2A ZFP36L1 CD8A 
TALDO1 GPX4 SSBP2 ERCC3 ATP5O PEPD EIF4G2 ACO2 HEXB UBE3A ARPC1A 

PSMD10 PRCP PPIB ZNF337 CETN2 RPL29 (10000, 10000)

CSFS 0.07 0.18 14

b) Derived from GSE10640[GPL6522] and K-Fold Validated on GSE1725 (n = 114), 
GSE6874[GPL4782] (n = 78), and GSE701 (n = 10)

DDB2 RAD17 PSMD9 LY9 PPIH PCNA MDH2 MOAP1 TP53BP1 PPM1D ATP5G1 
BCL2L2 ENO2 PTP4A1 PSMD8 LIG1 FDPS OGDH CCNG1 PSMD1 (100, 100)

BSFS 0.05 0.39 15

DDB2 HSPD1 ICAM1 PTP4A1 GTF3A LY9 (100000, 10000) FSFS 0.08 0.16 43

RAD17 TNFRSF10B PSMD9 LY9 PPIH PCNA ZNF337 MDH2 TP53BP1 PPM1D 
ZFP36L1 ATP5G1 ALDOA BCL2L2 ENO2 GADD45A PTP4A1 PSMD8 LIG1 ATP5O 

FDPS OGDH PSMD1 (10000, 10000)

BSFS 0.05 0.22 11

c) Derived from GSE6874[GPL4782] and K-Fold Validated on GSE1725 (n = 114), 
GSE10640[GPL6522] (n = 85), and GSE701 (n = 10)

DDB2 PRKDC PRKCH IGJ (100000, 10000) FSFS 0.02 0.27 7

DDB2 PRKDC TPP2 PTPRE GADD45A (1000, 100) FSFS 0.02 0.07 5

removal of GADD45A from the GSE10640[GPL6522] signa-
tures (Table 4b) versus the GSE1725 signatures (Table 4a) are 
discordant. ∆MC is higher when GADD45A is removed from 
GSE1725, but ∆LL is higher when GADD45A is removed from  
GSE10640[GPL6522]. ∆LL is large when GADD45A is removed  
from both datasets, which is consistent with the importance of 
GADD45A at both radiation doses. Indeed, GADD45A expression 

has been demonstrated to be rapidly induced by radiation levels 
as low as 2 Gy47. Similar discordance was observed in the feature 
removal experiments of DDB2 (Table 4c, 4d).

As was the case with murine signatures, genes appearing in the 
best human signatures do not necessarily share high mutual infor-
mation with radiation dose. However, the compositions of the 
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Figure 7. Scatter plot depicting the mutual information each gene’s expression shares with radiation exposure (averaged over 
GSE10640[GPL6522], GSE6874[GPL4782], and GSE1725). The size of each circle is proportional to the frequency at which the gene appears 
in the top 20 human signatures ranked by average validation log loss from GSE10640[GPL6522], GSE6874[GPL4782], and GSE1725. The 
genes shown are also are the same as those indicated in Figure 6.

Figure 6. Heat map depicting the gene compositions of the top 20 human signatures derived at different radiation doses: 150-200 
cGy (GSE10640[GPL6522], GSE6874[GPL4782]) and 500 cGy (GSE1725). Frequencies are first scaled within and then between datasets 
to ensure values between 0 and 1.
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Table 4. Effect of removing genes from signatures of different datasets.

GSE1725 Validation  
(0 vs 500 cGy)

GSE10640 Validation 
(0 vs 150-200 cGy)

GSE6874 Validation 
(0 vs 150-200 cGy)

GSE701 Validation 
(300 vs 700 cGy)

Average

∆MC ∆LL ∆GoF ∆MC ∆LL ∆GoF ∆MC ∆LL ∆GoF ∆MC ∆LL ∆GoF ∆MC ∆LL ∆GoF

a) Removal of GADD45A from signatures derived from GSE1725

0.446 0.008 N/A* 0.367 0.373 61.1 0.111 0.561 19.4 0.353 0.529 247 0.319 0.368 109

b) Removal of GADD45A from signatures derived from GSE10640[GPL6522]

0.001 0.011 0.658 0.001 0.237 N/A* -0.007 0.008 -1.29 0.043 1.45 29.8 0.010 0.427 9.72

c) Removal of DDB2 from signatures derived from GSE10640[GPL6522]

0.128 0.166 64.2 0.078 0.211 N/A* 0.103 0.157 17.9 0 0.471 0 0.08 0.251 27.4

d) Removal of DDB2 from signatures derived from GSE1725

0.012 0.044 N/A* 0.069 0.367 0.102 0.153 0.202 0.269 0.003 0.715 2 0.059 0.332 0.790

e) Removal of BAX (control for GADD45A) from signatures derived from GSE1725

N/A** 0.08 N/A* 0.024 0.478 0.989 0.025 0.025 4.37 0.005 0.006 3.5 0.018 0.147 2.95

f) Removal of PRKAB1 (control for DDB2) from signatures derived from GSE10640[GPL6522]

N/A** 0.001 N/A* 0.011 0.048 5.70 -0.01 0.01 -2.47 0.02 -0.04 14 0.007 0.005 5.74

*∆GoF is always N/A for the dataset used to derive signatures because GoF is never used as the optimized metric during signature development (see 
Feature Selection Algorithms section under Methods).
**Unavailable because the top 20 human signatures derived from GSE1725 were all obtained by optimizing log loss rather than misclassification.

human signatures are dominated by four genes, DDB2, GADD45A, 
PCNA, and PPM1D, which all share a lot of information with 
radiation dose (DDB2: 0.55, GADD45A: 0.39, PCNA: 0.51,  
PPM1D: 0.46). The functions associated with these and less fre-
quently appearing genes are depicted in Figure 846. The pathways 
and functions represented include keratinocyte differentiation 
(PRKCH9), induction of apoptosis (BCL2L37 and BAX36), DNA 
repair (TP53BP129, RAD1730, DDB224, PRKDC29, and PCNA33), 
actin nucleation (ARPC1B28), and regulation of JNK-p38 (MAPK14) 
signalling (GADD45A33 and PPMD133). The four common genes 
belong to the DNA repair and regulating JNK-p38 (MAPK14) path-
ways, which may imply particular significance to these functions 
in human response to radiation exposure. Interestingly, GADD45A 
and PPMD1 are antagonistic, that is, GADD45A activates while 
PPMD1 inhibits p38.

Validating gene signatures on partial body irradiated 
samples
We also evaluated the total body irradiation human signatures with 
expression data from baboons (GSE77254) that were exposed 
to partial body irradiation. All signatures derived from human  
samples (see Supplementary Files Y4 and Y5) were completely 
contained in this dataset and so were eligible for validation. 
The signatures chosen contained all datapoints, circumventing  
the need to perform nearest neighbour imputation. Paralogous 
baboon genes were cross-referenced with those that were used  
to derive human signatures and expression values of multiple  
probes within the same gene were averaged. 

Signatures were used to differentiate between various label  
combinations: (1) unirradiated vs. 1 day post-irradiation, (2) unir-
radiated vs. 2 day post-irradiation, (3) 1 vs. 2 day post-irradiation, 
(4) unirradiated vs. 1° and 2° HARS, (5) unirradiated vs. 2° and  

3° HARS, and (6) 1° and 2° HARS vs. 2° and 3° HARS.  
Supplementary Files Z1 and Z2 contain validation results based  
on baboon expression data with human signatures.

Multiple Y4 signatures achieved 0% misclassification in dis-
tinguishing unirradiated samples from radiated samples (above 
label combinations 1, 2, 4, and 5) and multiple Y5 signatures 
achieved 0% misclassification in label combinations 1, 2, and 5.  
However, the best performing signatures on this dataset were 
not the best performing signatures obtained during validation on 
GSE6874 (Y4) and GSE10640 (Y5). We speculate that techni-
cal factors involved in the study design explain why signatures  
performed differently.  For example, the human signatures were 
derived from blood samples that were collected 6–24 hours  
after exposure whereas the baboon blood samples were obtained 
24–48 hours after exposure. Also, a different microarray  
platform was used to obtain expression values for the baboon  
samples.  

We also investigated total body radiation signatures on predict-
ing exposures with different sources of partial body irradiation  
expression data: GSE6637248 and GSE8489849. These murine and 
baboon datasets lacked several genes present in the signatures 
we derived. None of the Y4 and Y5 signatures were completely  
contained in GSE66372; the PSMD9 single gene signature  
was the only human signature that was completely con-
tained in GSE84898. However, the PSMD9 signature has poor  
performance among Y5 signatures based on its log loss metric on 
GSE6874.

Discussion
Biochemically inspired genomic signatures of human and murine 
radiation response exhibit high accuracies in validating independent  
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Figure 8. Depiction of major cellular functions of most frequently appearing genes of the best human signatures (see Figure 5 and 
Figure 6). 

datasets (98% in k-fold validation, 92% by traditional methods). 
Some of the human signatures exhibit among the highest spe-
cificities reported (e.g. the signature DDB2, CD8A, TALDO1, 
PCNA, EIF4G2, LCN2, CDKN1A, PRKCH, ENO1, PPM1D)  
exhibited 92% accuracy when validated on GSE10640[GPL6522]. 
This dataset contains both radiation therapy patients (150–200 
cGy) and controls (0 cGy) which include healthy donors and 
chemotherapy patients treated with alkylators9. Thus, the signature  
distinguished radiation-induced and chemotherapy-associated 
DNA damage.

Some of the best performing signatures consisted of one to three 
gene features. The first signature in Table 2 contains GADD45A 
and DDB2, and exhibits a misclassification error rate of 7%. 
These relatively short signatures have certain advantages over  
longer signatures with similar performance. It is more likely that 
the model can be generalized to a wider spectrum of data, when  
fewer features are required, and from a practical standpoint,  
diagnostic tests based on fewer gene expression measurements  
are less susceptible to experimental error.

BAX, an inducer of apoptosis, was the single gene shared among 
those frequently appearing in both murine and human signa-
tures. One possible explanation for this is that the mouse datasets  
featured samples irradiated at four levels while human datasets  
contained samples irradiated at two levels. Genes selected by  
multi-class model algorithms may better discriminate radiation 
dose. Nonetheless, the radiation response pathways of mice are  
not necessarily similar to those of humans. In fact, Lucas  

et al. have shown that the murine signatures they developed are 
not translatable to human samples50. Furthermore, only two  
genes, including BAX, are shared by the human and murine  
signatures derived by Dressman et al.50. 

None of the samples exposed to ≥200 cGy are misclassi-
fied below this radiation dose based on the multi-class murine 
signatures (Figure 5). In the future, a similar analyses could 
be performed in clinical studies of human subjects exposed 
to different radiation levels, which might prove useful for  
determining treatment eligibility after exposure to high levels of 
myelosuppressive radiation51.

A comparison of the most frequently appearing genes in the  
optimal human (Figure 6) and mouse signatures (Figure 2) 
with signatures previously derived in other studies reveals little  
overlap (Table 5). The compositional differences can be attrib-
uted to types of samples used for model training, microarray 
platforms used, and feature selection techniques used in deriving  
signatures. However, genes consistently selected in optimized 
signatures in at least three independent studies include BAX, 
DDB2, GADD45A, LY9, and TRIM22. Expression of these genes 
is indeed predictive of radiation dose and not a result of noise in  
individual datasets. An ensemble signature consisting of these 
genes achieves up to 92.3% accuracy in k-fold validation over 
277 samples and up to 81.2% accuracy in traditional validation  
over 78 samples. The quality of the gene signature is largely 
determined by the quality and amount of training data used to  
fit the SVM model. Thus, this level of accuracy is not the upper 
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Table 5. Genes found in best performing signatures and previously derived signatures.

Prior Studies Validation Performance Shared Genes in Signatures

K-Fold 
(internal)

K-Fold 
(external)

Traditional 
(external)

Dressman et al. 
(human)9

90% N/A N/A BAX, DDB2, PRKCH

Dressman et al. 
(mouse)9

N/A N/A N/A Bax, Cd72, Cd79b, Cdkn1a, 
Ei24, Galt, Glipr2, Ly6d, 

Ms4a1, Tfam

Paul et al. 
(human)10

98% N/A N/A BAX, DDB2, GADD45A, LY9, 
PCNA, PPM1D, PTP4A1, 

RASGRP2, TRIM22

Lu et al. (human)7 ~90% 86% N/A DDB2, FHL2, GADD45A, LY9, 
TRIM22

This study (human) 100% 98% 92% N/A

This study (mouse) 99% 92% N/A N/A

bound on the performance of an SVM of the ensemble signa-
ture. Additional data at exposures with fixed levels of radiation 
in matched training and testing samples could improve model  
performance.

Ensemble models should be considered which combine genes  
discovered in different well-performing signatures. Although 
the most frequently represented human and murine genes were  
compiled, genes common to one dataset did not appear equally  
frequently in signatures from the other. This discordance may  
possibly result of noise in the different datasets, or perhaps to  
intrinsic differences between them. Compilation of frequently 
appearing genes in different datasets may be useful for discovery  
of consistently represented genes that are incorporated into  
high-performance signatures.

The types of data available for this study and the analytical 
approaches we used potentially limited the interpretation of these 
gene signatures. Blood samples of mouse and human datasets  
were all collected within 24 hours of exposure. Thus, signatures 
derived on these datasets may only be valid in white blood cells 
with a limited time window (<24 hours). Additionally, one of 
the datasets we used to derive signatures, GSE6874, appears 
to have been a particularly noisy dataset, based on the average  
misclassification rates on GSE10640, GSE1725, and GSE6874 
of 0.03, 0.02, and 0.11, respectively. Assuming that it is possible 
to differentiate samples irradiated at different levels of exposure 
using expression data, the feature selection misclassification 
metric estimates the theoretical limit of how well differen-
tially irradiated samples can be separated based on expression. 
The surprisingly high feature selection misclassification values  
obtained from GSE6874 may therefore be indicative of greater 
levels of noise in the data. Lastly, the greedy feature selec-
tion algorithms used to derive signatures cannot guarantee  
optimal results, that is, we cannot confirm that we have found 
the best possible signatures from each dataset for predicting 
radiation exposure. This potentially explains the discordance in  
gene composition between murine datasets (Figure 2).

Nevertheless, the validation performance of radiation signatures  
is significantly improved (Table 5). The signatures that were  
externally k-fold validated achieved nearly 100% accuracy. Some 
of our human signature models are also externally validated in 
the traditional sense (i.e. using a single model). This validation  
method, which is representative of an actual scenario, achieves 
>90% accuracy, and is directly relevant to creating a routine, 
efficient and highly accurate expression-based radiation prognostic 
assay.
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Supplementary material
Supplementary File X: This spreadsheet lists all the genes found from our literature search (see Methods) that were considered dur-
ing feature selection. For each gene, we report the reason for inclusion and a link to the paper containing the supporting evidence.

Click here to access the data.

Supplementary Files Y1–Y7: These files contain information concerning all the total body radiation signatures derived for this 
paper. Each file contains the validation results of signatures derived from a particular dataset. Files Y1-Y3 contain the k-fold valida-
tion results of human signatures derived from GSE1725, GSE6874, and GSE10640, respectively, while Y4-Y5 contain the traditional 
validation results of human signatures derived from GSE6874 and GSE10640, respectively. Files Y6-Y7 contain the k-fold valida-
tion results of mouse signatures derived from GSE10640[GPL4783] and GSE10640[GPL6524], respectively. Each supplementary file  
contains the following columns: Signature, FS Algorithm, C, sigma, FS Misclassification, FS Log Loss, K, Misclassification, Misclas-
sification Error, Log Loss, Log Loss Error, Goodness of Fit, and Goodness of Fit Error. These headings are described in the tab titled  
“Legend” in Files Y1-Y7. In addition, Files Y1-Y3 have three extra columns: Average Misclassification, Average Log Loss, and Average 
Goodness of Fit, which represent the misclassification, log loss, and goodness of fit, respectively, averaged over all validation sets.

Click here to access the data.

Supplementary Files Z1–Z2: These files contain results concerning tradiation validation of Y4 and Y5 human signatures on  
partial body radiation exposed primates. Different comparison groups described in the text are indicated in separate tabs in each  
File. Table headings correspond to performance metrics  shown for signatures Y4 and  Y5. 

Click here to access the data.
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Summary 
In this study, the authors have identified gene signatures for radiation dose prediction using 
machine learning methodologies based on publically available microarray results from human and 
murine samples (mostly lymphocytes) exposed to ionizing radiation. Their signatures have been 
independently validated showing a high specificity for dose estimation. The authors have used a 
novel method, based on the concept of minimum redundancy maximum relevance. This 
generated signatures which often contained genes that had not previously been identified as 
potential radiation biomarkers. In all, this is a well-conducted study with relevance to the field. 
However, we do have some comments/questions/remarks, as outlined below. 
  
Introduction

Several other studies have applied machine learning methodologies to identify predictive 
radiation exposure biomarkers. Some of these have been reviewed in Hall et al., Mut Res 
2017, Supplementary Table 3.5.1.1. 
 

○

Another important aspect of gene expression is alternative splicing, which also occurs in 
response to ionizing radiation (e.g. Sprung et al., PLoS ONE 2011; Forrester et al., PLoS ONE 
2012; Macaeva et al., Sci Rep 2016). The latter study also showed for the first time the 
suitability of exon signatures as sensitive radiation biomarkers, and highlights the 
importance of prior knowledge at the exon level for subsequent primer- or probe-based 
assays (e.g. qRT-PCR). This may be discussed.

○

  
Methods

In the data Pre-processing “Rows and columns of microarray data that are less than 95% ○
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complete were removed and any remaining missing values were imputed using the nearest-
neighbor algorithm” How many rows and columns were removed, and on which basis was 
the 95% threshold selected. Also, what is the effect of the nearest-neighbor algorithm on 
the data "over-fitting". Is it possible to perform PCA on the data after removing any 
row/columns with less than 100% completeness and compare to the currently presented 
approach (95% removal and filling the remainder of the missing data)? This would allow the 
visualization of the effect of the proposed methodology on the segregation between the 
various records. 
 
Only genes common to all datasets were retained. Does that mean common between 
mouse and human datasets? How were aliases identified? 
 

○

The second step in the process is the selection of genes based on a non-exhaustive list of 
publications. Why was this necessary if the mRMR method for feature selection was applied? 
 

○

I particularly like the idea of performing quantile normalization after feature selection. Is 
this something that has been published before? Can the authors speculate (or maybe even 
compare) about the performance of their method on pre-normalized datasets? 
 

○

Concerning the method used for the “Validation of models”, I would think this approach 
would be more vulnerable towards the test/training dataset. What would occur to the 
accuracy when doing the normalization over-all of the data? Would the accuracy change 
drastically? Is it possible to extend the testing to cover additional data? 
 

○

Many datasets exist on human PBMCs/whole blood irradiated with a range of doses. Why 
were these datasets not considered for this study while lymphoblastoid cell lines were? 
 

○

It would be helpful to have a comparison of model performance with that of “traditional” 
machine learning methods, as used in some of the indicated references.

○

  
Results

“We discovered radiation gene signatures using the microarray data of human and mouse 
peripheral blood samples and human lymphoblastoid cell lines, which were validated either 
according to signature.” Were the human lymphoblastoid cell line and prepheral blood 
samples grouped together in one model? If so, would it be possible to visualize how the 
expression data of the shortlisted genes for each data type separately (using PCA for 
example)? 
 

○

Can the authors comment on their observation that signatures derived from both murine 
datasets are not very similar? Apart from “noise, or intrinsic differences in the datasets”, 
could it possibly also be a consequence of the method used, i.e. mRMR in which low mutual 
information genes are selected? Based on Fig. 2 and 6 it seems that genes with higher 
mutual information in general have higher frequencies. Which seems logical. 
 

○

The authors state that Ms4a1 appears less frequently than Glipr2. However, from the sizes 
of the circles, Ms4a1 seems to appear more frequently than Glipr2. Please verify this 
statement. 
 

○
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Are genes in Tables 1 and 2 ranked according to their frequency, importance,…? 
 

○

How do the authors explain the low frequencies of human signature genes (Fig. 6), 
compared with murine (Fig. 2)? 
 

○

Likewise, can the authors explain the large number of genes with low mutual information in 
the human signature (23 out of 26 <0.4), compared with the murine signature (4 out of 33 
<0.4). 
 

○

Although I like the idea of mRMR, it is somewhat counterintuitive to have genes with little 
mutual information to be important for dose prediction. This seems to be confirmed by the 
fact that the compositions of human signatures are dominated by genes with high mutual 
information (in fact, these are all well known p53-dependent genes which appear in a high 
number of published radiation signatures).

○

  
Discussion

I understand the advantage of small signatures in terms of practicality. However, in case of 
a real emergency, in which individuals have been irradiated without good knowledge about 
the exact time since exposure, larger gene signatures may provide the additional benefit of 
having different dynamics per gene. This may help to also predict not only the dose, but 
also the time since exposure. Furthermore, one-gene signatures may suffer from higher 
variability among the population compared to larger gene signatures. 
 

○

I believe results from other, similar studies may be briefly situated in the 
introduction/discussion.

○
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Regarding other studies that identify predictive radiation exposure biomarkers, we 
have now added text citing these and other studies in  paragraph 1 of the 
introduction of version 2 of our paper.

○

We investigated whether alternative splicing in response to ionizing radiation might 
affect the expression values that were used in training or validation of machine 
learning models we derived. These values could theoretically be distorted if the 
hybridization probes used to quantify gene expression in these microarray data were 
predominantly located in cassette exons. We carefully analyzed the probes on one of 
the most prominent genes in our signatures: DDB2, which consists of 10 exons in 
total. Out of the three human datasets used for deriving signatures, 
GSE6874[GPL4782] lacked information about the location of its DDB2 probe. However, 
the DDB2 probes in GSE10640[GPL6522] and GSE1725 were located in exons 8-10. 
According to UCSC Genome browser, the only transcript variants (NM_001300734.1, 
mRNA AB107039, and mRNA BC050455) involved skipping or fusing exons 3-7. Thus, 
in this case, alternative splicing does not affect our results, since the DDB2 probes 
avoid alternatively spliced exons. In general, probes seem to be designed to avoid 
alternatively spliced regions. Although we have not verified this for all the genes in 
our signatures, we speculate that taking an average over multiple probes reduces 
any potential affect of alternative splicing.

○

The nearest neighbor analysis was performed to avoid inclusion of genes or 
individuals with sparse data in the analysis. We conservatively selected  a threshold of 
95% completeness to ensure that the original source data were reliable. At this 
threshold, none of the  rows or columns or each of the datasets we used for deriving 
signatures (GSE1725, GSE6874[GPL4782], GSE10640[GPL6522], GSE10640[GPL4783], 
GSE10640[GPL6524]) were removed (based on genes common among all datasets). 
The effect of nearest neighbours on overfitting was  minimal. Upon restriction to the 
set of genes available for feature selection, there were no missing values in GSE1725 
and GSE6874[GPL4782], a single missing value in GSE10640[GPL6524] and 

○
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GSE10640[GPL6522], and 62 missing values in GSE10640[GPL4783]. However, in 
GSE10640[GPL4783], of the genes available for feature selection, only four genes 
contained at least one missing expression value: Rad51, Ptpre, Gadd45a, and Pola1. 
None of these genes are among the 33 most frequently appearing genes of our 
murine signatures (see Figure 2). (Recall that GSE10640[GPL4783] is a murine 
dataset). Additionally, overfitting is mitigated by validation using independent 
datasets. The nearest neighbor source data occurs before model development, so the 
model is not fit at that point.
Regarding the questions about genes common to all datasets being retained: 1) 
Mouse and human signatures were derived separately. So only genes common to all 
human datasets were available for selection in deriving human signatures and only 
genes common to all mice datasets were available for selection in deriving mouse 
signatures. 2) Our scripts did not take gene name aliases into account. It is therefore 
possible that genes that were left out of the analysis because they were indicated by 
different names in different datasets.

○

The initial list of publications we consulted may not have been complete, but it was 
the result of an extensive search.  We were concerned that mRMR method applied to 
all genes without independent experimental support would result in Type II 
errors. We wanted to identify the key genes from the large volume of peer-reviewed 
work implicating various genes in radiation response. This hypothesis based study 
was not designed to discover novel genes, whose putative role in radiation response 
was unproven or unknown. We have automated the initial feature selection 
procedures using expression of all (including non-coding) genes, but this is beyond 
the scope of our efforts.  The discovery strategy would require statistical correction 
for the likelihood of incorrectly rejecting a null hypothesis due to multiple comparison 
testing.

○

Regarding quantile normalization after feature selection, this is the first time that we 
have used this approach.  We attempted this because our initial efforts to derive 
signatures from pre-normalized data were unsuccessful (poor performance). Since 
we do not use the expression values for the majority of genes, there was no 
compelling reason to   normalize across the entire set of expressed genes. We are not 
aware of other previous efforts, but cannot exclude this possible. We did not perform 
an exhaustive literature search for the method that we employed, since the universe 
of potential applications is nearly limitless.

○

We speculate that if quantile normalization is done before feature selection, then the 
reduction in dynamic range in the transformed data may  lead to the derivation of 
poorer signatures.To give a more quantitative answer, we took the top performing 
signature in the Y5 Supplementary file with respect to log loss (DDB2 GTF3A TNFRSF10B
) and re-validated with normalization over all data instead of just over genes in the 
signature; misclassification error was 2% higher and the goodness of fit was 4 cGy 
higher (log loss remained approximately the same). Interestingly, normalization 
performed over all of the data does not appear to have significant effects on the 
performance of our signatures. To “extend the testing to cover additional data,” it 
would be necessary to renormalize the initial set of genes to include these “additional 
genes”. If no other genes are to be included, only additional samples, then the 
expression values of the additional samples would need to be renormalized.

○

Regarding other human datasets of irradiated PBMCs, in the feature selection stage, ○
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we specifically required datasets with large numbers of samples. The three human 
datasets we used for feature selection (GSE6874, GSE10640, GSE1725) were the 
largest ones we found deposited in GEO. In particular, GSE1725, the dataset with cell 
lines derived from patients, was the largest dataset available to us, containing 110 
samples (171 samples in total, but 61 are UV irradiated). At the earliest stage of our 
project, we specifically chose datasets that maximized the number of common genes 
represented among them. This requirement enabled us to validate our signatures by 
either traditional or k-fold approaches.   Genes available for feature selection must be 
present in all datasets in order for validation to work.  We were surprised to find 
many datasets where key genes in our models were missing from expression data 
(see the last section on partial body irradiation data analysis in the results section of 
the revised version 2 of this paper).
Regarding comparison of model performance with other traditional machine learning 
methods, we have used these methods (eg. random forest, SVMs, decision trees) in 
previous gene expression studies (see reference 13 of version 1 which is reference 18 
of version 2). The improved performance we describe here cannot be attributed to 
the specific model building approaches.

○

Regarding grouping of lymphoblastoid and PBL samples, models were always trained 
on one dataset at a time; they were not combined.

○

The dissimilarity of the murine datasets may be related to their use of different 
microarray platforms and were collected at different times. It is difficult to tease out 
the intrinsic differences of the datasets from the performance of the methods.

○

Regarding Ms4a1 and Glipr2, we verify the reviewers' observation. We corrected the 
density plot during preparation of the paper, but inadvertently neglected to make the 
corresponding change to the text.  We have replaced Glipr2 with Ccng1 or Eif2ak4.

○

Regarding ranking of genes in Tables 1 and 2,  signatures derived using BSFS and 
CSFS list the genes according to mRMR rank. For signatures derived using FSFS, the 
genes would be listed according to the order in which they were selected. So in this 
sense, they are indeed ranked according to importance.

○

Regarding the low frequencies of human vs murine signature genes, in the 
descriptions of these figures, we mention that “Frequencies are first scaled within and 
then between datasets to ensure values between 0 and 1.” Human signature gene 
frequencies appear suppressed because DDB2 and GADD45A in particular were 
represented more frequently than any other gene by a large margin.

○

Regarding the numbers of genes with low mutual information in the human vs 
murine signatures, it may be relevant that expression data are not adjusted for either 
white blood cell count or body mass. We speculate that the gene expression response 
in the human samples reflects lower numbers of radiation exposed cells. This could 
dampen the signals and mutual information with radiation dose compared to the 
murine response.

○

Regarding the idea that it would be counterintuitive to have genes with low mutual 
information as important for dose prediction, it is true that signatures are dominated 
by genes whose expression values share high mutual information with dose. The 
purpose of mRMR is to make sure that we do not overlook the genes whose 
expression values may encode information that is not present in the genes whose 
expression values have high mutual information with dose, which is why sometimes 
genes with lower mutual information may appear as frequently or even a bit more 

○
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frequently than genes with higher mutual information.
Regarding the single gene signature results, we agree that single gene signatures are 
more susceptible to extrinsic sources of variation unrelated to radiation exposure. 
However, simpler signatures may be necessary under laboratory conditions that limit 
the amount or complexity of testing, e.g. space radiation assays performed by 
astronauts.

○
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The authors are absolutely correct that in the event of a radiological accident blood is likely to be 
the most likely source for analytical materials that would reflect a radiation exposure. Given the 
analytical approach taken we tested this using two sets of data from normal human lung epithelial 
cells (HBECs) irradiated at multiple doses by γ-rays but also with Fe particles such as those found 
in the deep space environment. (Reference 8 in this manuscript) 
 
We were interested in two things: 1) Would the results from lymphoid cells translate to epithelial 
cells? There is sufficient evidence in the literature to suggest signatures created with lymphoid 
cells are poor at predicting radio response in cells from tissue. 2) Would the results from γ-ray 
exposures translate to something more exotic like Fe particles which have discriminating gene 
sets that are both common to γ-ray and Fe particles as well as unique to the radiation type. 
 
We chose the 10 gene signature derived from GSE6874 and validated against GSE10640. Given the 
limited size of our sample set, we were surprised to see Prediction Accuracies of 73% for γ-rays 
and 83% for Fe particle irradiation when examining the normal HBEC cells; and 85 and 76%, 
respectively, for a genetically manipulated HBEC (p53 knockdown, KRAS mutant over-expressing) 
cell line. 
 
We look forward to testing this approach in genetically diverse tumor cells.
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Thank you for your efforts  to review our article and evaluate our software. We were excited 
about the significant results you obtained using the human signature on expression data 
from irradiated lung epithelial cells, and using the models to detect evidence of Fe particle 
radiation.  
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Well written article. Good analysis of available gene expression data to create gene signatures for 
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ionizing radiation exposure. Good discussion of the identified genes' functions and roles in 
radiation response. Conclusions are well supported by the results. Hopefully the analysis and 
genes identified in this study will be incorporated and/or validated in future studies examining 
prediction of radiation exposure.
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Thank you for your kind comments. We agree that the approach and software  should be 
useful for future studies of human radiation exposures. We are particularly motivated to 
apply multiclass SVMs, which were highly accurate in the murine dataset,  to the analysis of 
a large set of radiation oncology patients exposed to different radiation doses.  
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Peter Rogan, Western University, London, Canada 

When comparing the list of 998 radiation response-related genes in this paper (Suppl. Table X), we 
found that TNFRSF4 (TNF Receptor Superfamily Member 4) was incorrectly transcribed from the 
original source (https://doi.org/10.1186/1755-8794-7-43). The correct gene should have been 
indicated as TNFSF4 (TNF Superfamily Member 4). Gene signatures containing TNFRSF4 are correct, 
but should have been derived using TNFSF4. We apologize for this error.
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