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Detection of coding/functional SNPs that change the biological function of a gene may

lead to identification of putative causative alleles within QTL regions and discovery of

genetic markers with large effects on phenotypes. This study has two-fold objectives,

first to develop, and validate a 50K transcribed gene SNP-chip using RNA-Seq data. To

achieve this objective, two bioinformatics pipelines, GATK and SAMtools, were used

to identify ∼21K transcribed SNPs with allelic imbalances associated with important

aquaculture production traits including body weight, muscle yield, muscle fat content,

shear force, and whiteness in addition to resistance/susceptibility to bacterial cold-water

disease (BCWD). SNPs ere identified from pooled RNA-Seq data collected from ∼620

fish, representing 98 families from growth- and 54 families fromBCWD-selected lines with

divergent phenotypes. In addition, ∼29K transcribed SNPs without allelic-imbalances

were strategically added to build a 50K Affymetrix SNP-chip. SNPs selected included two

SNPs per gene from 14K genes and ∼5K non-synonymous SNPs. The SNP-chip was

used to genotype 1728 fish. The average SNP calling-rate for samples passing quality

control (QC; 1,641 fish) was ≥ 98.5%. The second objective of this study was to test

the feasibility of using the new SNP-chip in GWA (Genome-wide association) analysis to

identify QTL explaining muscle yield variance. GWA study on 878 fish (representing 197

families from 2 consecutive generations) with muscle yield phenotypes and genotyped for

35K polymorphic markers (passing QC) identified several QTL regions explaining together

up to 28.40% of the additive genetic variance for muscle yield in this rainbow trout

population. The most significant QTLs were on chromosomes 14 and 16 with 12.71 and

10.49% of the genetic variance, respectively. Many of the annotated genes in the QTL

regions were previously reported as important regulators of muscle development and cell
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signaling. No major QTLs were identified in a previous GWA study using a 57K genomic

SNP chip on the same fish population. These results indicate improved detection power

of the transcribed gene SNP-chip in the target trait and population, allowing identification

of large-effect QTLs for important traits in rainbow trout.

Keywords: GWAS, SNP-chip, muscle, trout, fillet yield

INTRODUCTION

Aquaculture provides sustainable production of food fish with
high protein/low-saturated fat to satisfy increasing U.S. and
worldwide demand. To enable increased production by the
aquaculture industry and to meet the ever-growing demand
for fish, we need fast/efficient growth and high-quality filets.
However, a major constraint to increasing production efficiency
is the lack of genetically improved strains of fish for aquaculture
(Gjerde, 2006; World Fish Center, 2009). Development of tools
that will enable genomic selection for improved aquaculture
production traits will greatly benefit the aquaculture industry.

Fast/efficient muscle growth is a major trait affecting
profitability of the aquatic muscle food industry. The genetic
basis of muscle growth traits is not well studied in fish.
Understanding molecular mechanisms of fish muscle growth
can facilitate broodstock selection decisions. Skeletal muscle
is the most abundant tissue and edible portion of fish and
typically constitutes about 50–60% of the fish weight (Salem et al.,
2006). Growth, development and quality traits of muscle are
governed by organized expression of genes encoding contractile
and regulatory proteins (Gerrard and Grant, 2003).

Genetic maps, characterizing the inheritance patterns of
traits, and markers have been developed and used for a wide
range of species, including fish. These tools target the discovery
of allelic variation affecting traits with an ultimate goal of
identifying DNA sequences underlying phenotypes (Rexroad
et al., 2008). Markers have been identified with a variety of
molecular techniques. Single nucleotide polymorphisms (SNPs)
are abundant and distributed genome-wide, therefore, they are
most suitable for high-throughput association studies (Wang
et al., 2008; Gonzalez-Pena et al., 2016). Marker-assisted selection
(MAS) can be used to improve breeding for phenotypes with
large-effect QTLs. This method has been recently applied for
the trait of infectious pancreatic necrosis virus (IPNV) resistance
in Atlantic salmon (Houston et al., 2008; Moen et al., 2009).
Genomic selection (GS) tools have been developed to increase
the efficiency of genetic improvement in livestock compared to
conventional pedigree-based selective breeding methods (Taylor
et al., 2016). This concept has been recently demonstrated for
bacterial cold-water disease (BCWD) resistance in rainbow trout
aquaculture (Vallejo et al., 2017a). SNPs located within or near
coding sequences, cSNPs, are especially important because they
have the potential to change protein function (Brookes, 2007;
Salem et al., 2012; Al Tobasei et al., 2017b). Therefore, cSNPs
are particularly useful as genetic markers with large-effect on
phenotypes, allowing MAS and improved accuracy of whole-
genome selection. Because the muscle yield trait targeted in
this study requires lethal sampling to measure the phenotype,

only family-specific EBVs are available for breeding candidates
in traditional breeding programs. The ability to use genomic
selection or MAS will allow further within-family selection for
the muscle yield trait, and thus is anticipated to increase the
accuracy of genetic predictions and selection response.

Recently, we used an RNA-Seq approach to identify putative
SNPs with allelic imbalances associated with total body weight,
muscle yield, muscle fat content, shear force, and whiteness
(Salem et al., 2012; Al Tobasei et al., 2017b). Similarly, RNA-
Seq data were used to identify SNPs with allelic imbalances in
fish families showing variations in resistance to Flavobacterium
psychrophilum, the etiological agent of BCWD in rainbow trout
(Marancik et al., 2014; Al Tobasei et al., 2017a). Together about
50 and 229K transcribed SNPs were identified in the two studies,
respectively. Of them, ∼21K SNPs had allelic-imbalances in
families with contrasting phenotypes. The first objective of this
study was to design, develop, and validate a 50K transcribed gene
SNP-chip. The chip content includes the 21K transcribed SNPs
with allelic-imbalances associated with the aforementioned traits
and∼29K SNPs without allelic-imbalances that were strategically
added to achieve more even genome-wide distribution. The new
SNP-Chip is available from Affymetrix. The second objective of
this study was to test the feasibility of using the new SNP-chip in
GWA analysis to identify QTL explaining muscle yield variance
in the USDA/NCCCWA rainbow trout growth-selected line. The
results were compared with a previous GWA study for the same
trait in the same population that we have previously conducted
with a genomic-based 57K SNP chip (Gonzalez-Pena et al., 2016).

MATERIALS AND METHODS

Ethics Statement
Institutional Animal Care and Use Committee of the
United States Department of Agriculture, National Center for
Cool and Cold Water Aquaculture (Leetown, WV) specifically
reviewed and approved all husbandry practices and experimental
procedures used in this study (Protocols #056 and 076).

Source and Selection of SNPs for the Chip
Recently, we used RNA-Seq and two bioinformatic pipelines,
GATK and SAMtools, for discovering coding/functional
SNPs from 98 rainbow trout fish families (5 fish each)
showing variations in whole-body weight, muscle yield,
muscle fat content, shear force, and whiteness (Al Tobasei
et al., 2017b). GATK detected 59,112 putative SNPs and
SAMtools detected 87,066 putative SNPs. The two datasets
contained approximately 50K non-redundant common SNPs;
of which, 30,529 mapped to protein-coding genes (with 7.7%
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non-synonymous SNPs) and 4,386 mapped to lncRNAs. A
total of 7,930 non-redundant SNPs had allelic imbalances
between the low- and high-ranked families for the phenotypes.
Validation of a subset of 92 SNPs revealed (1) 86.7–93.8%
success rate in identifying polymorphic SNPs and (2) 95.4%
consistent matching between DNA and cDNA genotypes,
indicating a high rate of identifying SNPs using RNA-Seq.
This SNP data set was recently published, Al Tobasei et al.
(2017b) and is available through the NCBI dbSNP database
(accession numbers ss#2711191806-2711287038 in addition to
ss#2137497773).

Similarly, we identified transcribed gene SNPs in two
genetic lines, ARS-Fp-R (resistant) and ARS-FP-S (susceptible),
that were created by selective breeding to exhibit divergent
resistance to BCWD. RNA-Seq analysis of pooled RNA
samples was used to identify SNPs from the resistant and
susceptible genetic lines. Fish belonging to resistant and
susceptible genetic lines were collected on day 1 and day 5
post-challenge with Fp versus PBS injection (Marancik et al.,
2014; Al Tobasei et al., 2017a). Using GATK bioinformatics
pipelines, ∼229K transcribed SNPs were identified(Al
Tobasei et al., 2017a). The total number of SNPs with
allelic imbalance, after removing redundant SNPs, was
7,951.

The SNPs identified in the previous two studies were used as
a source to build the SNP array described in this study. About
21K transcribed SNPs with allelic-imbalances associated with
the above-listed traits were included in the chip. These SNPs
were identified from pooled RNA-Seq data collected from ∼620
fish, representing 98 families from the ARS growth-selected line
and 54 families from the ARS-Fp-R and -S lines. In addition,
about 29K transcribed SNPs without allelic-imbalances were
selected from all the putative SNPs and were strategically added
to the chip with the aim of achieving even distribution of
SNPs along the rainbow trout 29 chromosomes. The additional
SNPs were selected to represent as many genes as possible in
the genome: two SNPs were selected per gene from 14K genes
with available SNPs. The chip includes ∼5K non-synonymous
SNPs. The chip has probe sets for a total number of 50,006
SNPs.

Chip Genotyping Quality Assessment
The SNP-chip was used in genotyping 1,728 fish from the
USDA-ARS genetic lines. The Affymetrix SNPolisher software
was used to calculate the chip SNP- and sample-metrics and
assess QCs and filter samples/genotypes at the default setting
(Palti et al., 2015). Forty-seven SNPs previously genotyped by
a Fluidigm PCR-based assay (Al Tobasei et al., 2017b) were
used to check quality of Affymetrix chip genotyping using
120 samples genotyped by both the chip and Fluidigm SNP
assays. In addition, we confirmed the quality of the SNPs and
the order of the samples included in the genotyping panel
through pedigree check. Among the fish genotyped we included
previously confirmed parental-pairs of nine families with 470
offspring and confirmed an average of 99.4% matching between
offspring SNP genotypes and the genotypes of the expected
parents.

SNP Genomic Distribution and Annotation
SNPs used in building the chip were identified using the
first draft of the rainbow trout reference genome (Al Tobasei
et al., 2017b). To update genomic coordinates according to the
newly released genome assembly (GenBank assembly Accession
GCA_002163495, RefSeq assembly accession GCF_002163495;
Gao et al., 2018), SNPs were mapped by BLASTing the SNP probe
sequences (70 nt) to the new genome sequence. Sequences with
100% identity match and no gap with single hits were assigned
to the new genome position. Sequences with multiple hits were
re-Blasted using probe size of 150 nt by adding 40 nt flanking
sequence in both direction. A total of 45K SNPs out of 50K SNPs
were successfully assigned to the new genome and were used for
the GWA analyses.

SNPeff program was used to classify and annotate functional
effects of the SNPs (Cingolani et al., 2012). The gff file of the
new rainbow trout genome reference was used to determine
position of the SNPs in a gene i.e. located within mRNA start
and end positions (genic), within a CDS, 5′UTR or 3′UTR.
SNPs not within start and end positions of mRNA were
considered intergenic. Upstream/downstream intergenic SNPs
were determined if located within 5Kb of an mRNA. SNPs
within lncRNAs were determined using gtf file of our previously
reported lncRNA reference (Al-Tobasei et al., 2016). SNP
annotation was performed by intersecting the SNPs bed file
with the gff/gtf file using Bedtools software (Quinlan and Hall,
2010).

Rainbow Trout Population and Phenotypes
Used for GWA
Genome-wide association analysis was carried out using fish
from a growth-selected line that has been previously described
(Leeds et al., 2016). Briefly, this synthetic line is a 2-yr-
old winter/spring-spawning population that was developed
beginning in 2002, became a closed population in 2004, and
since then has gone through 5 generations of genetic selection
for improved growth performance. Fish from two consecutive
generations (i.e., the third and fourth generations of growth
selection) were included in this study. Phenotypic data and DNA
samples were collected from 878 fish (406 fish representing 98
families from year-class (YC) 2010 and 472 fish representing
99 families from YC 2012). Among the 878 fish genotyped for
GWAS, 40 fish were previously used for the discovery of the
muscle yield associated SNP as described above (Al Tobasei
et al., 2017b). The aforementioned SNP array was used for
GWAS. Methods used to sample fish from each nucleus family
and to characterize muscle yield have been described previously
(Gonzalez-Pena et al., 2016). Eggs were hatched in spring water
at 7–13◦C to synchronize hatch times. Each family was stocked
separately in 200-L tanks and hand-fed a commercial fishmeal-
based diet beginning at swim-up. Neomales were developed from
a subset of alevins from the previous year class by feeding 2
mg/kg of 17α-methyltestosterone for 60 d post-swim-up, and
the masculinized females were used as sires for the following
generation. At 5-months old, fish were uniquely tagged by
inserting a passive integrated transponder, and tagged fish were
combined and reared in 1,000-L communal tanks. Fish were
fed a commercial fishmeal-based diet using automatic feeders.
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EBV were computed based on a two-trait model, 10-mo BW and
thermal growth coefficient (TGC), using MTDFREML (Boldman
et al., 1995). Each generation, EBV was used as selection criterion
and mating decisions were made to maximize genetic gain
while constraining the inbreeding rate to ≤1% per generation
using EVA evolutionary algorithm (Berg et al., 2006). Data from
masculinized fish were not used in the growth analysis.

Fish were harvested between 410 and 437 days post-hatch
(mean body weight = 985 g; SD = 239 g), between 446 and
481 days post-hatch (mean body weight = 1803 g; SD = 305 g),
for the 2010, and 2012 hatch years, respectively. Individual
body weight data were recorded at harvesting. Fish were
taken off feed 5 days before harvesting. For measurement
of muscle yield when harvested at each of five consecutive
weeks, approximately 100 fish (i.e., 1 fish per full-sib family
per week) were anesthetized in approximately 100 mg/L of
tricaine methane sulfonate (Tricaine-S, Western Chemical,
Ferndale, WA) slaughtered, and eviscerated. Head-on gutted
carcasses were packed in ice, transported to the West Virginia
University Muscle Foods Processing Laboratory (Morgantown,
WV), and stored overnight. The next day, carcasses were
manually processed into trimmed, skinless filets by a trained
faculty member and weighed; muscle yield was calculated as a
percent of total body weight (Salem et al., 2013). The fish used in
GWA had an average muscle yield of 48.91% (SD= 2.42).

GWA Analyses
Weighted single-step GBLUP (WssGBLUP) was used to perform
GWA analysis as implemented in previous studies (Wang et al.,
2012, 2014; Misztal et al., 2014). In addition to phenotypic
data, wssGBLUP integrates genotype and pedigree information to
increase estimation precision and detection power (Wang et al.,
2012) in a combined analysis that is executed by the BLUPF90
software (Misztal et al., 2002).

The following mixed model was used for single trait analysis:

y = Xb+ Z1a+ Z2w+ e

where y is the vector of the phenotypes, b is the vector of fixed
effects including harvest group and hatch year, a is the vector of
additive direct genetic effects (i.e., animal effect), w is the vector
of random family effect, and e is the residual error. The matrices
X, Z1, and Z2 are incidence matrices for the effects contained
in b, a, and w, respectively. The additive direct genetic effect
is a correlated effect with covariance structure given by Hσ 2

a,
where σ 2

a is the additive direct genetic variance and H is the
realized relationship matrix that combines pedigree and genomic
relationships (Legarra et al., 2009). In the WssGBLUP mixed
model equations, the inverse ofH is used (Aguilar et al., 2010).

H−1 = A−1 +

[

0 0

0 G−1 A−1
22

]

where A−1 is the inverse of the pedigree relationship matrix and
has the dimension of the number of animals in the pedigree;
A−1
22 is the inverse of the pedigree relationship matrix among

genotyped animals and G−1 is the inverse of the genomic

relationship matrix; both G−1 and A−1
22 have the dimension of

the number of genotyped animals. The random family effect is
uncorrelated and just accounts for the fact the animals within
the same family were raised in a common environment, and the
covariance structure is given by Iσ 2

w, where I is an identity matrix
and σ 2

w is the family variance.
As BLUP-based models consider the variance components are

known, AIREMLF90 (Misztal et al., 2002) was used to estimate
variance components for the additive direct genetic effect,
random family effect, and residuals. Inbreeding was considered
in all analyses, and was calculated using INBUPGF90 (Misztal
et al., 2002) on 63,808 fish that represent five generations in
the NCCCWA population. Quality control (QC) of genomic
data was performed using BLUBF90 (Misztal et al., 2002) with
the following parameters: SNP with minimum Allele Frequency
(MAF) >0.05, SNP with call rate >0.90, animals with call rate
>0.90, and SNP with a difference between observed and expected
allele frequency <0.15 (i.e., HWE test) were kept in the data. Out
of a total of 50,006 SNPs, 35,322 SNPs passed QC.

In WssGBLUP, the weights for each SNP was assigned the
same weight (e.g., 1.0, i.e., standard ssGBLUP) for the first
iteration. For the second iteration, weights were calculated based
on the SNP effects (û) estimated in the previous iteration as
û22p(1 − p), where p is the current allele frequency. Each
iteration was performed using three steps as follows: first, weight
was assigned as described above; second, BLUPF90 (Misztal
et al., 2002) was used to compute genomic estimated breeding
values (GEBV) based on a realized relationship matrix (H) that
combines pedigree (A) and genomic relationship matrix (G), the
last considered weights for SNP; and third, postGSF90 (Misztal
et al., 2002) was used to calculate SNP effects and weights
based on sliding variance windows of 50 adjacent SNP. A total
of 2 iterations were used. A window based on physical size
(i.e., specific number of nucleotides) was not used to avoid
biases due to uneven distributed SNPs in the new SNP chip.
A Manhattan plot based on the proportion of additive genetic
variance explained by the windows was created using the qqman
package in R (Turner, 2014); the genomic windows explaining
significant proportion of the additive genetic variance for muscle
yield could be detected.

Citrate Synthase (CS) Activity Assay
GWA analysis (described below) showed a SNP window
contained the CS gene associated with the genetic variance
in muscle yield. To assess the potential effect of the SNPs in
this gene, we measured the CS activity in 100 fish from the
2012 year-class as previously described (Brijs et al., 2017; Seite
et al., 2018). Frozen muscle tissue samples were homogenized
using electric homogenizer on ice followed by centrifugation at
1,000g for 15min at 4◦C. The supernatant was used to assess
the total protein concentration and CS activity. Total protein
concentration was assessed using a BCA protein assay kit at
562 nm with bovine serum albumin (BSA) as the standard. CS
activity was determined from the rate of appearance of reduced
DTNB (5,5′-dithiobis [2-nitrobenzoic]), which was monitored
with a spectrophotometer at 412 nm (Ekstrom et al., 2017). For
the CS assay, 10µL of diluted tissue homogenate (1.0mg/ml) was
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incubated with 140µL reactionmedium (0.1mMDTNB, 0.2mM
AcetylCoA, 0.15mM oxaloacetic acid, pH 8.0). The absorbance
was read in triplicate at 412 nm (25◦C) after 4min. CS activity
was expressed as 1OD/ mg protein.

RESULTS AND DISCUSSION

Chip Genotyping Quality Assessment
The SNP-chip was used to genotype 1,728 fish. Out of 50,006
SNPs, 32,273 SNPs (64.5%) were characterized as high quality
and polymorphic and 3,458 SNPs (6.9%) were high quality
monomorphic (Table 1).

The Affymetrix SNPolisher software was used to filter
samples/genotypes at the default setting (Palti et al., 2015). Out
of 1,728 genotyped samples, 1,641 (94.9%) fish samples were
retained, and 87 samples were filtered out because they failed to
meet the 0.97 call rate (CR) and 0.82 Dish QC (DQC) thresholds.
The average QC call rate for the passing samples was 99.6%
(Table 2).

We compared the Affymetrix genotyping results of 47 SNPs
that were previously genotyped by a Fluidigm PCR-based assay
(Al Tobasei et al., 2017b). Using 120 samples genotyped by both
methods, there was a 99.5% match in genotypes between the
two assays for high-resolution polymorphic markers (data not
shown). This test demonstrates the high quality of the SNP
chip and reliable genotyping data for the subsequent GWA
analyses.

The SNP-chip showed an average minor allele frequency
(MAF) of 0.25 and standard deviation of 0.134. A total of
27,280 SNPs had MAF> 0.1 and 16,101 SNP more than 0.25
(Figure 1).

TABLE 1 | SNP chip Metric summary.

Conversion Type Count Percentage

Poly High Resolution 32,273 64.5

Other 8,395 16.7

Mono High Resolution 3,458 6.9

No Minor Hom 2,725 5.4

Call Rate Below Threshold 2,705 5.4

Off target variant 450 0.9

TABLE 2 | SNP chip Sample QC Summary.

Number of input samples 1,728

Samples passing DQC 1,722

Samples passing DQC and QC CR 1,641

Samples passing DQC, QC CR and Plate QC 1,641 (94.9%)

Number of failing samples 87

Number of Samples Genotyped 1,641

Average QC CR for the passing samples 99.66

SNP Density and Genomic Distribution
SNPs used in this study to build the chip were initially identified
using a rainbow trout reference genome published by Berthelot
et al. in 2014 (Berthelot et al., 2014). However, in this reference
only ∼1 Gb out of a 2.1 Gb total length of the assembly is
anchored to chromosomes. Recently, a newer genome assembly
has been built that is currently available at NCBI (Accession
GCA_002163495) (Gao et al., 2018). The new assembly has
a 1.94 Gb total length (89% of the genome) anchored to 29
chromosomes. A total of 45,590 SNPs out of 50,006 existing in
the SNP-chip were mapped to the new genome assembly with
an average of 1,572 SNPs per chromosome. The average SNP
density was 1 SNP per 42.7 Kb, with a range of 1 SNP/33.5 Kb
(Chromosome 16) to 1 SNP/61.6 Kb (Chromosome 23). Figure 2
shows the number of SNPs per chromosome and the SNP
density distribution. A total of 21K out 50K SNPs on the chip
were selected based on putative association with phenotypic
traits, and hence, were expected to be clustered in specific
genome loci. However, supplementing the chip with 29K SNPs
(two SNPs per gene) perhaps helped in randomizing the SNP
distribution in the genome. Previously, a 57K genome-wide
SNP array for rainbow trout reported an average of 1,551.4
mapped SNPs per chromosome (Gonzalez-Pena et al., 2016).
The 57K array was designed primarily using SNPs originating
from RAD-Seq sequencing of doubled-haploid clonal lines (Palti
et al., 2014) and whole genome re-sequencing of fish from
the Aquagen (Norway) breeding program. A key point here, is
that the SNPs included in the 57K chip were originated from
other genetic lines. Hence, although polymorphic enough in
the NCCCWA growth line used in this study for conducting
GWA as we have previously shown (Gonzalez-Pena et al.,
2016), the SNPs used for GWA in this study were originated

FIGURE 1 | Minor allele frequency distribution of the polymorphic

high-resolution SNPs in the SNP chip.
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FIGURE 2 | Number of SNPs per chromosome and SNP density distribution (SNP/100K nucleotide).

from the investigated population and were expected to be
more informative due to ascertainment bias (Vallejo et al.,
2017b).

SNP Annotation and Classification Based
on Functional Effects
SNPeff program was used to classify and annotate functional
effects of the SNPs. A total of 45,590 SNPs were included
in this analysis. Classifying SNPs by impact showed 636
effects (0.23%) with high impact (stop-gain) and 20,987 effects
(7.86%) with moderate impact, (missense variants). The rest
(91.9%) represents low to moderate variant effect including
synonymous and non-coding SNPs. Figure 3 shows percent of
SNP effects by gene regions. A total of 32.8% of the effects
were within transcripts with 16.5% exonic, 1.3% in the 5′-UTR

and 12.8% in 3′-UTR. All SNPs on the chip were identified
through transcriptome sequencing. Surprisingly, there were 14%
upstream and 18.1% downstream effects (within 5Kb of the
genes). The upstream/downstream percent is consistent with
our previous report that showed 17.1–20.2% SNPs within 5Kb
upstream/downstream of protein-coding genes in one of two
SNP data sets used in building the SNP-chip (Al Tobasei
et al., 2017b). On the other hand, there was only 1.9% of
the SNP effects within intergenic regions, compared to 37.7–
49.2% intergenic SNPs in the previous study (Al Tobasei
et al., 2017b). In our previous study, the high percentage of
intergenic and upstream/downstream SNPs was explained by the
incomplete annotation of protein-coding genes and exons used
in the previous version of the rainbow trout reference genome
(Berthelot et al., 2014). The drop in the percentage of intergenic
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FIGURE 3 | Percentage of SNP effects by gene region.

SNP effects in this study may be due to the improved gene
annotation of the current version of the genome reference.

GWA Analyses
Genomic Regions Associated With Muscle Yield
GWA analysis using WssGBLUP identified 163 SNPs, each
explaining at least 2% of the genetic variance of muscle yield
(Tables 3, 4; Supplementary File 1). The SNPs were clustered
into 4 main chromosomes (14, 16, 9, and 17). Chromosomes 14
and 16 showed the highest peaks with genomic loci explaining up
to 12.71% and 10.49% of the genetic variance, respectively. The
total variance explained by these loci is 23.2%. Figure 4 shows
a Manhattan plot displaying association between SNP genomic
sliding window of 50 SNPs and muscle yield. Sixty-nine of the
163 SNPs (42.2%) were previously identified as SNPs with allelic
imbalances associated with muscle yield in the original SNP data
set used to build the SNP chip (Al Tobasei et al., 2017b). Twenty-
one of the 163 SNPs caused non-synonymous mutations. The
rest of the SNPs were either silent mutations or located in UTR
of the genes indicating their potential epigenetic mechanism of
gene regulation. Important SNPs with more than 5% genetic
variance are discussed below and all 163 SNPs are listed in
Supplementary File 1.

With 46 SNPs clustered into 23 annotated genes, chromosome
14 had the most significant QTL windows explaining up to
12.71% of the genetic variance in muscle yield (Table 3 and
Figure 4). At least four genes can be inferred to be involved in cell
differentiation/proliferation and regulation of gene expression
based on their RefSeq annotation. The list included fibroblast
growth factor-binding protein-1(FGFBP1) which had a single
nonsynonymous SNP found in a window that explained 12.24%
of the additive genetic variance. FGFBP1 plays an essential
role in cell proliferation and differentiation by binding to
fibroblast growth factors. The FGFBP1 expression increases

during development and decreases before neuromuscular
junction degeneration during aging (Taetzsch et al., 2017).
The list of genes on chromosome 14 also includes inositol
polyphosphate 5-phosphatase (OCRL-1). OCRL is involved in
terminating the PI3K signaling and thus plays an important
role in modulating effects of growth factors and insulin
stimulation in cell proliferation and survival (Ooms et al.,
2009). Prominin-1-A gene (PROM1) that encodes for a
transmembrane glycoprotein had 2 SNPs. PROM1, often used
as adult stem cell marker, plays a role in maintaining stem cell
properties by suppressing differentiation (GeneCards-Human-
Gene-Database, 2018a). Another gene on chromosome 14
was farnesyltransferase/geranylgeranyltransferase type-1 subunit
alpha (FNTA) which had a SNP explaining 12.36% of the
variance. FNTA may positively regulate neuromuscular junction
development (UniProtKB, 2018a).

In addition, chromosome 14 had three genes involved in the
cell cycle regulation. The first gene is MCTS1 re-initiation and
release factor that had two SNPs in a window explaining 12.65%
of the additive genetic variance. MCTS1 is anti-oncogene that
decreases cell doubling time by shortening the G1 and G1/S
transit time (GeneCards-Human-Gene-Database, 2018b). The
second cell cycle control gene was cyclin-A2 which promotes
transition through G1/S and G2/M and can blockmuscle-specific
gene expression during muscle differentiation (Skapek et al.,
1996). The third gene was glutathione S-transferase P (GSTP1).
Although involved in numerous biological functions, GSTP1
negatively regulates CDK5 activity via p25/p35 translocation
which diminishes neurodegeneration (Sun et al., 2011).

Chromosome 14 also had SNPs in genes playing important
mitochondrial functions. There were 4 SNPs in the gene
encoded for the electron transfer flavoprotein dehydrogenase
(ETFDH) which is an important enzyme in the mitochondrial
electron transport chain. Mutations in ETFDH are associated
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TABLE 3 | Selected SNP markers explaining the largest proportion of genetic variance (>5%) for muscle yield in chromosome 14 using 50 adjacent SNP windows.

Variance

%

CHR SNP

position

Distance to

next SNP

Strand Gene Annotation Region/Effect

5.95 14 60291342 16113 + etfdh Electron Transfer Flavoprotein Dehydrogenase CDS/nonSyn

7.86 14 60307455 366 + etfdh Electron Transfer Flavoprotein Dehydrogenase CDS/syn

10.36 14 60307821 8 + etfdh Electron Transfer Flavoprotein Dehydrogenase 3′UTR

10.79 14 60307829 2256 + etfdh Electron Transfer Flavoprotein Dehydrogenase 3′UTR

10.84 14 60310085 163538 - ppid Peptidylprolyl Isomerase D CDS/nonSyn

10.90 14 60473623 421210 + rapgef2 Rap Guanine Nucleotide Exchange Factor 2 3′UTR

10.96 14 60894833 295302 NA NA NA NA

11.00 14 61190135 558 + LOC110488945 Prominin-1-A 3′UTR

11.00 14 61190693 7552 + LOC110488945 Prominin-1-A 3′UTR

2.24 14 61198245 76178 + LOC110488947 Fibroblast Growth Factor-Binding Protein 1 CDS/nonSyn

12.23 14 61274423 13691 – LOC110488948 Cyclin-A2 3′UTR

12.29 14 61288114 762 – LOC110488950 Transmembrane Protein 33 3′UTR

12.35 14 61288876 528124 – LOC110488950 Transmembrane Protein 33 CDS/syn

12.36 14 61817000 18067 – LOC110488956 Protein Farnesyltransferase/Geranylgeranyltransferase

Type-1 Subunit Alpha

3′UTR

12.30 14 61835067 6866 – LOC110488957 Glutathione S-Transferase P 3′UTR

12.26 14 61841933 319532 – LOC110488957 Glutathione S-Transferase P CDS/syn

12.24 14 62161465 1101 NA NA NA NA

12.45 14 62162566 79441 NA NA NA NA

12.71 14 62242007 38699 – LOC110488962 Inositol Polyphosphate 5-Phosphatase Ocrl-1 CDS/nonSyn

12.71 14 62280706 12616 + LOC110488963 Chloride Intracellular Channel Protein 2 3′UTR

12.70 14 62293322 4394 + LOC110488964 C1Galt1-Specific Chaperone 1 3′UTR

12.65 14 62297716 9021 – mcts1 Mcts1, Re-Initiation And Release Factor 3′UTR

11.85 14 62306737 36808 – mcts1 Mcts1, Re-Initiation And Release Factor 5′UTR

11.84 14 62343545 586 + lamp2 Lysosomal Associated Membrane Protein 2 CDS/nonSyn

11.85 14 62344131 2211 + lamp2 Lysosomal Associated Membrane Protein 2 CDS/nonSyn

11.78 14 62346342 306 + lamp2 Lysosomal Associated Membrane Protein 2 Intronic

11.78 14 62346648 579 + lamp2 Lysosomal Associated Membrane Protein 2 Intronic

11.77 14 62347227 29198 + lamp2 Lysosomal Associated Membrane Protein 2 Intronic

11.66 14 62376425 304 + tmem255a Transmembrane Protein 255A CDS/syn

10.92 14 62376729 3620 + tmem255a Transmembrane Protein 255A CDS/syn

10.87 14 62380349 282 + tmem255a Transmembrane Protein 255A 3′UTR

10.86 14 62380631 31094 + tmem255a Transmembrane Protein 255A 3′UTR

10.86 14 62411725 1632 + upf3b Upf3B, Regulator Of Nonsense Mediated Mrna Decay CDS/nonSyn

10.86 14 62413357 1931 + upf3b Upf3B, Regulator Of Nonsense Mediated Mrna Decay 3′UTR

10.92 14 62415288 26359 + LOC110488974 60S Ribosomal Protein L39 3′UTR

10.90 14 62441647 10087 + LOC110488975 Septin-6 CDS/syn

10.88 14 62451734 10231 + LOC110488975 Septin-6 CDS/syn

10.88 14 62461965 6983 + LOC110488975 Septin-6 3′UTR

10.75 14 62468948 89647 NA NA NA NA

10.72 14 62558595 7052 + LOC110488979 Ets-Related Transcription Factor Elf-1 3′UTR

10.66 14 62565647 66310 – LOC110488980 Tenomodulin 3′UTR

10.67 14 62631957 1503911 – LOC110488980 Tenomodulin CDS/nonSyn

10.83 14 64135868 6948 + gla Galactosidase Alpha CDS/nonSyn

9.18 14 64142816 2581 – LOC110488986 60S Ribosomal Protein L36A CDS/syn

7.03 14 64145397 20716 – LOC110488986 60S Ribosomal Protein L36A CDS/nonSyn

5.17 14 64166113 + btk Bruton Tyrosine Kinase CDS/nonSyn

Color intensities reflect changes in additive genetic variance (green is the highest and red is the lowest).
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TABLE 4 | Selected SNP markers explaining the largest proportion of genetic variance (>5%) for muscle yield in chromosome 16 using 50 adjacent SNP windows.

Variance

%

CHR SNP

position

Distance to

next SNP

Strand Gene Annotation Region/Effect

4.62 16 39953311 12000 + tnfrsf5a Tnf Receptor Superfamily Member 5A Precursor 5’UTR

5.09 16 39965311 3 + tnfrsf5a Tnf Receptor Superfamily Member 5A Precursor CDS/nonSyn

6.03 16 39965314 689 + tnfrsf5a Tnf Receptor Superfamily Member 5A Precursor CDS/nonSyn

6.83 16 39966003 608 + tnfrsf5a Tnf Receptor Superfamily Member 5A Precursor CDS/nonSyn

7.79 16 39966611 666 + tnfrsf5a Tnf Receptor Superfamily Member 5A Precursor 3’UTR

8.47 16 39967277 149527 + tnfrsf5a Tnf Receptor Superfamily Member 5A Precursor 3’UTR

8.76 16 40116804 438 NA NA NA NA

9.06 16 40117242 5021 – LOC110492067 Kelch Protein 21 CDS/syn

9.04 16 40122263 471 – LOC110492067 Kelch Protein 21 CDS/syn

9.04 16 40122734 206269 – LOC110492067 Kelch Protein 21 CDS/syn

8.97 16 40329003 423 + LOC110492070 45 Kda Calcium-Binding Protein 3’UTR

8.88 16 40329426 430961 + LOC110492070 45 Kda Calcium-Binding Protein 3’UTR

8.88 16 40760387 133719 + LOC100136676 Caspase-9 CDS/syn

8.87 16 40894106 16043 + LOC110491067 Basement Membrane-Specific Heparan Sulfate

Proteoglycan Core Protein

CDS/syn

8.81 16 40910149 15660 + LOC110491067 Basement Membrane-Specific Heparan Sulfate

Proteoglycan Core Protein

CDS/nonSyn

8.81 16 40925809 134 NA NA NA NA

8.82 16 40925943 328 NA NA NA NA

8.88 16 40926271 36300 NA NA NA NA

8.88 16 40962571 1603 + LOC110492082 Cdp-Diacylglycerol–Serine O-Phosphatidyltransferase 3’UTR

8.88 16 40964174 1011 NA NA NA NA

8.89 16 40965185 134 NA NA NA NA

8.89 16 40965319 214946 NA NA NA NA

9.33 16 41180265 15995 + LOC110492084 Membrane-Associated Guanylate Kinase, Ww And Pdz

Domain-Containing Protein 3

CDS/syn

9.37 16 41196260 49825 – LOC110492085 Tyrosine-Protein Phosphatase Non-Receptor Type 12 CDS/syn

9.82 16 41246085 3112 + LOC100136105 Complement Receptor CDS/syn

9.82 16 41249197 474 + LOC100136105 Complement Receptor 3’UTR

9.83 16 41249671 30475 + LOC100136105 Complement Receptor 3’UTR

9.95 16 41280146 574 + c4bp C4B-Binding Protein Alpha Chain 3’UTR

9.93 16 41280720 774 + c4bp C4B-Binding Protein Alpha Chain 3’UTR

10.15 16 41281494 229 NA NA NA NA

10.29 16 41281723 24001 NA NA NA NA

10.33 16 41305724 20095 – LOC110492088 Uncharacterized Loc110492088 NA

10.36 16 41325819 685099 – cd34a Cd34A Molecule 3’UTR

10.44 16 42010918 5137 – slc26a9 Solute Carrier Family 26 Member 9 CDS/nonSyn

10.45 16 42016055 176696 – slc26a9 Solute Carrier Family 26 Member 9 CDS/syn

10.49 16 42192751 41683 – LOC110492098 Cysteine/Serine-Rich Nuclear Protein 2 CDS/syn

9.58 16 42234434 23274 + LOC110492102 Daz-Associated Protein 2 3’UTR

9.68 16 42257708 1026 – LOC110492103 Rac Gtpase-Activating Protein 1 3’UTR

9.45 16 42258734 38505 – LOC110492103 Rac Gtpase-Activating Protein 1 3’UTR

8.01 16 42297239 2891 + LOC110492108 Citrate Synthase, Mitochondrial CDS/nonSyn

8.01 16 42300130 5927 + LOC110492108 Citrate Synthase, Mitochondrial CDS/nonSyn

7.38 16 42306057 101 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

6.57 16 42306158 92 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

6.01 16 42306250 1 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

5.19 16 42306251 60 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

4.54 16 42306311 303 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

3.90 16 42306614 605 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

3.19 16 42307219 57 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

2.53 16 42307276 + LOC110492108 Citrate Synthase, Mitochondrial 3’UTR

Color intensities reflect changes in additive genetic variance (green is the highest and red is the lowest).
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FIGURE 4 | Manhattan plot of GWA analysis performed with WssGBLUP and showing association between SNP genomic sliding windows of 50 SNPs and muscle

yield. Chromosomes 14 and 16 showed the highest peaks with genomic loci, explaining together up to 23.2% of the genetic variance. The blue line shows a threshold

of 1% of additive genetic variance explained by SNPs.

with myopathies (Haller and DiMauro, 2012). Another
mitochondrial-relevant gene was peptidylprolyl isomerase
D (PPID). Mutations in PPID are associated with muscular
dystrophy in human (Giorgio et al., 2010).

Few other genes included in the QTL region on chromosome
14 are important for maintenance of the muscle functions. Of
them is the chloride intracellular channel protein 2 (CLIC2)
which modulates the activity of ryanodine receptor 2 (RYR2) and
inhibits calcium influx, and therefore is involved in regulating
muscle contraction (Ekstrom et al., 2017). Five SNPs were in
the lysosomal-associated membrane protein 2 gene (LAMP2).
LAMP2 mutations were reported in patients with cardioskeletal
myopathies (Berthelot et al., 2014). Two SNPs were located in
the UPF3B gene, a regulator of nonsense-mediated mRNA decay
(NMD). NMD inhibition was observed in patients with muscular
dystrophy (Palti et al., 2014). Three SNPs were observed in
the septin-6 gene. Mutations of septin-9 (another gene family
member) is genetically linked to muscle atrophy (Vallejo et al.,
2017b). Two SNPs were identified in the tenomodulin gene which
showed downregulation in an animal muscle atrophy model
(Taetzsch et al., 2017).

Chromosome 16 ranked second in having the most significant
QTL windows with 49 SNPs clustered into 16 annotated genes
(Table 4 and Figure 4). The gene within the most significant
SNP window to additive genetic variance was the cysteine/serine-
rich nuclear protein 2 (CSRNP2). CSRNP2 has DNA binding
transcription factor/activation activity. Deletion of CSRNP1/2/3
three gene family members resulted in mice neonatal lethality
(Gingras et al., 2007). Another gene within the same SNPwindow
was solute carrier family 26 member 9 (Slc26a9). Little is known

about the function of Slc26a9 in muscle, it serves as anion
exchanger mediating chloride, sulfate and oxalate transport and
chloride/bicarbonate exchange (UniProtKB, 2018b). A single
SNP was observed in the stem cell marker CD34a gene.
Cd34(−/−) mice showed a defect in muscle regeneration caused
by acute or chronic muscle injury (Alfaro et al., 2011).

Several genes were involved in cell signaling/receptor activity.
Five SNPs were predicted in 2 genes of the immune-related
complement activation pathway, these are the complement
receptor and C4b-binding protein alpha chain. Recent studies
indicated that the complement is activated as a response of
skeletal muscle injury and plays a key role during muscle
regeneration (Zhang et al., 2017). A single SNP was identified
in the tyrosine-protein phosphatase non-receptor type 12
(PTPN12) which dephosphorylates a wide-range of proteins, and
thus regulates several cellular signaling cascades such as ERBB2
and PTK2B/PYK2 (UniProtKB, 2018c). This group of genes also
includes the membrane-associated guanylate kinase, WW and
PDZ domain-containing protein 3 (MAGI3), which is involved
in the regulation of various cell signaling processes including
the AKT1, TGFA, ERK and JNK signaling cascades (UniProtKB,
2018d). Two SNPs were in the basement membrane-specific
heparan sulfate proteoglycan core protein (HSPG2). A mouse
model deficient in this gene showed muscle hypertrophy through
reduced myostatin expression suggesting a role in maintaining
fast muscle mass and fiber composition (Xu et al., 2010). Five
SNPs were in the TNF receptor superfamily member 5A gene.
Recently, some proinflammatory cytokines belonging to TNF
superfamily have been recognized as an important regulator of
skeletal muscle mass (Tajrishi et al., 2014).
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Chromosome 16 also had a single SNP in the DAZ-
associated protein 2 (DAZAP2). Not much is known about the
DAZAP2 function in muscle, however, DAZAP2 interacts with
the transforming growth factor-beta signaling molecule SARA
(Smad anchor for receptor activation), eukaryotic initiation
factor 4G, and an E3 ubiquitinase (Giorgio et al., 2010). Another
gene in the list was Rac GTPase-activating protein 1 (RACGAP1)
that harbored 2 SNPs explaining up to 9.658% of the genetic
variance. RACGAP1 regulates cytokinesis and cell differentiation
(Wang et al., 2018). A single SNP existed in caspase-9 which
has an important non-apoptotic role in muscle differentiation
(Murray et al., 2008). Three SNPs were located in the kelch
protein 21. Several Kelch family members play important roles in
skeletal muscle development by regulating the cell proliferation
and/or differentiation (Gupta and Beggs, 2014).

An important gene affecting muscle function which is also
located within the QTL region on chromosome 16 is the
citrate synthase (CS), which is used as a marker for human
mitochondrial functions. Ten SNPs explaining up to 8% of the
genetic variance were located in the CS gene.

GWA studies in fish to identify QTL affecting muscle yield
and quality are still in its infancy. Previous GWA analysis using
a 57K genomic SNP chip on the same fish population identified
two windows that explained 1.5 and 1.0% of the additive genetic
variance for muscle yield and 1.2 and 1.1% for muscle weight.
Interestingly, the windows are located on chromosome 9, which
showed some association with muscle yield in the current study;
however, none of the SNPs were annotated to the same genes.
No major QTLs were identified in the previous study. This large
difference in the outcomes of the two studies was somewhat
unexpected. However, it may be explained by lower marker
density within or near genes in the 57K chip (Gonzalez-Pena
et al., 2016) and by ascertainment bias, because the transcribed
SNPs used in this study were discovered in the phenotyped fish
and hence are expected to be more polymorphic and informative
for GWA analysis in this population. Additionally, in this study,
sliding windows of 50 SNP were used contrasting with 20 non-
sliding windows in the previous study. Difference in window size
slightly contributed to the increased proportion of variance (data
not shown). By using SNPwindows, it is assumed that those DNA

FIGURE 5 | Correlation coefficient between muscle yield and CS activity in 96 samples. (A) The regression coefficient R2 value between the muscle yield and CS

activity was 0.092 (p-value 0.002). (B) CS had 1.43-fold increase in the high-ranked fish compared to the low ranked ones.
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blocks may be inherited together, which may not always be the
case for all assumed windows. In common carp, genetic linkage
mapping identified QTLs with large effects for muscle fiber cross-

section area (21.9%) and muscle fiber density (18.9%) (Zhang
et al., 2011). Genome-wide significant QTL affecting growth and

muscle related traits were identified in Atlantic salmon (Tsai
et al., 2015). The latter two studies, together with our study,
indicate existence of large-effect QTLs affecting muscle yield in
aquaculture species. However, the QTLs identified in this study
might be population specific and thus, need to be tested in other
populations.

Citrate Synthetase Activity Correlation With Muscle

Yield
A SNP window on chromosomes 16 explaining up to 8.01% of

the genetic variance in muscle yield contained 10 SNPs of the

CS gene. Two of the SNPs were nonsynonymous mutations. To
investigate the potential effect of these SNPs, we measured the CS

activity in 100 fish from the 2012 year-class. The samples included
38 fish from 5 high-ranked and 5 low-ranked families for muscle

yield, 19 each, and 62 randomly selected fish. CS had 1.43-fold
increase in the high-ranked fish compared to the low ranked
ones (Figure 5). The regression coefficient R2 value between the
muscle yield and CS activity was 0.092 (p-value 0.002). However,
there was no significant association between any of the SNP
genotypes and CS activity (P-value <0.001). Mitochondria are
at the center of age-related sarcopenia that is characterized by
decline in human muscle mass. Skeletal muscle CS decreases
with aging in humans (Short et al., 2005). Therefore, our results
suggest an important role of mitochondrial functions to muscle
growth.

Conclusion
This study provides a 50K transcribed gene SNP-chip based on

RNA-Seq data from fish families showing genetic diversity for six

aquaculture production traits in the USDA/NCCCWA growth-
and disease-selected genetic lines. The chip was tested for GWA

analysis, which led to identification of large-effect QTL formuscle
yield in that population. Other muscle quality traits are currently

under investigation. Collectively, these studies will allow the use
of SNP markers to estimate breeding values for muscle yield and

quality traits that are economically important traits for aquatic
food producers, processors, and consumers. Current and future
selection at the NCCCWA will select for improved filet yield.
Genetic markers are desirable for these traits because genetic
improvement is limited by the inability to measure filet yield
traits directly on broodstock due to lethal sampling. Hence the
accuracy and efficiency of selective breeding can be improved

by taking advantage of the genomic information, even though
limited phenotyping is available for this economically-important
trait.

One potential limitation in this study is the use of the
same population for SNP identification and GWAS. The QTLs
identified in this study might be population specific and thus,
need to be tested in other populations. It is worth mentioning
that while the SNP chip has 50K SNPs, about 7.9K SNPs had
putative allelic imbalances associated with 5 growth and muscle
related traits (body weight, muscle yield, muscle fat content, shear
force, and whiteness). Also, there were 13K additional SNPs with
putative allelic imbalances associated with resistance BCWD.
About 620 fish were used in the previous RNA-Seq analyses to
identify these putative SNPs (Al Tobasei et al., 2017a,b). In this
study, only one of the 6 traits, muscle yield was considered for
GWAS. Only 40 fish were used in the previous RNA-Seq study to
identify the putative SNPs that were associated with muscle yield
(Al Tobasei et al., 2017b). To make sure those fish do not affect
the GWAS results, we removed those 40 fish in addition to all fish
involved in determining the growth/muscle putative SNPs (a total
of 90 fish) and we reran GWAS. There was no significant change
to the QTL identified in this study. Also, all the 90 fish came from
hatch year, 2010. In this GWAS, we used fish from 2010 hatch
year (406 fish representing 98 families) and 2012 hatch year (472
fish representing 99 families.
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