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The field of synthetic microswimmers, micro-robots moving in aqueous environments,

has evolved significantly in the last years. Micro-robots actuated and steered by external

magnetic fields are of particular interest because of the biocompatibility of this energy

source and the possibility of remote control, features suited for biomedical applications.

While initial work has mostly focused on helical shapes, the design space under

consideration has widened considerably with recent works, opening up new possibilities

for optimization of propellers to meet specific requirements. Understanding the relation

between shape on the one hand and targeted actuation and steerability on the other hand

requires an understanding of their propulsion behavior. Here we propose hydrodynamic

simulations for the characterization of rigid micropropellers of any shape, actuated by

rotating external magnetic fields. The method consists of approximating the propellers

by rigid clusters of spheres. We characterize the influence of model parameters on the

swimming behavior to identify optimal simulation parameters using helical propellers as

a test system. We then explore the behavior of randomly shaped propellers that were

recently characterized experimentally. The simulations show that the orientation of the

magnetic moment with respect to the propeller’s internal coordinate system has a strong

impact on the propulsion behavior and has to be known with a precision of ≤ 5◦ to

predict the propeller’s velocity-frequency curve. This result emphasizes the importance

of the magnetic properties of the micropropellers for the design of desired functionalities

for potential biomedical applications, and in particular the importance of their orientation

within the propeller’s structure.

Keywords: micropropeller, randomly shaped, bead approximation, simulation, magnetics

1. INTRODUCTION

Controlled propulsion at themicrometer and nanometer-scale is a formidable challenge in robotics.
Specifically, propulsion in aqueous environments has tremendous potential for biomedical and
environmental applications (Abbott et al., 2009). Over the last years, such microswimmers have
been studied extensively (Elgeti et al., 2015; Lauga, 2016) and a number of specific medical
applications have been proposed (Peyer et al., 2013; Magdanz and Schmidt, 2014; Sitti et al.,
2015; Stanton et al., 2015; Schwarz et al., 2017). In many cases these robots are biohybrids, based
on biological swimmers, i.e., bacteria or other living cells that provide the motorization of the
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propulsion. In a particularly striking example, biohybrid
microswimmers based on magnetotactic bacteria have been
successfully employed in vivo for targeting and penetrating
solid tumors (Ouajdi et al., 2016) or to kill biofilms (Stanton
et al., 2017). At the moment, biological microswimmers are
superior to synthetic ones in many respects, but over the
last decade the synthesis and characterization of synthetic
microswimmers has made much progress and eventually, which
kind of microswimmer is best suited as a robot will depend on
the type of application that is envisioned. Synthetic swimmers
may for example be preferable in environmental conditions that
are toxic to biological swimmers or if the unavoidable biological
variability of properties needs to be suppressed.

Currently, one of the most promising non-biological
propulsion mechanism is based on actuation of a rigid magnetic
object (called a magnetic micropropeller) with a rotating
magnetic field, as this mechanism is non-toxic (and could thus
be used in biomedical settings) and works remotely, without the
need for direct contact with the robot. Rotation of a magnetic
field results in propulsion if the micropropeller has a rotation-
translation coupling, which usually requires chirality of the
structure. Therefore, the first magnetic micropropellers were
magnetic helices, inspired by the propulsion of bacteria due to
the rotation of their flagella (Ghosh and Fischer, 2009; Zhang
et al., 2009; Man and Lauga, 2013). Only in the last years, other
propeller designs have been explored. As the range of envisioned
tasks is expanding, diverse designs may be required. Non-helical
shapes such as a three-beads cluster (Cheang et al., 2014) or
v-shaped propellers (Sachs et al., 2017; Tottori and Nelson, 2018)
have been proposed. Moreover, studies of random aggregates
of magnetic nanoparticles, which are easy and inexpensive to
produce, have shown that a wide range of shapes can be propelled
and that many of them swim just as well as the carefully designed
propellers (Vach et al., 2013, 2015; Bachmann et al., 2018).
Since shapes of magnetic microswimmers can also realized by
3D-printing, there is much potential for customization and
fine-tuning of diverse shapes.

With the expansion of the design space of possible
magnetic propellers, the computational prediction of the
behavior of customized shapes becomes highly desirable, which
however remains a challenging task from the theoretical point
of view despite decades of study of low-Reynolds-number
hydrodynamics (Elgeti et al., 2015; Lauga, 2016). Analytical
solutions are only possible for simple shapes (Ghosh et al., 2012,
2013; Keaveny et al., 2013; Man and Lauga, 2013; Morozov and
Leshansky, 2014; Xu et al., 2016; Morozov et al., 2017), or for
slender clusters (Morozov and Leshansky, 2014; Morozov et al.,
2017; Mirzae et al., 2018). When analytical solutions are not
possible, hydrodynamic simulations can be used to describe the
propeller behavior. In general, to describe the dynamics of a
micropropeller, it is necessary to know its mobility matrix, which
is defined by the geometry of the propeller. This matrix describes
the linear relation between the applied forces and torques and
the resulting translational and angular velocities. To obtain
the mobility matrix for complex geometries, a coarse graining
method is required. Here we use an approach that approximates
the micropropeller geometry with a cluster of nanometer-sized

beads. Such discretization has been used extensively to study
propulsion by bacterial flagella and flexible filaments (Manghi
et al., 2006; Reichert, 2006), as well as other rigid microswimmers
(Carrasco and de la Torre, 1999; Filippov, 2000; Reichert, 2006;
Morozov et al., 2017; Mirzae et al., 2018). Here we apply this
method to rigid magnetic object using a projection method
Reichert (2006).

We systematically study the influence of model parameters
(bead size, distance between beads down to touching beads,
magnetic moment orientation) on the swimming behavior to
identify optimal simulation parameters. For the validation and
parametrization of our simulations, we focus on the helical
geometry, as this is the best described behavior so far.We observe
velocity reversals upon a change of the rotation frequency
of the magnetic field, a feature that was recently predicted
theoretically for helices (Morozov et al., 2017), but was so far not
reported experimentally. We then describe a method to obtain
bead representations from three-dimensional reconstructions
of experimental propeller shapes and apply this method to a
propeller shape that was recently characterized experimentally
within a study of randomly shaped propellers (Bachmann et al.,
2018). We show that the orientation of the magnetic moment
has a strong influence on the dynamics of the propeller. As a
consequence, knowing the geometry of the rigid propeller is not
enough to fully predict its swimming behavior, but the magnetic
moment needs to be characterized as well. As this is often difficult
to achieve experimentally, simulations can alternatively be used
to determine the magnetic moment by matching the simulated
dynamics to the observed one.

2. COMPUTATIONAL METHODS

2.1. Theoretical Framework
To simulate the propulsion of micropropellers of arbitrary
shape, Stokesian dynamics (Brady and Bossis, 1988) with a
projection method for rigid clusters of particles (Reichert,
2006) are used. In this approach, propellers are approximated
as rigid clusters of hard spheres. This method combines
versatility (since any shape can be discretized in this way)
with simplicity (using the hydrodynamic description for spheres
via the method of reflections). In the low Reynolds number
regime of hydrodynamics that applies to micro- or nanoscopic
objects such as the micropropellers, the velocity and angular
velocity of a particle are linearly dependent on the forces and
torques experienced by that particle. This linear dependence is
characterized by a mobility matrix that fully accounts for the
hydrodynamic coupling between different particles or different
degrees of freedom (such as rotation and translation) of one
particle (Dhont, 1996).

For a rigid object, the motion is described by the translation of
its center of mass and the rotation of the body with respect to its
center of mass. Thus, the equations of motion are:

(

vCM
ωωωCM

)

=

(

Mtt Mtr

Mrt Mrr

) (

FCM
TCM

)

. (1)
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Here, vCM is the translational velocity of the center of mass,ωωωCM

the angular velocity, connected to the propeller frequency fCM
via ωCM = 2π fCM, and FCM and TCM are the external force and
torque, respectively, applied on the center of mass. The Mij are
the 3×3 submatrices of the 6×6mobility matrix, the superscripts
indicate whether they describe the translational motion (’tt’),
rotation (’rr’) or the coupling of translation and rotation (’rt’ and
’tr’). The mobility matrix is symmetric, thusMrt = (Mtr)T .

In the case of magnetic micropropellers that are rotated by a
(spatially homogeneous) magnetic field, the force is usually zero
and the external torque is given by TCM = m × B, with the
magnetic moment m of the propeller and the magnetic field B,
which is taken to rotate counterclockwise in the yz-plane in the
lab frame of reference, B = (0,B cos(2π fBt),B sin(2π fBt)) . fB is
the frequency of the field and B its absolute value. For the rotation
in the yz-plane, a net movement of the cluster along the x-axis
is expected. Since only a torque and no external forces act on
the propeller, the geometry of the propeller must have a non-
zero rotation-translation coupling, Mtr 6= 0 in order to lead to
a non-zero translational velocity vCM 6= 0.

The mobility matrix for the center of mass of the propeller can
be determined from the mobility matrix of the individual beads
describing the discretized shape of the propeller by applying a
projectionmethod (Hinsen, 1995; Reichert, 2006), as explained in
the following. The 6N × 6N mobility matrix for N beads appears
in the equations of motion for the beads,

(

v

ωωω

)

=

(

µµµtt µµµtr

µµµrt µµµrr

) (

F

T

)

(2)

where v andωωω are the 3N-dimensional translational and angular
velocity vectors of the beads. F, T are the corresponding (likewise
3N-dimensional) vectors of the forces and torques, respectively,
that are applied on the individual beads. The µµµij are 3N × 3N
mobility matrices (with superscripts “t” and “r” for translational
and rotational degrees of freedom as described above). The
elements of the µµµ matrices can be calculated through the Rotne-
Prager approximation (Rotne and Prager, 1969; Dhont, 1996;
Reichert, 2006), which leads to equations that are exact up to
order (a/rij)

3 (Reichert, 2006) (with the bead radius a and the
distance rij between two beads). In the present paper, rotational-
translational couplings µtr,µrt are neglected, which are known
to result in artifacts for elastic structures (Reichert, 2006), as well
as the off-diagonal terms µrr

i6=j (Reichert, 2006) (see section 2.3).

Then, the non-zero entries of the mobility matrix are

µµµtt
ii = µt1 (3)

µµµrr
ii = µr1 (4)

µµµtt
i6=j = µt

[

3

4

a

rij
(1+ r̂ijr̂ij)+

1

2

(

a

rij

)3

(1− 3r̂ijr̂ij)

]

, (5)

where i, j = 1, ...,N is the index of the bead, 1 is the 3× 3 identity
matrix, µt = (6πηa)−1,µr = (8πηa3)−1 are the mobility
coefficients of a sphere, η is the kinematic water viscosity, a is
the radius of the bead, rij is the distance between the i-th and j-th

bead, and r̂ij =
ri−rj
rij

is the unit vector connecting the i-th and

j-th bead. r̂ijr̂ij is a 3× 3 matrix, in which the elements [r̂ijr̂ij]lk =
r̂ij(l)r̂ij(k), where r̂ij(1) = xij, r̂ij(2) = yij and r̂ij(3) = zij.

The mobility matrixM for the center of mass is obtained from
the mobility matrixµµµ for the individual beads by projecting onto
the center of mass (Hinsen, 1995; Reichert, 2006)

M = (CT ·µµµ · C)−1, (6)

with the 6× 6N projection matrix

C =





















1 (rc − r1)×
...

...
1 (rc − rN)×
0 1
...

...
0 1





















, (7)

Here rc =
∑

i ri
N is the position of the center of mass and

× indicates the vector product. For given external force and
torque on the center of mass, the translational velocity vCM and
angular velocityωωωCM of the propeller can then be calculated from
equation (1). The position of the center of mass xCM is then
obtained by integration of

dxCM

dt
= vCM. (8)

The orientation of the object is described by a triad of orthogonal

unit vectors α̂αα, β̂ββ , γ̂γγ rigidly attached to the body, which rotates
due to the angular velocity of the propeller, according to

dα̂αα

dt
= ωωωCM × α̂αα (9)

and likewise for βββ . γγγ is obtained from the other two vectors
through orthogonality.

2.2. Implementation of the Dynamics
The simulation was implemented in Fortran 90 (Press et al.,
1992), based on the following algorithm: the mobility matrix of
the center of mass is calculated once in the body system at the
beginning of the simulation (Reichert, 2006) and is fixed in the
body system. At each time-step, the instantaneous body system is
considered, where themobility matrix is known and themagnetic
moment is fixed. The torque is calculated in this system, too.
From the torque, the velocity and frequency in the instantaneous
body system can be derived via Equation (1). The displacement
of position and of the unitary vectors are computed in this
body system from integration of Equations 8 and 9 using the
second-order Runge-Kutta scheme (Press et al., 1992), and then
transformed into the lab system, in which the new position of the
center ofmass and the new orientation of the triad are obtained as
the present-time value plus the corresponding displacement. For
Visual Molecular Dynamics (VMD) videos, the position of the
beads in the lab system is calculated at each time-step from their

fixed position (ai, bi, ci) in the body system defined by α̂αα, β̂ββ , γ̂γγ as
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xi = xCM + aiα̂αα+ biβ̂ββ + ciγ̂γγ . Alternatively, all calculations can be
done in the lab system, but then the mobility matrix needs to be
re-calculated at each time-step, because of its dependence on the
orientation in the lab frame. Thus, this approach requires much
longer computation times, but the results of the two algorithms
are equivalent. In both approaches, we included a check of

the orthogonality of the triad α̂αα, β̂ββ , γ̂γγ over time, because Euler
integration of the unit vector α̂ααnew = α̂ααold + ωωωCM × α̂ααolddt

does not preserve orthogonality: if α̂ααold · β̂ββold = 0, then after

integration α̂ααnew · β̂ββnew = −dt2(β̂ββold · ωωωCM)(α̂ααold · ωωωCM). This
problem is kept under control by the second order Runge-Kutta
scheme for integration as well as a small time-step dt ≃ 10−5s.

Simulations were stopped if the error accumulated to α̂αα · β̂ββ >

10−2.

2.3. Discussion of Approximations
Themodel implies a series of approximations: (i) The continuous
surface is approximated with beads; (ii) The Rotne-Prager
equations are an approximation themselves, valid for spheres at
sufficiently large distances, but used here also for rather small
distances (spheres touching each other); (iii) Some terms in the
equations are neglected, in particular the rotational-translational
terms and the off-diagonal rotational-rotational terms; (iv) Rigid
bonds correction were not used. We will go through these points
in the following.

(i) The approximation with beads of a continuous surface was
previously used in the literature (Carrasco and de la Torre,
1999; Filippov, 2000; Reichert, 2006; Morozov et al., 2017).
Artifacts can arise due to gaps between the beads. Since
the aim is a qualitative description of the behavior of the
propeller and not the exact flow of the fluid around the
object, this problem is of minor relevance.

(ii) The Rotne-Prager approximation is also common in the
literature. It is good for spheres that are sufficiently distant
from each other (Dhont, 1996; Reichert, 2006) due to
lubrication problems that could arise when the gap between
them is too small. For a rigid cluster though, lubrication
problems are not present, since the spheres are fixed with
respect to each other. There are order O(1) effects (Dhont,
1996) that are considered negligible in the simulation, since
tuning the number of spheres (see section 3.2) caused
no significant difference for distant or touching beads.
Moreover, these terms would influence only the near-
surface flow, but not the overall behavior of the object that
we want to represent with an effective motion. Thus, these
expressions for the entries of the mobility matrix will be
used here also for spheres touching each other.

(iii) The rotational-translational terms and the off-diagonal
rotational-rotational terms are neglected following the
approach of Reichert (2006), where this was done
consistently for flexible chains.

(iv) Rigid bonds corrections have not been considered in our
approach. This was done in ref. (Reichert, 2006) through
the HYDROLIB library (Hinsen, 1995). Here, instead we
used self-written code without the use of that library.
Compared to the other approximations we made (such as

the discretization), these corrections are, however, of minor
importance.

Overall these approximation can lead to quantitative changes in
the velocity-frequency curves, but with the qualitative behavior
unchanged (see the Supplementary Information).

2.4. Bead Representation of Propeller
Shapes
To run the simulation, the shape of the propeller must be
approximated by beads. How this discretization is done depends
on the shape of the propeller itself. For helices, the geometry is
defined by the pitch and the radius of the helix and the number
of turns. The distance between the beads has been varied, but
was eventually chosen to be as close as possible to beads touching
each other, in this way selecting the number of beads for a certain
radius. The beads are then equally distributed along the helix.
The size of the bead influences the number of beads, and also
the helix thickness. In all helix simulations we used a helix radius
r = 2.5 µm, a pitch p = 4r, and a number of turns n = 4. The
radius of the beads, a, and the number of beads per turn were
varied. The basic geometry presents a = 0.1 µm with touching
beads, if not stated differently.

To model the random-shaped propellers of Bachmann et al.
(2018) as clusters of beads, an initial bead configuration must
be determined. To do so, the shape of the rotating propeller is
obtained with a three dimensional tomographic reconstruction
from 2D microscope images by Bachmann et al. (2018). The best
approximation would be to assign one bead to each voxel (3D
pixel), but the number of beads can be reduced to run faster
simulations. Through appropriate binning and thresholding, the
propellers can be approximated and coarse-grained, reducing the
total number of pixels in the 3D reconstruction. The position of
each pixel obtained after binning and thresholding has been taken
as the center of a bead, and the radius as half of the pixel size
(see section 4). In this way the procedure of reconstruction has
been automatized, providing a reproducible way to approximate
any shape with beads. Different numbers of beads can be chosen
to see the effects of discretization: from a number of beads
around 50, for which the features of the propeller can still be
seen and not losing much detail, to a number of beads around
500 and then one bead for each voxel (order of thousands). The
beads are not only positioned on the surface, but also inside to
avoid empty spaces that could lead to unwanted interactions.
Higher numbers of beads slows down the generation of output
for videos, since the position of every bead must be calculated
at each time-step, but not the integration of the equations of
motion, on which the number of beads has no influence. The
number of beads only affects the initial calculation of themobility
matrix.

Finally, random-shaped propellers can be generated
computationally rather than reconstructed from experimental
random shapes: a first bead is generated, and then the
following beads are randomly attached to the previous once,
considering volume exclusion. An example is given in the
Supplementary Information.
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2.5. The Determination of the Magnetic
Moment
The magnetic moment can be directed in any orientation with
respect to the propeller body. To reproduce the experimental
data, the orientation in the real propeller must be known,
which is typically not the case for random-shaped propellers,
which cannot easily be isolated from the bulk sample for
experimental determination of the magnetic moment. Even if
isolation is successful, determining the exact orientation of
the magnetic moment inside the propeller geometry with the
required precision would be difficult. Therefore, the direction
of the magnetic moment is determined by analyzing videos that
are taken at low frequencies of the magnetic field, when the
propeller is aligned in the plane of the field rotation, using a
cylindrical approximation. We use the magnetic moment norm
and direction that were determined by Bachmann et al. (2018)
with the cylindrical approximation according to the method
previously reported (Ortega and de la Torre, 2003; Ghosh et al.,
2013). With this method, an elongated propeller is approximated
by a cylinder, and knowing the propeller parameters (such as
how the propeller is oriented in the magnetic field and its
characteristic frequencies), the magnetic moment is determined
in the hydrodynamic center reference system (Ghosh et al., 2013;
Morozov and Leshansky, 2014) and is then rotated to the lab
reference system of the simulation. This method to determine
the magnetic moment works well when the propeller has an
elongated shape. Still, the orientation obtained is not the exact
one, but rather an equivalent orientation if the propeller would
be a cylinder. This introduces further error in the final result of
the simulation compared to experimental results.

We note that here we consider only propellers that possess
a permanent magnetic moment, a good description for many
experimentally-realized rigid magnetic swimmers (Vach et al.,
2013, 2015; Vach, 2015). Propellers based on paramagnetic or
superparamagnetic materials have also been studied and lead to
different interesting behaviors. Examples include paramagnetic
spheres moving on surfaces (Martinez-Pedrero et al., 2015;
Helgesen, 2018) or superparamagnetic beads used as biosensors
(Janssen et al., 2009).

2.6. Initial Configurations and Branching
For some propellers and for certain frequencies, we observe two
stable solutions of the equations of motion at the same field
strength and rotation frequency (branching). These correspond
to two different orientations of the axis of rotation with
respect to the long axis of the propeller. In the simulation
though, thermal noise is not included, so to reproduce and
to study branching, simulations are run with different initial
configurations of the propellers, i.e., different orientations of
the propeller in the lab system and respect to the rotating
magnetic field. To determine branches systematically, we run
simulation that walk along the branches as in a hysteresis curve:
the frequency of the magnetic field increases in steps using the
final configuration of one simulation as initial configuration
for the next simulation, thus very likely staying on the same
branch. When the highest frequency to be simulated is reached,

the procedure is repeated decreasing the frequency, typically
exploring the other branch.

2.7. Determination of Step-Out Frequency
To determine the step-out frequency fso in the simulations, we
check if the frequency of the propeller fCM is synchronized with
the frequency of the magnetic field fB. If oscillations of the
propeller frequency fCM(t) can be seen in time instead of the
constant value given by fB, then the asynchronous regime has
started. The frequency at which the change happens is the step-
out frequency. See Supplementary Information for example
plots.

3. RESULTS FOR HELICAL PROPELLERS

Inspired by the rotating bacterial flagella, helical propellers are
the best-studied type of micropropellers, both from theoretical
and computational points of view (Ghosh et al., 2012, 2013;
Keaveny et al., 2013; Man and Lauga, 2013; Morozov and
Leshansky, 2014; Morozov et al., 2017), and with respect to
experimental observations (Ghosh and Fischer, 2009; Ghosh
et al., 2012; Tottori et al., 2012). Thus, we use a helical propeller
as a model system to test our approach.

3.1. Magnetization Along the Short Axis
We start with the simplest case where the magnetic moment of
the helical propeller is perpendicular to the long axis of the helix.
The angle between the short axis of the helix and the magnetic
moment is thus θmag = 0. We confirm previous results showing
that the behavior of such a helix presents two distinct regimes
(Debora et al., 2013; Ghosh et al., 2013; Vach et al., 2013; Fu
et al., 2015; Morozov et al., 2017), depending on the frequency
with which the magnetic field rotates. For small frequencies,
the helical propeller rotates in a synchronized fashion with the
external field (see video 1 of Supplementary Information). The
propeller velocity is proportional to the frequency of the rotating
field vCM = cvfB, where cv is the linear coupling. The helix
does not necessarily rotate exactly around its long axis, but may
present a wobbling angle θwobb between the long axis and the axis
of rotation of the magnetic field (Ghosh et al., 2012; Man and
Lauga, 2013). Above a critical frequency, the so-called step-out
frequency fso, the synchronization is lost (Ghosh et al., 2013) and
the propeller cannot keep up with the external field (see videos
2, 3 of Supplementary Information). Thus, the velocity drops
above the step-out frequency (at which the maximal velocity
vm = vCM(fso) is achieved). Here the wobbling angle is not
constant, but oscillates. For more general propeller shapes and
for helices with other orientations of the magnetic moment, the
synchronous regime is divided further, as will be discussed below
(see sections 3.3 and 4). Figure 1 shows the results for θmag = 0
from our simulations, which indeed exhibit the synchronous and
asynchronous regimes. Thus, the behavior shown in Figure 1

can be characterized by three parameters: the maximal velocity
vm, the step-out frequency fso, and the linear coupling cv ≃

vm/fso. When two of these are read out from the simulation data,
the velocity-frequency relation is fully determined and given by
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FIGURE 1 | Velocity-frequency curve for a helix with θmag = 0◦. The

simulations (data points) are well described by Equation 10 (dashed line). To

obtain the parameters for that expression, we determined fso as described in

section 2.7 and cv from a linear fit to the behavior for fB < fso.

(Vach et al., 2013)

vCM =







cvfB if fCM ≤ fso

cv

(

fB −

√

f 2B − f 2so

)

if fCM ≥ fso.
(10)

For the helix shown in Figure 1, the simulation data are in
excellent agreement with this functional form. The coupling
coefficient cv assumes a particularly simple form for a one-
dimensional system where the axis of rotation is not changing
(such as for an helix with the magnetic moment along the short
axis). The coupling coefficient becomes cv = 2πµtr/µrr (Vach,
2015), where the mobility matrix components µtr and µrr are the
rotation-translation coupling and the rotation rotation coupling,
respectively. For more complex cases, it is not easy to obtain a
simple form for the coupling coefficient.

3.2. Influence of the Simulation Parameters
Next, the influence of the simulation parameters on the
results were tested, in particular the parameters related to the
discretization of the propeller. Therefore, we systematically vary
the bead size and the number of beads per turn of the helix
(and thus the distance between beads). Changing the bead size
(while keeping the gap size between beads the same) has two
effects: on the one hand, it changes the discretization of the helix,
which ideally should not affect the simulation results, as different
discretizations describe the same geometry. On the other hand,
it also changes the thickness of the helix and thereby the area
of the surface in contact with the fluid, increasing its friction
from where a true physical effect is expected. To quantify this
difference, we performed simulations for two helices discretized
by different bead sizes, but with all other geometric parameters
the same. This results in the two frequency-velocity relations that
we show in Figure 2A. Here we have chosen a helix with n = 4,
r = 2.5µm, p = 4r and a gap size of 0 between beads (our
standard parameters). The two bead sizes are a = 0.1µm and
a′ = 1.5a. To maintain the gap sizes of zero (i.e., beads touching
each other), we need to adjust the number of beads per turn (9

in the first case, 6 in the second, see the insets in Figure 2A).
The velocity-frequency curve is the same, only with scaled down
values for bigger beads for which both the step-out frequency
and the maximal velocity are reduced compared to the case with
smaller beads (Figure 2A).

This can be explained by the higher friction arising from
the increased surface area and should be considered as a result
of the change in helix geometry rather than a discretization
effect. Thus, to match experimental data, these effects should
be taken into account. For example, beads with a diameter
corresponding to the thickness of the helix can be used.
Alternatively, an approximation of the real thickness of the helix
can be implemented with multiple parallel chains of smaller
beads instead of the one chain of large beads.

The choice of the number of beads per turn (for constant bead
size) does not change the geometry of the helix, but only how
the helix is represented in the discretized model: fewer beads
should result in a poorer representation of the continuous surface
of the helical propeller, while for more beads and thus smaller
gaps, the Rotne-Prager approximation becomes invalid. To test
the influence of the number of beads per turn, we approximate
the same helix with different numbers of beads that are equally
distributed along the curve (npt = 4 − 9 beads per turn of the
helix). For all different discretizations, we determined frequency-
velocity curves and extracted the three characteristic parameters
fso, vm, and cv. These are plotted in Figure 2B as functions of
the number of beads per turn. All three parameters show a
dependence on the discretization, which however, saturates for
large npt. In particular, a discretization with beads touching each
other (npt = 9) gives essentially the same results as the case
npt = 6, where the gap is big enough to use the Rotne-Prager
approximation. For large gaps however, the velocity is noticeably
reduced, indicating that the continuous structure of the helix is
poorly represented. Thus, a sufficient density of beads is needed
for a good representation of the continuous geometry, but the
precise choice of the discretization is unimportant if the beads
are sufficiently dense. For the further study of helices we therefore
used beads touching each other.

3.3. Impact of the Orientation of the
Magnetic Moment: Tumbling and Velocity
Reversals
Next, we change how the helix is magnetized, varying the
magnetization angle θmag with respect to the short axis of the
helix (see inset in Figure 3). A magnetization perpendicular to
the long helix axis thus corresponds to θmag = 0◦. For angles
θmag > 0◦, in addition to the linear regime and the asynchronous
regime described by Equation 10, a third regime appears for very
small frequencies. In this regime, the helix rotates along the short
axis of the body, with a wobbling angle of 90◦. This regime was
first demonstrated experimentally (Ghosh et al., 2012), but in that
case the velocity of the propeller was zero. As we can see by our
simulations, and as previously shown by Morozov et al. (2017),
a non-zero negative velocity is possible in this regime. To define
tumbling, we take into consideration the wobbling angle θwobb,
that is the angle between the main axis of the helix and the axis
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FIGURE 2 | Impact of simulation parameters on the results for helices (with θmag = 0◦). (A) Velocity-frequency curve for helices represented with beads of different

sizes, a = 0.1µm with 9 beads per turn (blue) and , a′ = 1.5a with 6 beads per turn (red). Additional frequency-velocity curves for other bead-sizes and plots of the

behavior of coupling coefficient, maximum velocity and step-out frequency can be found in the Supplementary Information. (B) Parameters of the

velocity-frequency curve as functions of the distance between beads: step-out frequency fso, maximal velocity at the step-out vm and linear coupling coefficient cv.

The case of 9 beads per turn corresponds to beads touching each other (a = 0.1µm).

of rotation of the helix. This angle is 90◦ for tumbling and it
would be 0◦ for an helix aligned with the axis of the magnetic
field.

There are two limiting cases in this three-regimes description.
The first is θmag = 0◦ (and equivalently 180◦), for which we do
not have the tumbling regime, as we can see from its wobbling
angle always close to zero (black lines of Figure 3A). The second
case is θmag = 90◦ (and similarly for 270◦), for which we obtain a
very similar velocity-frequency curve as for θmag = 0◦, but with
all negative velocities (and smaller absolute values). In this case,
the helix tumbles for all frequencies below the step-out frequency.
For these frequencies, the wobbling angle approximately 90◦

(gray lines of Figure 3).
For all the other angles, different from 0, 90, 180, 270◦, we

observe both negative and positive velocities. A typical velocity-
frequency curve is shown for θmag = 50◦ in Figure 3 (light
blue lines), with the corresponding wobbling angle. Here the
three regimes can be identified. The first regime is found
at very low frequencies, where the velocity is negative and
decreases linearly up to a minimal velocity. In this regime,
the helix tumbles, with θwobb close to 90◦. This means that
the propeller rotates along its short axis, as it can be seen by
the yellow snapshots at 5Hz in Figure 3. After this minimum,
the velocity increases again and becomes positive for higher
frequencies, where the velocity-frequency relation resembles
the one for the helix with magnetization perpendicular to
the long helix axis and shows the second regime, which
is semi-linear and synchronous. In this second regime, the
wobbling angle decreases (compare the red snapshot at 15
Hz and the violet one at 50 Hz in Figure 3). After the step-
out frequency, the third (asynchronous) regime begins, where
the rotation of the propeller cannot keep up with the applied
frequency corresponding to a drop in the velocity. The wobbling
angle oscillates (see Supplementary Information for a plot of
the angle in time), due to the oscillation of the propeller-
rotation-axis (green snapshot at 100 Hz in Figure 3). The
oscillation of the wobbling angle results in a corresponding
modulation of the rotation frequency of the propeller (see
Supplementary Information).

In Figure 4A, we show the behavior for very low frequencies
in more detail and for more values of the angle θmag. The depth of
the negative peak of velocities depends on the orientation of θmag

(Figure 4A). The minima of the velocity for 0◦ < θmag < 90◦

appear to lie on a straight line vmin = cv,−fmin with cv,− ≃

−0.12µm. With this, we can derive a dimensionless velocity
U− for the propulsion in negative direction. The dimensionless
velocity is defined as U = 1, 000 × v

Lf
, which here becomes

U− = 1, 000cv,−/L. With a characteristic length of the propeller
of L ≃ 4µm, we obtain U− ≃ −30. This dimensionless velocity
is independent of the polar angle θmag = 0 (but changes of the
azimuthal angle could lead to changes Morozov et al., 2017).
The dimensionless velocity U+ achieved in positive direction is
approximately twice U−, thus this negative velocity is significant.
Interestingly, for the case θmag = 90◦ case, the velocity-frequency
curve deviates from the behavior at intermediate angle, thus this
case was not included in the fit to determine cv,−. For angles
between 100 and 180◦, a similar linear behavior is seen, but with
a different slope. We highlight that the behavior between 0 and
90◦ differs from the behavior between 90 and 180◦ (Figure 4A)
(Morozov et al., 2017), while the behavior between 0 and 180◦

is replicated between 180 and 360◦. This shows that the key
parameter for propulsion is the axis of the magnetic moment
and not the orientation along that axis. Thus, 80◦ corresponds
to 100◦, for example.

3.4. Impact of the Orientation of the
Magnetic Moment: The Asynchronous
Regime
We have seen how the orientation of the magnetic moment
influences the behavior of the propeller at frequencies below the
step-out frequency. We now concentrate on the influence on
the asynchronous regime (Figure 4B). We have seen in section
3.1 how the asynchronous behavior of the velocity curve is fully
described by Equation 10 for θmag = 0 (Figure 1). However, for
angles of magnetization θmag close to 90◦, this formula does not
describe the data well (an example for θmag = 83◦ in Figure 5A).
We also tried to fit the data with another expression (Morozov
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and Leshansky, 2014), which is valid in the asynchronous regime
for frequencies near the step-out frequency,

vCM =

{

cvfB(1− f 2c /f 2B ) if fB ≤ fso

cvfB(1− f 2c /f 2B )(1−
√

f 2B − f 2so/
√

f 2B − f 2c ) if fB ≥ fso.

(11)
The parameters cv and fc can be determined from the behavior
for fB ≤ fso. This expression also does not describe the

FIGURE 3 | (a) Wobbling angle and (b) velocity as functions of the frequency

for helices with different orientations of the magnetic moment

(θmag = 0, 50, 90◦, as depicted in the inset). The wobbling angle is defined

only up to the step-out frequency. (c) Snapshots of the helix motion for

frequencies of 5 Hz (yellow), 15 Hz (red), 50Hz (violet), 100 Hz (green) illustrate

tumbling at 5Hz, wobbling at 15 and 50Hz, and asynchronous rotation at

100Hz.

simulation data (Figure 5B). In particular, we notice that the
velocity approaches 0 in the high frequency limit in all cases, but
depending on the value of θmag, it can approach it from above (for
angles smaller then 83◦) or from below (angles ≥83◦), as shown
in Figure 4B. Remarkably, for the case θmag = 83◦, we observe
a positive step-out velocity, but the direction of propulsion is
reversed above the step-out frequency and the limit of zero
velocity is approached from below. No such reversal is seen for
angles of 82◦ or 84 degree, for which the step-out velocity and
the velocity for large frequencies have the same sign (positive
for 82◦, negative for 84◦, see Figure 4B). Thus, this behavior
represents a transition that is not well described by existing
theories.

4. RESULTS FOR RANDOM-SHAPE
PROPELLERS: VELOCITY REVERSALS
AND BRANCHING

The method proposed here allows us, in principle, to simulate
any shape. An example of a shape that was assembled in a random
fashion is shown in section 2 of the Supplementary Information.
We therefore apply our method to the randomly shaped
propellers that have recently been synthesized and studied
by Vach et al. (2013, 2015) and Bachmann et al. (2018).
These propellers are rigid random aggregates of iron oxide
nanoparticles with an intrinsic magnetic moment. For some of
these propellers the swimming behavior is comparable to the one
of helices with θmag = 0◦ (Vach et al., 2013), although more
complex behaviors are generally observed, such as branching
(two different solutions at the same applied frequency) and
velocity reversals. We aim here at reproducing the behavior
observed in the lab, and at to study the importance of the
magnetic moment orientation, a key parameter needed to predict

FIGURE 4 | Velocity vs. frequency for helices with different θmag. (A) Behavior for small frequencies with positive and negative velocities. Curves with the same color

have mirrored orientations with respect to the main axis of the helix. (B) Dependence of the behavior in the asynchronous regime on the orientation of the

magnetization. The limit v = 0 for large frequencies can be reached from above or below. Note the velocity reversal for the case of 83◦, with a positive step-out

velocity (indicated by a star) and negative velocities at large frequencies.
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FIGURE 5 | Fit of the step out behavior for a helix with θmag = 83◦. The simulated data are shown in blue. (A) Fit function from Equation 10. The yellow line

represents the linear fit below the step-out frequency fso, which was determined as described in section 2.7. This linear fit gives the constant cv, which was used to

plot the green curve after step-out following equation 10. (B) Fit function proposed in ref. (Morozov and Leshansky, 2014); red line for the fit below the step-out

frequency, green line for the corresponding behavior after step-out.

the behavior of specifically designed propellers also for non-
helical geometries.

As an example, we study a propeller geometry reported by
Bachmann et al. (2018). The propeller is elongated and has
an irregular surface, a geometry very different from a helix.
A reconstruction of this geometry is shown as the inset in
Figure 6A. For this propeller, the velocity was measured for
a wide range of frequencies extending to far above the step-
out frequency (Bachmann et al., 2018), shown as the black
dots in Figure 6A. The absolute value and direction of the
magnetic moment were calculated with the procedure described
in section 2.5.

To test the influence of the discretization, we generate bead
representations with different numbers and sizes of beads,
from a very coarse grained representation with 55 beads to
ten times more (518 beads), and finally to ∼100 times more,
equivalent to one bead each voxel (4,276 beads). To that
end, voxels in the three-dimensional reconstruction of the
propeller shape are coarse-grained as described in section 2.4.
The resulting bead representations are shown as insets in
the Figures 6B–D, which plot the velocity-frequency curves
obtained from the corresponding simulation. None of the
three representations reproduces the experimental data well,
likely because the determined direction of magnetization is
not precise (see below). Moreover, the results for the three
representations also differ from each other. In particular,
the one with 55 beads gives qualitatively different results
from the other two with opposite direction of motion at
low frequencies. The other two representations give similar
results, thus indicating that the representation with 55 beads
is too coarse-grained and that more detailed representations
(≥ 500 beads) are needed to represent key features of
the propeller shape. Even though the computational results
in Figure 6 do not agree with the experimental data, they
both show an interesting conceptual result: Branching is
seen here in the synchronous and the asynchronous regime.
Previous work has demonstrated bistability nearby the step-out

frequency in the asynchronous regime for helices (Ghosh et al.,
2012), but branching far above from the step-out was not
observed.

To determine the direction of the magnetic moment, which
is unknown for the experimental propeller and which could
impact the propeller behavior, we run simulations for 100
random orientations of the magnetic moment using the ∼500
beads-representation. The shape of the curve varies considerably
within this dataset (see Supplementary Information). The
100 velocity-frequencies curves were inspected manually (see
Supplementary Information) and the ones showing the basic
qualitative characteristics of the experimental curves (initial
positive linear behavior, positive or negative branch and positive
approach to 0 after the step-out) were selected. These selected
curves were then rescaled with fB/fso and v/vmax and compared
to the rescaled experimental data. The rescaling is necessary
to correct for possible shifts of the velocity-frequency curve
due to the approximations and to take the unknown absolute
value of the magnetic moment into account. The closest match
between computational and experimental curves was found for
the magnetization direction shown as the red vector in Figure 7

was selected, which is considerably different from the direction
calculated with the method describes in section 2.5 (blue vector).
With this direction of magnetization, the experimental data are
described quite well, although some discrepancies remain in the
negative branch (Figure 7A).

Since the direction of the magnetization emerges as a crucial
parameter needed to describe the experimental behavior, we
tested how sensitive the results are to changes in this direction, by
making small perturbations to it (Figure 7B). For perturbation
of ±1◦, the curve remains the same with only small variations.
For perturbations of 5◦, the curvemaintains its main (qualitative)
characteristics, while shifts in velocity are seen. For perturbations
exceeding 5◦, strong deviations are seen, for example different
branching behavior. Thus, we conclude that, for this geometry,
the direction of the magnetization should be known with an
accuracy of about 5◦ or better.
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FIGURE 6 | Velocity-frequency curve for a random-shaped propeller: (A) Experimental data (Bachmann et al., 2018); (B–D) Simulated velocity-frequency curve for

different bead representations (shown in the insets): (B) 55 beads with radius a = 0.177µm; (C) 518 beads with radius a = 0.0903µm; and (D) 4276 beads with

radius a = 0.04425µm. The magnetic moment direction is indicated as a blue line in the inset of (B), and was calculated as reported in section 2.5. Filled symbols

correspond to points below the step-out frequency, empty symbols to data beyond step-out.

5. DISCUSSION

The aim of this study was to develop a method for simulating
magnetic micropropellers with complex shapes in order to
predict their behavior, specifically their propulsion velocity and

its dependence on the strength and frequency of the magnetic
field actuating these propellers. Such a simulation method is
desirable for optimizing the design of magnetic microswimmers
for specific purposes or applications, as magnetically actuated
microswimmers are envisioned to perform tasks such as
drug delivery, fertilization, artery cleaning, biopsies etc. (Peyer

et al., 2013; Magdanz and Schmidt, 2014; Sitti et al., 2015;

Stanton et al., 2015; Schwarz et al., 2017). The variety of
tasks and environments may require the customization of
the swimmer with desired characteristics such as high speed,
rapid change of direction, ease of control, etc., which are
likely not all achievable with the helical propeller geometry
that has dominated the early phase of propeller development.
Simulations offer a way to study and optimize existing random
geometries as well as to design new geometries with desired
characteristics.

We first used the method to simulate the well-studied helical
geometry, for which our simulations successfully recovered the
known behavior. Small shifts in the velocity-frequency curve
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FIGURE 7 | (A) Rescaled velocity-frequency curve for the 518 beads-approximation (light blue stars) with magnetic moment direction indicated by the red vector (best

matching vector with experimental data), compared to rescaled experimental data (black dots). The direction of the magnetic moment used in the previous Figure 6 is

in blue. (B) The direction of the magnetic moment (red vector) has been perturbed by small angles in the direction of the black and red arrows. Five random

perturbation are shown as five distinct curves for each angle of perturbation.

arise from the choice of the mobility matrix and approximations
involved in it. This could be improved by re-designing the
matrix elements. The systematic study on the influence of
the simulation parameters such as bead dimension and bead
separation suggests that beads touching each other can be used
despite the use of the Rotne-Prager approximation, but this must
be done cautiously, depending on the way a shape is represented.
Changing the dimension and number of beads could lead to
different results, so the discretization of the original shape must
be done such as not to change the main features of the propeller
geometry.

We have then used the model to explore aspects of helical
propellers that have not received much attention before, in
particular, the influence of the orientation of the magnetic
moment, which can result in velocity reversals both below and
above the step-out frequency. Velocity reversals are accompanied
by a change of propeller orientation relative to its direction
of motion. Velocity reversals for helices at small frequencies
were not seen experimentally yet, but have been seen in recent
theoretical work and simulations (Morozov et al., 2017). Velocity
reversal at high frequencies, above the step-out frequency have
not been reported before (and the behavior above the step-out
frequency is in general not well described by existing theories
Vach et al., 2013; Morozov and Leshansky, 2014, emphasizing
how this regime is still poorly studied). In general velocity
reversals are of interest for applications, because they enable
diverse modes of actuation and provide additional mechanism
to steer propellers. Such reversals are not only characteristic
for helices, but are also seen for random-shaped propellers,
whose geometry can enhance or reduce this property. The
results for helices underline the importance of the direction of

the magnetic moment, which can change the dynamics of the
propeller considerably.

While the results we obtain for helices are rather robust
with respect to the representation of the propeller shape, this
is less so for the random-aggregate propeller we studied next.
These simulations show that it is crucial to reconstruct the
propeller shape accurately as well as to know the orientation
of the magnetic moment, extending previous results (Ghosh
et al., 2012; Morozov et al., 2017). Both of these factors
could completely change the dynamics of the system, such as
step-out frequencies, magnitude of velocities, branching and
switching between positive and negative velocities. The main
challenges here are the discretization of the propeller and the
determination of the magnetic moment for existing geometries.
If measuring the magnetic moment is not possible, simulations
provide an alternative by simulating many orientations to
find the best fit to experimental velocity-frequency relations.
By comparison, a previously proposed method to determine
magnetic moment via a cylindrical approximation (Ghosh et al.,
2013) gave us poor result for our bead-approximated geometries
inferred for an experimentally realized propeller. As for the
bead discretization, we propose a method to match the shape
obtained by a 3D-reconstruction from experimental images.
This method is highly reproducible and allows also the choice
of the number and dimension of beads. We show that very
coarse grained discretization, with fewer bigger beads, could
change the behavior of the propeller, while there is saturation
for higher number of beads (500 and 4700 beads behave the
same way).

All these results highlight the importance of accurately
determining the orientation of the magnetic moment, on which
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most of the dynamics depend. Not only is this needed to
understand and predict the behavior of existing geometries, but
it can also be used to design new propellers with the required
characteristics: not only shape must be taken into account,
but magnetization too. However, designing the magnetization
direction constitutes another challenge, as a design that works
well in simulations may be difficult or even impossible to
synthesize in the lab. The most promising technique to
that end is 3D printing, with which in principle any shape
can be implemented. However, the magnetization represents
another problem. Existing techniques such as different coating
approaches (sputtering etc. Fischer and Ghosh, 2011) or the use
of magnetized beads as component of the microswimmer (see for
helix Fischer and Ghosh, 2011) can give a rough estimate of the
direction of magnetization, but could not achieve the required
precision of∼ 5◦ to have fully predictable behavior. If customized
micropropellers are envisioned in the future of bio-medicine,
greater attention must be focused on the magnetization process,
in addition to the shape characterization.
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