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Abstract 

 

The problem of connecting truss structures is one of the major concerns in structural analysis and design. The behavior of truss 

structures is usually analyzed using a common finite element model, which considers each member as a two-force member. 

Each truss member connection is treated as a rotational pinned joint, but in the reality, the members of truss structures are 

usually connected with bolts or by welding. Alternatively, a designer may analyze such a structure using a frame finite element 

model where joint connections are considered fixed or rigid connections, which provide a connection that is stiffer than the 

inherent behavior. In this research, instead of using truss or frame finite element models, a substructure technique is employed 

to develop a more realistic finite element model. Each element is separated into three parts, a main element and two joint 

elements. The substructure technique is integrated into the frame finite element model to reduce design variables in global 

equations, to increase deformability of the joint elements, and make the proposed model more realistic. Young’s modulus 

values of the joints are reduced as a percentage of the modulus of the main elements. Comparison of the results obtained from 

the proposed model to the truss and frame finite element models are reported. 
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1. Introduction 

 

The finite element method is one of the most popular 

numerical methods for solving engineering problems, 

especially solid mechanics problems. Many recent works 

employed finite element methods to solve engineering 

problems [1-2]. Truss structures are one of the most widely 

used types of structures. There has been much research 

related to truss structures [3-6]. While each member of a truss 

structure is commonly considered a two-force member that 

supports only an axial load, real truss structures are usually 

assembled by bolts or welded connections that also 

supported bending moments and shear loadings. In general 

finite element analyses [7-8], a truss element is considered a 

two-force member while a frame element also carries 

moments and shear loadings. Connections of both truss and 

frame finite element models are usually assumed as 

rotationally pinned and fixed connections, respectively. Real 

truss structures with bolts or welded connections are not 

rigid. In fact, their connections are deformable. Thus, the 

behavior of the real truss structures should be more similar 

to the frame finite element model with non-rigid 

connections. Semi-rigid connections, which are also called 

partially-restrained/flexible connections, have received 

much interest over the past few decades. There have been 

many studies attempting to examine such behavior and 

developing numerical models of semi-rigid connections. In 

1986, Lui and Chen [9] developed one of the earliest finite 

element methods for frame structures with semi-rigid 

connections. Then, Suarez, Singh, and Matheu [10] 

developed a new finite element method to examine seismic 

responses of frame structures with semi-rigid connections in 

1996. In 2003, Hadianfard and Razani [11] performed 

reliability analysis of frame structures with semi-rigid 

connections using the finite element method. Thereafter, 

there were a great number of studies on the behavior of frame 

structures with semi-rigid connections [12-20]. There has 

been some interesting work in multi-component structural 

design and optimization [21-22]. These structures are 

considered as several components, with the frame 

components connected by spot welded joints and considered 

as torsion spring connections in finite element analysis. 

Although there has been much research on semi-rigid 

connections, most studies focused on steel frame structures 

and vibration analysis [13-20]. In this article, a substructure 

technique was integrated into a frame finite element model 

to develop a semi-rigid frame finite element to perform stress 

and displacement analysis of both planar and space truss 

structures. The substructure technique is known by a few 

different names, including super-element and static/dynamic 

condensation. A few decades ago, computing capability and 

memory of microcomputers were very limited compared to 
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recent times. The substructure technique was employed to 

make it possible to solve large-scale problems with limited 

memory [23].  After separating the domain into two or more 

parts, algebraic or global equations of a finite element 

method need to be re-formulated as demonstrated in [24-25]. 

Although modern personal computers are a lot faster 

compared to those from a few decades ago, solving large-

scale problems or optimization problems that require a great 

number of evaluations can still require a lot of computational 

time. In this article, the authors increase the detail of the 

domain by subdividing each truss element into one main 

element and two joint elements. The number of elements of 

the new model was increased by three times over that of a 

general frame finite element model. Most of the 

computational effort in finite element analysis is in matrix 

inversion. Therefore, a substructure technique is employed 

to group a main element and both joints together to maintain 

the same number of degrees of freedom in the global finite 

element equations. 

 The details of finite element formulation of the welding 

truss model are demonstrated in the next section. Results, 

discussion and conclusions are included in Sections 3, 4, and 

5, respectively. 

 

2. Materials and methods 

 

2.1 Frame finite element model  

 

In this article, a new semi-rigid connection frame finite 

element model is developed. Each general frame element is 

subdivided into three parts, one main element and two joint   

elements.   Instead   of   performing   common   finite element  

analysis with additional elements, the main element and both 

joint elements are grouped together. Then, the substructure 

technique [24-25] is employed to derive a new element 

stiffness matrix and maintain the same number of degrees of 

freedom in a global finite element stiffness matrix. 

 The frame finite element method employed is from [8]. 

There are 12 degrees of freedom for the frame element as 

shown in Figure 1. Here, x, y, and z-axes are local Cartesian 

coordinates, q1, q2, and q3 are translation displacements of 

node (I), q7, q8, and q9 are translation displacements of node 

(J), q4, q5, and q6 are rotational displacements of node (I) and 

q10, q11, and q12 are rotational displacements of node (J).   

Each translation or rotational displacement is a response to 

their applied loads (F1-F12). The translation displacements 

respond to forces while rotational displacements respond to 

moments. 

 

 
 

Figure 1 Detail of degrees of freedom of a frame element 

  

The frame finite element equations of each element are provided by equation (1). 

 

𝐾12×12
𝑒 𝛿12×1

𝑒 = 𝐹12×1
𝑒                                                                                                                       (1) 

 

where 𝐾12×12
𝑒  is a stiffness matrix of the element 𝑒, 𝛿12×1

𝑒  is a nodal displacement vector of the element 𝑒, and 𝐹12×1
𝑒  is a nodal 

load vector of the element 𝑒. More details of 𝐾12×12
𝑒 , 𝛿12×1

𝑒 , and 𝐹12×1
𝑒  are described by equation (2). 
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     (2) 

where 𝐴 is the cross-section area of the element, 𝐿 is length of the element, 𝐸 is Young’s modulus, 𝐼𝑦 and 𝐼𝑧 are area moments 

of inertia of the cross-section about local y and z coordinates respectively, 𝐺 is shear modulus, and 𝐽 is torsional constant. For 

convenience of further demonstration, the stiffness matrix (𝐾12×12
𝑒 ) is split into four parts while displacements (𝛿12×1

𝑒 ) and 

loads (𝐹12×1
𝑒 ) of node (I) and node (J) are separated as described in equation 3. 

 

[
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 } = { 
𝐹(𝐼)
𝑒
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𝐹(𝐽)
𝑒

6×1

  }                          (3) 
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Figure 2 Common frame element (left) and frame finite element with 2 split joints (right) 

 

2.2 Substructure technique  

 

 In this article, the common finite element is subdivided 

into three parts, as demonstrated in Figure 2, to achieve a 

more realistic model. The number of elements in the new 

semi-rigid frame model is three times that of the common 

frame finite element model. As a result, a substructure 

technique is employed to reduce computational effort in the 

stiffness matrix inversion process. With this technique, three 

sub-elements are merged to create 1 combined element, so 

that the degrees of freedom in the global finite element 

equations of the semi-rigid frame model remain equal to that 

of the common frame model. 

The frame finite element equations of elements j1, e, and 

j2 are described in equations (4), (5), and (6), respectively. 

External loads are only applied to external nodes (I) and (J), 

so that load vectors corresponding to nodes (K) and (L) in 

equation (4-6) are equal to zero. 
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Then equations (4-6) are assembled to form a system of 

equations of combined elements as shown in equation (7).  
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                             (7) 

 

Then, lines 1-2 and lines 3-4 of the system of equations (7) 

are split into equations (8) and (9) respectively. 
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Equation (8) is re-derive to use the relation, { 
𝜹(𝑲)6×1
𝜹(𝑳)6×1

 } and 

{ 
𝜹(𝑰)6×1
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 } as shown in equation (10). 
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Substituting equation (10) into (9) leads to equations of the 

combined element as shown in equation (11). 
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The global finite element equations of truss structures 

can be assembled from the equations of the combined 

elements from equation (11). After the displacements of 

external nodes ((I) and (J)) of each element are solved, the 

displacements of the internal nodes ((K) and (L)) can be 

solved using equation (10). Then, displacement and stress 

distribution of each sub-element can be calculated using the 

traditional frame finite element method demonstrated in [8]. 

Young’s modulus of all joints element are reduced to 

make the joints more deformable and the behavior of the 

semi-rigid frame model closer to reality. The Young’s 

modulus of the semi-rigid joints are specified as described in 

equation (12). 

 

𝐸𝑗𝑜𝑖𝑛𝑡 = 𝛼𝐸𝑚𝑎𝑖𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡             (12) 

 

where 𝛼 is a deformation factor to specify deformability of 

joint elements. The factor should always be greater than zero 

but not exceed one. 

 

2.3 Problem definition 

 

Four truss problems, ten-bar, twenty-five-bar, seventy-

two-bar, and two-hundred-bar are employed. Further details 

of truss geometry can be found in [26]. In this article, a joint 

length is referred to as 𝐿𝑗𝑜𝑖𝑛𝑡. All truss members are circular 
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cross-section members. All joint lengths and cross-section 

areas in each problem are specified by the same value. The 

shear modulus is calculated by equation (13). 

 

𝐺 = 𝐸/2(1 + 𝜈)                (13) 

 

where, 𝜈 is the Poisson’s ratio which is equal to 0.3 in this 

work. 

 

2.3.1 Ten-bar truss 

 

The ten-bar plane truss is subjected to loading detailed as 

follows: 

 

Fy = 50 kip at nodes 1, 3 

Fy = -150 kip at nodes 2, 4 

 

2.3.2 Twenty-five-bar truss 

 

The twenty-five-bar space truss is subjected to loading as 

follows: 

  

Fx = 1 kip, Fy = 10 kip, Fz = -5 kip at node 1 

Fy = 10 kip, Fz = -5 kip at node 2 

Fx = 0.5 kip at node 3 

Fx = 0.5 kip at node 6 

 

2.3.3 Seventy-two-bar truss 

 

The seventy-two-bar space truss is subjected to loading 

as follows:  

 

Fx = 5 kip, Fy = 5 kip, Fz = -5 kip at node 17 

 

2.3.4 Two-hundred-bar truss 

 

The two-hundred-bar plane truss is subjected to loading 

as follows: 

 

Fx = 1 kip at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71 

Fy = -10 kip at nodes 1-6, 8, 10, 12, 14, 16-20, 22, 24, 26,      
28-34, 36, 38, 40, 42-48, 50, 52, 54, 56-62, 64, 66, 68,              
70-75 

 

where Fx, Fy, and Fz are external loads acting in the x, y, and 

z-direction, respectively. 

 

3. Results 

 

 The finite element results of the proposed semi-rigid 

frame model are compared to the original truss and frame 

models. Further details of each test problem are given in        

Table 1.

Table 1 Details of test problems 

 

Problem Ljoint (in) A (in2) 𝛼 𝑬 (ksi) ρ (lb/in3) 

10-bar 0.5 20 0.5 1e4 0.1 

25-bar 0.5 1 0.5 1e4 0.1 

72-bar 0.5 1 0.5 1e4 0.1 

200-bar 0.5 10 0.5 3e4 0.283 

 

                

                     
 

Figure 3 Displacement results of the 10-bar, 25-bar, 72-bar, and 200-bar truss problems 
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Young’s modulus of joint elements of all tests are reduced to 

half of modulus of the main elements (𝛼 =0.5) and the    
lengths of all joints are specified to be 0.5 in to investigate 

the behavior of a truss structure with semi-rigid joints. 

Comparison of the displacement results of the semi-rigid   

frame,   truss  and  frame  finite  element   models  of  10  bar, 

 

25-bar, 72-bar, and 200-bar truss cases are shown in Figure 

3. The displacement results of all test cases are enlarged        

20 times their actual values. Von Mises stress results of the 

10-bar, 25-bar, 72-bar, and 200-bar cases are shown in 

Figures 4-5, Figures 6-7, Figures 8-9, and Figures 10-11, 

respectively.

    
 

Figure 4 Von Mises stress results of truss (left) and frame (right) finite element models for a 10-bar truss problem 

 

 
 

Figure 5 Von Mises stress results of semi-rigid frame finite element models for a 10-bar truss problem 

 

    
 

Figure 6 Von Mises stress results of truss (left) and frame (right) finite element models for a 25-bar truss problem 
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4. Discussion 
 

 The displacement distribution of the semi-rigid-joint 

frame, pinned-joint truss and rigid-joint frame models are 

very close in all test cases. Each element of the semi-rigid 

frame and frame models is subjected to a bending moment. 

Thus, there are also rotational displacements in both models, 

while only translation displacement occurs in the truss 

model.  However,  the  maximum  Von  Mises  stress  of  the  

semi-rigid frame model is much greater compared to truss 

and frame models in all test structures. From the enlarged 

images in Figures 5, 7, 9, and 11, due to a 50% reduction of 

Young’s modulus at joint elements, Von Mises stresses at 

these elements and the main elements are discontinuous. The 

Von Mises stress at most joint elements in all problems are 

approximately doubled compared to their corresponding 

main elements. 

 

 
 

Figure 7 Von Mises stress results of semi-rigid frame finite element models for a 25-bar truss problem 

 

    
 

Figure 8 Von Mises stress results of truss (left) and frame (right) finite element models for a72-bar truss problem 

 

 
 

Figure 9 Von Mises stress results of semi-rigid frame finite element models for a 72-bar truss problem 
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Figure 10 Von Mises stress results of truss (left) and frame (right) finite element models for a 200-bar truss problem 

 

 
 

Figure 11 Von Mises stress results of semi-rigid frame finite element models for a 200-bar truss problem 

 

5. Conclusions 

 

An improved finite element method for truss structures 

with semi-rigid connections was obtained in this research. 

Overall, the displacement and Von Mises stress distributions 

of the semi-rigid frame model are close to truss and frame 

models, except Von Mises stress at joint elements of the 

semi-rigid frame model. These are much greater compared 

to their corresponding main elements and from other models. 

The proposed finite element model simulates the behavior of 

a semi-rigid joint element that is weaker than its main 

element. With a 50% reduction of Young’s modulus of the 

joint element, the Von Mises stresses that occur in most 

joints elements are dramatically increased. This should not 

be neglected in practical structural design. Compared to truss 

and frame models, the behavior of the proposed model is 

more like real truss structures with bolts or welding 

connections, in which the maximum stress or failure are 

likely to take place at the joints. The deformation factor (𝛼), 

which is equal to 0.5, is just a convenient value to investigate 

a general behavior of the proposed semi-rigid frame model. 

Experimental work should be done to validate this simulation 

concept. In updating the finite element model, the  factor 

for each semi-rigid joint should be an a-priori unknown. 

Once the experimental results are obtained, the correct 

values of  for all joints can be found by means of an inverse 

problem (e.g., a least squares technique). Moreover, it is 

more challenging to model these  values as uncertainties or 

random variables in an optimization problem, which will 

consequently become a new type of reliability optimization.  
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