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The closed-loop application of electrical stimulation via chronically implanted electrodes
is a novel approach to stop seizures in patients with focal-onset epilepsy. To this
end, an energy efficient seizure detector that can be implemented in an implantable
device is of crucial importance. In this study, we first evaluated the performance of
two machine learning algorithms (Random Forest classifier and support vector machine
(SVM)) by using selected time and frequency domain features with a limited need of
computational resources. Performance of the algorithms was further compared to a
detection strategy implemented in an existing closed loop neurostimulation device for
the treatment of epilepsy. The results show a superior performance of the Random
Forest classifier compared to the SVM classifier and the reference approach. Next, we
implemented the feature extraction and classification process of the Random Forest
classifier on a microcontroller to evaluate the energy efficiency of this seizure detector.
In conclusion, the feature set in combination with Random Forest classifier is an energy
efficient hardware implementation that shows an improvement of detection sensitivity
and specificity compared to the presently available closed-loop intervention in epilepsy
while preserving a low detection delay.

Keywords: intracranial EEG, closed-loop intervention, seizure detection, epilepsy, machine learning, low power
microcontroller implementation

INTRODUCTION

Problem Definition
Epilepsy is one of the most common neurological diseases and it affects almost 70 million people
worldwide (Ngugi et al., 2010). Epileptic seizures are defined as episodes of excessive or abnormal
synchronous neuronal activity in the brain. Seizures can be accompanied by clinical neurological
symptoms, such as abnormal movements, abnormal sensory phenomena, loss of consciousness, or
alterations in consciousness, and are therefore associated with considerable neurological morbidity.
Seizures can vary widely among patients, and even within individual patients.

Despite progress in the development of medication, about 30 percent of patients are
resistant to treatment with antiepileptic drugs (Kwan and Brodie, 2000). Only 7%–8% of
these patients can be cured by surgery (Litt and Echauz, 2002). In the case of focal seizures,
surgical resection of the region(s) of the brain generating the seizures can be used to
prevent further seizures. However, since not all of these patients have a unifocal seizure
onset zone (SOZ), and the epileptogenic brain area cannot always be resected without a
significant functional deficit, the need for innovative new therapeutic approaches is evident.
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A novel approach for patients with drug resistant epilepsy
is the application of electrical stimulation to terminate the
seizures in their early stages, which is done by means of an
implanted device. This approach requires the early detection
of seizures with high accuracy based on the intracranial
recording of brain generated electric field potentials, called
electroencephalography (EEG). For long term applications
in an implantable device, the selected seizure detector
should have low energy consumption. An overview on
practical developments concerning neurostimulation for
the treatment of epilepsy is illustrated in Fisher and Velasco
(2014) and Schulze-Bonhage (2017). Currently, there is one
FDA-approved responsive neurostimulation implant device
that is available for clinical applications (RNS System; Sun
and Morrell, 2014). Responsive neurostimulation here means
responding to a detected seizure with stimulation of the
brain. Although this device has proven efficacy both under
short-term and long-term application (Heck et al., 2014),
it suffers from a high number of false detections, putting
into question how much of this effect is due to closed-loop
suppression of seizure-related ictal activity. Improved
approaches with higher specificity of interventions are thus
required.

Previous Studies
The development of seizure detection algorithms based on
EEG started decades ago (Gotman, 1982) with the objective
of reducing the workload of reviewing continuous long term
recordings in epilepsy monitoring units and presenting only
intervals with highest clinical relevance to the neurologist. Due
to the high variation of the EEG patterns characterizing a seizure
(Meier et al., 2008) and the huge variability of background EEG
activity among patients, and intra-individual fluctuations in EEG
activity the problem of seizure detection remains an active topic
of research (Ramgopal et al., 2014).

New approaches aim to trigger interventions to prevent
the occurrence (Mormann et al., 2007) or the spread of
seizure activity during the early stage of the seizure. These
application scenarios require online applicability at reasonable
computational costs. The selection of optimal features for online
seizure detection in scalp EEG has been addressed in a study
by Logesparan et al. (2012). In order to be able to perform an
intervention exactly at the onset of a seizure, early detection
is of major importance, which has been taken into account
in recent approaches (Donos et al., 2015; Baldassano et al.,
2017). Low computational costs, which result energy efficiency,
as a prerequisite for the application of seizure detection in
implantable devices have to be considered. Early translations to
hardware realizations can be found in Salam et al. (2011) and Do
Valle et al. (2016).

Our Approach
The goal of our study is to provide a low power seizure detector
that is suitable for online intervention in epileptic brain activity
at the early stages of a seizure. To this end, we implemented
two detectors based on powerful machine learning algorithms.
One detector is based on support vector machines (SVMs)

and the other is based on our previously suggested Random
Forest classifier (Donos et al., 2015, 2018). We compared
the performance of these two classifiers with the seizure
detection method implemented in the only FDA-approved
implant device for epilepsy patients (Sun and Morrell, 2014)
based on thresholding the line length of the recorded signal.
We used line length because not only because it is one of
the features which has frequently been suggested for seizure
detection (Esteller et al., 2001; Logesparan et al., 2012), but
also, because it is sensitive to both, frequency and amplitude
changes. For both Random Forest and SVM classifiers, an
identical feature set was used in order to allow for a comparison
of their performance. Then we implemented the classifier with
superior performance on the micro-controller to evaluate its
efficiency for a later implementation in a closed-loop system. To
the best of our knowledge, this is the first study which considers
detection delay and energy efficiency at the same time with other
seizure detector parameters, and does the comparison with a
method used by the only available medically approved responsive
neurostimulator.

MATERIALS AND METHODS

Dataset
This study was based on the long-term intracranial: (i) EEG
recordings of 10 patients from the European Epilepsy Database
(Ihle et al., 2012). Patients had undergone presurgical evaluation
using implanted strip, grid, or depth electrodes, allowing to
record subdurally from the cortical surface and from structures
below like cortical sulci, hippocampus and amygdala. iEEG was
usually recorded over a period of 1 to 2 weeks. Recorded ictal
and interictal iEEG data during this time period were used for
classifier training. For a robust validation of the seizure detection
algorithm, we selected patients a priori with different seizure
onset patterns (EEG patterns at the early stages of a seizure e.g.,
rhythmic spiking or rhythmic beta activity). The 10 analyzed
patients had a total number of 160 clinical seizures, annotated
by experienced epileptologists. The patients had between 6 and
26 seizures. The SOZ was identified by the gold-standard,
which is visual analysis of intracranial EEG by experienced
epileptologists. We selected the minimum number of channels
in the SOZ so that each recorded seizure had its onset in
at least in one of the selected channels; only these channels
were used for the classifier training and testing. The study was
designed in two modes: single channel and multichannel. In
the single channel mode, classification was performed separately
on each of the selected channels from the SOZ (single channel
classifier). In the multichannel mode, four channels from the
SOZ were used for training and testing. The EEG recordings
were split into 1-h segments, each containing at least one
seizure. In some blocks there were two or three seizures, so
these blocks were divided such that in every block there was
exactly one seizure. Epochs were labeled as seizure or not seizure
based on the electrographical seizure onset and end. Since the
ratio between seizure and non-seizure data is very unbalanced
in 1-h blocks, the remaining non-seizure hours, which would
even worsen this ratio, were not used. The recordings were
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locally re-referenced by subtracting the average of all channels
of one electrode (depth or grid) from each channel of the same
electrode.

The EEG-data were obtained using a Neurofile NT digital
video-EEG system with 128 channels at a sampling rate between
256 Hz and 1,024 Hz, and a 16-bit analog-to-digital converter
(ADC). The signal was filtered in the recording system with
a high-pass filter with a time constant of 1 s and a low-pass
filter with a cutoff frequency of 344 Hz for recordings with
1,024 Hz (respective 90 Hz for recordings with 256 and 512 Hz
sampling frequency). For faster and more energy efficient
computation, the recordings were re-sampled to 256 Hz for
recordings with original sampling frequencies of 512 Hz and
1,024 Hz.

Since the algorithm is aimed to be used for seizure
intervention, the ability to detect the seizure onset at the early
stages is of crucial importance, as it increases the chance of
an intervention prior to a clinical manifestation. Among the
different parameters, the seizure detection time window, which
is given by the duration of the EEG data epochs used for
feature calculation, affects the seizure detection delay. To obtain
the chance of early detection without the use of overlapping
windows, which introduces extra computational demands, we
performed an analyses based on non-overlapping time windows
of 1 s.

Data Preprocessing
To improve the quality of the data and suppress artifacts before
feature extraction, preprocessing steps were performed. First,
to remove the slow drifts, data were filtered with a high-pass
filter of 0.5 Hz. Then, a band-stop filter was used to remove
the powerline noise. Subsequently, to remove data epochs with
degraded quality due to artifacts, an artifact rejection step was
added. This artifact rejection algorithm rejected epochs with
very low variance (compared to the mean variance) and epochs
with either very high or extremely low amplitude. Finally,
since some patients with short intracranial bursts, that have
high-frequency (>50 Hz) content, cause a high number of false
positive detections, a low-pass sixth order Butterworth filter
(with 50 Hz cut-off frequency) was used to remove activity in
these frequency bands.

Line Length Based Classifier
The first detector investigated in this study is based on line
length. This is a signal feature calculated with low computational
power, and is defined as the total length of the curve or sum of
distances between successive points (Equation 1; Esteller et al.,
2001).

L =
N∑

i = 1

abs[x
(
k− 1

)
− x(k)] (1)

In this study, we normalized the line length by z-scoring.
Mean and standard deviation were calculated for each seizure
separately based on the related 1-h data segment. In the
multichannel mode, a logical ‘‘or’’ function was used to combine
the results of the four detection channels.

Features Set for Random Forest and SVM
Classifiers
Ten time and frequency domain features were selected based on
a reasonable computational demand. Time domain features were
mean, mean absolute deviation, variance, skewness, kurtosis, line
length and autocorrelation. Frequency domain features included
average power (MATLAB Signal Processing Toolbox, 2017) in
beta (13–30 Hz) and gamma (30–50 Hz) bands, and a power-
ratio between the alpha (7–13 Hz), beta and gamma bands. This
power-ratio is defined as the power in the gamma band divided
by the sum of the power in the alpha and beta bands; its selection
is based on an increase in gamma band power and a decrease in
alpha and beta band power in a frequent seizure onset pattern,
low voltage fast activity (LVFA), resulting in higher power-ratio
values at the seizure onset. The feature definition is also close to
the first stage of the computation of the epileptogenicity index
(Bartolomei et al., 2008), which consists of the signal energy
between high (beta and gamma) and low (alpha and theta)
frequency bands of the EEG. The ratio used in this study is
potentially even more sensitive for high frequency activity than
the power ratio used for the computation of the epileptogenicity
index.

Random Forest Classifier
The second seizure detection algorithm uses the Random Forest
(Breiman, 1996, 2001) approach for classification. The Random
Forest is an ensemble learning method for classification or
regression that operates by constructing a group of decision
trees where each tree is grown using binary decisions (each
parent node is split into two children). The classifier combines
the ‘‘bagging’’ technique with random selection of features. The
randomness of each tree is realized in two ways: first by selecting
a subset of about two thirds of the data for training, and second
by feature selection for nodes of each tree, which is done from
a subgroup of features selected randomly. The remaining one
third of the training data is used for out-of-bag error evaluation
and to calibrate the performance of each tree. The branching
index for growing each decision tree of the Random Forest is
the so-called Gini index. To define, Gini index is a measure of
how often a randomly chosen element from the set would be
incorrectly labeled, if it was randomly labeled in accordance with
the distribution of labels in the subset. The best feature (splitter)
from the eligible random features subset that has the most
importance is used to split the node. The importance of each
feature is computed based on the decreasing of the Gini index.
For this study, the number of binary decision trees in a Random
Forest was set to 100 (Donos et al., 2015). Higher numbers of
trees were tested, but they did not improve the accuracy of the
classification significantly. According to the Liaw and Wiener
(2002) results, the optimal number of features randomly selected
at each tree node is

√
N, where N is the number of features. In

our case we have ten features and we rounded up the squared
number of features, resulting in four features randomly selected
at each node.

For classification we used Liaw and Wiener (2002)
implementation of Random Forest. To evaluate the performance
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of the Random Forest classifier we used the ‘‘leave-one-out’’
method as a cross validation method since numbers of seizures
for some patients were low. It means that for each of the data
points in the set, the function approximator is trained on all the
data, except for that one data point and a prediction is made for
that point. The average error is computed and used to evaluate
the model. The implemented MATLAB code for the feature
calculation and random forest seizure detector for interested
readers are available per request by sending an email to the first
author.

Support Vector Machines (SVM)
The third algorithm which we implemented for seizure detection
is based on a SVM classifier. The basic idea of the SVM is to find
the optimal hyperplane for linearly separable patterns (Müller
et al., 2001). The optimization is done by finding the hyperplane
that represents the largest separation (margin) between the
two classes. SVM also extends to patterns that are not linearly
separable by transformations of original data into a new space
using kernel function. Kernel function maps data onto a richer
feature space where the patterns are separable, using a linear
hyperplane.

We used the same set of features for classification as for
the Random Forest classifier to allow for a comparison of
performance measures. Due to the fact that the range of features
affects their weight and consequently decision boundaries in
SVM, feature values were normalized before the classification
stage. This contrasts to the decision trees of the Random Forest
classifier where one feature is never compared in magnitude to
other feature ranges, and thus the range of the features does
not affect the decision boundaries. Without normalizing, large
attribute values might furthermore cause numerical problems as
kernel values usually depend on the inner products of feature
vectors (Hsu et al., 2016).

We used the Radial Basis Function (RBF) as the kernel
function to handle the nonlinearity between the features and class
labels. An advantage of RBF is the low complexity of the model
selection because of the low number of hyperparameters to be
optimized in addition few numerical difficulties (Chang and Lin,
2011).

For the SVM classifier, there are two optimization parameters.
One is γ of a Gaussian function (Equation 2). The other is C,
which is the penalty parameter of the error term and determines
how relaxed the margins are (Hsu et al., 2016). We did a
grid search for every detection electrode to ensure the best
classification parameters for every data channel. To predict the
accuracy of the classifier in the parameter optimization step and
to prevent the over fitting problem, a 5-fold cross-validation was
done on the training dataset. We decided to do a 5-fold cross-
validation because the runtime required for optimization was
very long and some patients had a high number of seizures.
The cross-validation was performed to find the best (highest
accuracy) parameter C and γ for training the classifier.

K
(
x, y
)
= e−γ |x−y|

2
(2)

For training and testing, we used the LIBSVM python toolbox
for our implementation (Chang and Lin, 2011). LIBSVM uses a

sequential minimal optimization (SMO) algorithm to solve the
quadratic minimization problem as convergence method. For
a faster convergence of the classifier the shrinking technique
was applied. The shrinking technique reduces the size of the
problem by temporarily reducing the number of variables that
have to be updated in each iteration in the process of choosing the
search direction (Joachims et al., 1999; Bottou and Lin, 2007). To
evaluate the performance of SVM classifier we used ‘‘leave-one-
out’’ method as cross validation method since number of seizures
for some patients is low.

Hardware Implementation of the Seizure
Detector on a Microcontroller
The optimization goal of a neuro-implant is a low power
consumption to increase battery lifetime and to guarantee that
the surrounding tissue does not warm up due to dissipated
power. Therefore, a 16-bit low powermicrocontroller fromTexas
Instruments (MSP430FR5994) was chosen to implement the
feature extraction and the classification.

The biggest challenge of the hardware implementation
is the limited resolution from the 16-bit architecture
yielding truncations errors. For efficient implementation of
feature extraction primarily using the hardware multiplier in
combination with the direct memory access (DMA) controller
and the integrated low power accelerator for digital signal
processing (DSP), a 10-bit resolution for the ADC is chosen.
To compare the performance of the hardware implementation,
first it is simulated with MATLAB. The electrode signals were
scaled by a gain factor calculated from Equation 3 to simulate
the later analog part of the implant consisting of a low power
amplifier and the microcontroller’s internal ADC. Instead of
scaling to the min/max values of the electrode signals, +/−
10 times the standard deviation of the signal was chosen to
suppress artifacts and amplify the useful signal as high as
possible.

gain = (20× std(testData)× resolution ADC)/
reference voltage ADC (3)

The algorithm of the seizure detector consists of feature
extraction and classification. Both parts have to be executed
on the microcontroller in parallel to the data acquisition of
the electrode signals. Using combination of a timer triggering
the ADC and a DMA controller transferring the ADC’s output
to memory, a data acquisition without intervention of the
CPU was implemented. Analyzing the required mathematical
operations for feature extraction made it apparent that for the
time domain feature, an efficient multiply and add (MAC)
operation is required and for the frequency domain feature, an
efficient FFT algorithm is required. An efficient MAC operation
can be achieved using the hardware multiplier to trigger two
DMA channels to load new input data. Again, the CPU is
not required and can be turned off to save one third of the
power consumption. This is also the case for the calculation
of the FFT, as the microcontroller has a DSP accelerator for
this task.
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FIGURE 1 | Detection performance of the classifiers over all the patients
based on a best channel (highest area under the receiver operating
characteristic (ROC) curve (AUC)) selection per patient.

FIGURE 2 | Early detection performance of the classifiers over all the patients
based on a best channel (highest AUC) selection per patient. Here, just the
seizures which could be detected in the first 10 s are counted as a true
positive.

FIGURE 3 | Detection performance of the classifiers over all the patients in
multichannel mode.

Performance Analysis
In order to compare the performance of the optimization
techniques, we considered the following three parameters:
seizure detection delay, sensitivity and False Detection Rate
(FDR). Seizure detection delay is the time between the first
ictal activity, that has been correctly detected and the labeled

FIGURE 4 | Early detection performance of the classifiers over all the patients
in multichannel mode. Here, just the seizures which could be detected in the
first 10 s are counted as a true positive.

onset of electrographic ictal activity in seconds. Since data is
divided into 1-s epochs, if the first second of ictal activity
is correctly detected, delay is 1 s. Therefore, the minimum
achievable onset detection delay is 1 s. Sensitivity (true positive
rate) is a measure of the ability of the classifier to detect seizures
and avoid false negative detections. It is defined as the ratio of
correctly detected seizures to the total number of seizures. A
seizure is detected correctly when at least one electrode ‘‘detects’’
a seizure at least once during the ictal phase. FDR is a tool
for measuring the ability of the classifier to avoid false positive
detections, which is defined as the number of false detections
made by the classifier in an hour. Seizure-onsets are defined
by board-certified epileptologists based on emergence of ictal
patterns in the EEG data. Due to the fact that seizure patterns
show a gradual evolution of hypersynchronous activity with
recruitment of an increasing number of neurons, judgments on
the definite appearance of a seizure pattern can vary by several
seconds. Regarding this existing inter-rater variability between
epileptologists in the seizure onset labeling, we considered a
detection made in the 0–5 s interval prior to the seizure onset as
correct detection with zero delay. Besides, possible subtle changes
in the EEG that were not visible without numerical analysis may
introduce some degree of uncertainty about the exact seizure
onset point.

RESULTS

Comparison of Classifier Performance
Owing to the inevitable trade-off between detection performance
of classifiers in terms of the sensitivity and specificity, a higher
sensitivity can be achieved if lower specificity is accepted. As
a result, to have a threshold free comparison of the classifiers,
receiver operating characteristic (ROC) curves were generated
with the area under the ROC curve (AUC) as a performance
parameter. ROC curve is a graphical plot that illustrates how
the diagnostic ability of a binary classifier as its discrimination
threshold is varied. It is created by plotting the fraction of True
Positives (Y-axis) vs. the fraction of False Positives (X-axis).
For a binary classifier, the AUC is equivalent to the probability
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TABLE 1 | Comparison of the area under the receiver operating characteristic (ROC) curve (AUC) over all the patients between the classifiers in a single-channel mode.

AUC

Random Forest SVM Line length

Mean 0.90 0.88 0.83
Median 0.89 0.88 0.86

AUC for early detection

Random Forest SVM Line length

Mean 0.83 0.71 0.73
Median 0.85 0.72 0.75

TABLE 2 | Comparison of the AUC over all the patients between the classifiers in multichannel mode.

AUC

Random Forest SVM Line length

Mean 0.95 0.98 0.82
Median 0.95 0.98 0.86

AUC for early detection

Random Forest SVM Line length

Mean 0.89 0.84 0.71
Median 0.90 0.83 0.73

that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance. For every
patient, we selected one channel with the highest AUC. This
was done separately for each classifier. Next, we compared the
average AUC of the selected channels over all the patients
between classifiers (Figure 1). Since the detection delay is not
projected in AUC, we measured a second AUC for seizures
that were detected within the first 10 s of seizure onset as
marked in the EEG, and named it early seizure detection
(Figure 2). The average AUC of classifiers over all the patients in
multichannel mode is compared in Figure 3. The same classifier
comparison for early seizure detection in multichannel mode
was done in Figure 4. Subsequently, we compared the mean
and median values of AUC between the classifiers over all the
patients (Table 1). As the single channel classifier, Random
Forest classifier with mean AUC score of 0.9 (median 0.89) had
the best performance. The second best was the SVM classifier
with a mean AUC score 0.88 (median 0.88) in comparison to
Line length classifier with a mean AUC score of 0.83 (median
0.86). The same comparison was also performed for early seizure
detection (Table 1). Again, the Random Forest classifier with a
mean AUC score of 0.83 (median 85%) had the best performance
followed by Line length classifier with mean AUC score of
0.73 (median 75%) and SVM with a mean AUC score of 0.71
(median 0.72). This shows that the Random Forest classifier is
able to provide early seizure detections with a high sensitivity.
In the case of SVM, the decrease of the AUC score for early
seizure detection indicates that it has relatively longer detection
delay in comparison to the other two classifiers. In the case of
multichannel classification, the results are different (Table 2).
SVM with mean AUC score of 0.98 (median 0.98) had the best
performance. The second-best classifier is the Random Forest
classifier with 0.95 (median 0.95) in comparison to Line length

classifier with mean AUC score of 0.82 (median 0.86). The results
of early seizure detection are to some extent different from when
the whole seizure is used for testing (Table 2). In these cases
the Random Forest classifier had the best performance with
mean AUC score of 0.89 (median 0.90), followed by the SVM
classifier with a mean AUC score of 0.84 (median 0.83) and
finally the Line length classifier with mean AUC score of 0.71
(median 0.73).

Since two ROC curves with the same AUC value can be
quite different, it is also important to check the actual curves,
especially when evaluating the results. Therefore, we plotted the
ROC curves of the three classifiers. For each classifier there are
four plots: (1) AUC for the seizure detection in single channel
mode; (2) AUC for early seizure detection in single channel
mode; (3) AUC for the seizure detection in multichannel mode;
and (4) AUC for early seizure detection in the multichannel
mode. The Random Forest classifier ROC curves are plotted in
Figure 5, SVM classifier in Figure 6 and line length classifier in
Figure 7.

Hardware Implementation of Superior
Machine Learning Algorithm
Regarding feature calculation, the runtime in clock cycles for
each feature is shown in Figure 8. Due to the more complex
calculation required for the autocorrelation, almost half of the
cycles were used for this feature. In total, 112,773 cycles were
required to perform the feature extraction for one channel,
yielding in a power consumption of 30 µW per channel.

Regarding classifier implementation as mentioned in
the previous section, the mean AUC for early seizure
detection of all the patients for the Random Forest was
83% (median 85%) and 71% (median 72%) for the SVM
in the single channel mode. In the multichannel mode, the
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FIGURE 5 | ROC curves of all patients in single and multichannel mode for the Random Forest classifier. The dashed line separates the early retrieval area.

Random Forest classifier with a mean AUC of 0.89 (median
0.90) outperformed SVM again with mean AUC of 0.84
(median 0.83). Therefore, due to the superior performance
and lower complexity of the Random Forest classifier in
comparison to SVM, it was selected for the low power
implementation on the microcontroller to evaluate its energy

efficiency as the seizure detection module for implantable
devices.

The size of the classifier with respect to the number of
branches of the trees depends on the size of the training set. Since
the required memory is beyond the microcontroller’s internal
memory of 256 kB, an external 8 MB low power flash memory

FIGURE 6 | ROC curves of all patients in single and multichannel mode for the support vector machine (SVM) classifier. The dashed line separates the early retrieval
area.
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FIGURE 7 | ROC curves of all patients in single and multichannel mode for the line length classifier. The dashed line separates the early retrieval area.

was used. To represent a node of a tree only 5 bytes were required:
2 bytes for the threshold, 2 bytes to address the child node in
a leaf for the label, and 1 byte for the feature. After calculating
votes for each tree, the number of non-seizure votes was counted.
To save runtime and energy, after 50 negative votes out of
100 votes, vote counting was stopped and the next electrode
was processed. The exact power consumption depends on the
number of trees, which have to be evaluated until a decision about
the occurrence of a seizure can be made. For the 10 patients
in the used dataset, between 1,025 nodes and 1,441 nodes per
electrode were evaluated every second for classification, resulting
in a total power consumption of 174 µW to 245 µW per
channel.

DISCUSSION AND OUTLOOK

There are several research groups focusing on optimizing
seizure detection algorithms to be applied in a responsive
neurostimulation implant device for the treatment of epilepsy.
Similar to our approach, (Truong et al., 2017) used the
random forest classifier for seizure detection. They focused
on the number of channels required for seizure detection and
introduced an automatic channel selection method. Automatic
channel selection is an interesting option to adapt a responsive
system to long-term alterations in the patterns of seizure
generation. This may allow for adaptive changes related to the
localization and even lateralization (see for example Spencer
et al., 2011; Smart et al., 2013 and King-Stephens et al., 2015) of
the SOZ over longer periods of time.

In our study, the number of channels considered for seizure
detection was limited to 1–4 expert selected channels with
the aim to develop a classifier that can be implemented on
ultra-low power hardware. The channels were selected based
on the earliest visibility of an ictal epileptic pattern. We
compared the classifiers in two different settings (single and
multichannel mode) to see how increasing the number of
detection channels affects the classifier performance. The lower

FIGURE 8 | Required runtime in number of cycles for each feature.
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number of channels as compared to the study of Truong et al.
(2017) results in a much lower computationally demanding
classifier. Depending on patient characteristics, however, the
additional implementation of automatic channel selection may
be a valuable future extension of our proposed system. In another
study, Osorio et al. (2002) suggested a generic algorithm for
application in a closed loop system. Recent benchmarks for
seizure detection based on intracranial EEG are given in a report
of a crowdsourcing competition by Baldassano et al. (2017). As in
our study, the average of the AUCs for seizure and early seizure
classification were used as performance metrics. In comparison,
our study had more methodological restrictions. First, we used
only four channels; whereas in crowdsourcing competition no
limitation on the number of channels was set; therefore, a higher
number of channels for seizure detection (around 35 channels
for the winner classifier) were used. Besides, in the definition
of early seizure detection; we selected a time limit based on
a window of the first 10 s from visual seizure onset, while in
crowdsourcing competition this limit had been chosen as 15 s.
The best performing algorithm of the competition (also using
random forest classifier with a high dimension of features) had
an AUC around 0.96; while our random forest classifier had an
AUC 0.92, which may be related to the more restricted boundary
conditions of our study. So far, major progress in the field was
achieved with the FDA approved responsive neurostimulation
implant device, which is available for clinical applications. The
RNS system from Neuropace Inc. (Sun and Morrell, 2014),
which is the first intelligent implant for continuously analyzing
ongoing brain activity. The RNS system uses line length, area,
and bandpass as features. The bandpass detector is similar to
the one described by Gotman (1982). For each of two sensing
channels, up to two independent detectors can be applied (Sun
and Morrell, 2014). After using the RNS device for 2 years
in patients Heck et al. (2014) reported, that the RNS system
stimulates the brain about 5.9 m/day, and each stimulation has
a burst duration of 100 ms, in contrast to an average reported
seizure frequency of 33.5/month. This indicates approximately
more than 3,000 false detections per correct stimulation, similar
to the low specificity found in our analyses on long-term data
from the European epilepsy database. Unfortunately, due to the
lack of quantitative information provided by the Neuropace, a
precise assessment of the RNS system is not possible (Osorio,
2014).

Both, a wider spectrum of extracted features and an advanced
classification of ictal electrographic patterns came closer to
a true closed-loop intervention strategy. After implementing
such a system, a comparison of the overall performance
of the three classifiers showed that the Random Forest
classifier, due to its higher AUC for early seizure detection
in both single and multichannel mode is a better option for
closed-loop application in comparison to SVM. However, in
offline applications, where the detection delay is not important,
multichannel SVM outperforms the other classifiers. Besides,
comparison of single channel and multichannel classification
results of Random Forest classifier and SVM classifier, shows
that the number of detection channels has a profound
influence on the quality of the classification results encouraging

the evaluation of multichannel approaches deeper in future
studies.

We furthermore showed that Random Forest classification
is feasible on a low power microcontroller. We decided
to implement the detector on a microcontroller due to its
easier application as well as keeping the power consumption
low. For this implementation, computation of the features
needs simplification and an efficient programming of the
microcontroller using its internal DMA-controller, hardware
multiplier and a low energy DSP accelerator instead of the
more power-demanding CPU. Since this implementation is
on a microcontroller, it is difficult to compare it to the
computational efficiency of other approaches as the one
performed in the study of Truong et al. (2017). They showed
a superior efficiency to another state-of-the-art approach, but
it can be inferred that due to the lower number of channels,
smaller number of trees in our classifier and lower feature
dimensionality, the computational load of our design is lower.
Presenting the number of cycles needed for feature calculation
and the range of the needed power for the random forest
classifier are closer to the design approaches for implantable
devices.

Research in the area of closed loop devices using intracranial
EEG has many applications ranging from treating diseases
like Parkinson, tremor and epilepsy, to restoring efficient
communication, and movement ability to those suffering from
paralysis and rehabilitation. This technology is advancing beyond
preclinical studies, with trials beginning in human patients.
Moving from open loop approaches (Mehring et al., 2004;
Milekovic et al., 2012; Pistohl et al., 2012) to responsive
systems is an important step to tailor and fine-tune the
application of this technology (Rosin et al., 2011; Priori et al.,
2013; Tabot et al., 2013). Concepts and implementations
in this study are partly specific for their application in
seizure detection, especially the selection of features driven
by typical EEG patterns at seizure onset. Nevertheless, it
can be shown that the combination of features in the time
and frequency domains and a classifier that is successfully
applied on offline data using a general-purpose computer
can be transferred to a low power implementation using a
microcontroller suitable for an implant. The translation to
other treatment areas would primarily require carefully selecting
features representing properties of target signals and estimating
their computational costs. Thus, a foundation is set to open new
frontiers in treatment and rehabilitation based on implantable
devices.
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