
ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2018, VOLUME: 08, ISSUE: 03

DOI: 10.21917/ijsc.2018.0231

1663

MUTUAL LEARNING IN TREE PARITY MACHINES USING CUCKOO SEARCH

ALGORITHM FOR SECURE PUBLIC KEY EXCHANGE
Shikha Gupta1, Nalin Nanda2, Naman Chhikara3, Nishi Gupta4 and Satbir Jain5

1,4,5Department of Computer Science and Engineering, Netaji Subhash Institute of Technology, India
2,3Department of Electronics and Communication Engineering, Netaji Subhash Institute of Technology, India

Abstract

In Neural Cryptography, Artificial Neural Networks are used for the

process of key generation and encryption. Tree Parity Machine (TPM)

is a single layer neural network that approaches symmetric key

exchange using the process of mutual learning. This method is

exploited to design a secure key exchange protocol, where the sender

and the receiver TPMs are synchronized to obtain an identically tuned

weight vectors in both the networks. The synchronized TPMs are then

capable of generating a key stream. The time required for

synchronization depends on the initial weight vectors which are

randomly initialized. In the proposed method, the process of

synchronization is expedited using Cuckoo Search (CS) Algorithm

used for the generation of optimal weights.

Keywords:

Neural Synchronisation, Tree Parity Machine, Cuckoo Search

Algorithm, Key Exchange, Security

1. INTRODUCTION

Cryptography is the practice of establishing secure

communication between two parties by preventing unauthorised

access by an adversary to maintain the confidentiality and

integrity of data. It describes the procedure to transmit data

between involved parties such that any eavesdropper is unable to

retrieve the original message. Cryptographic techniques are based

on private key and public key cryptography. In private key

cryptography single key is used for both encryption and

decryption and in public key two keys are used one for encryption

and other for decryption. Though public key cryptography is not

considered god for security but still it plays an important role in

maintaining the key exchange between the two parties. Public key

exchange protocols have a special place in cryptography ever

since it has been introduced by Diffie and Hellman [1]. This

protocol enables the party to share the common secret key on

public communication channel without compromising the

security concerns of procurement of key by an adversary. Neural

cryptography creates a channel for secure key exchange by mutual

learning for synchronisation of special kind of neural networks

called Tree Parity Machines (TPM) [2]. The communicating

networks receive identical inputs, and are trained on the basis of

the outputs they generate. This process leads to synchronisation

of the TPMs wherein the synaptic weights of the networks update

and converge to an identical set of weight vectors, once the

synchronisation process is completed [3]. These identical weights

serve as the secret key crucial for the transmission of data. In this

paper a new model for synchronisation is proposed where Cuckoo

Search Algorithm is exploited to expedite the process of

synchronisation.

The remaining paper is divided in following sections: Section

2 and 3 describes a brief of tree parity machine and cuckoo search

algorithm. In section 4, proposed model have been explained and

analysed. In section 5 results are analysed along with future

directions followed by section 6 that concludes the paper.

2. TREE PARITY MACHINE (TPM)

TPMs are special breed of feed forward neural networks that

possess the ability of synchronisation. The Fig.1 shows the

general structure of TPM.

Fig.1. An example of Tree Parity Machine with K = 3 and N = 4

The neural network has K hidden units, which each have their

own receptive fields i.e. each hidden unit has N inputs while there

is only one output neuron. The network accepts binary input,

 xi,j {-1, +1} (1)

The weight vector associated with the inputs of the network,

is a set of discrete numbers ranging from -L to +L,

 wi,j {-L, -L+1,..., L-1, L} (2)

where i = 1, 2,..., K denotes the ith hidden unit of the TPM and j =

1, 2,…, N denotes the corresponding input to the hidden unit. Now

the output of the hidden neurons of the neural network is defined

by the weighted sum of its input vector. A function is defined as

shown in Eq.(3)

, ,

1

1 N

i i j i j

j

h w x
N

 (3)

The Eq.(3) shows the local field of hidden neurons in a

network. The output σi uses the signum function as the activation

function with hi as the input shown in Eq.(4).

 σi = sgn(hi) (4)

The network output is defined as the product of the hidden

units (or parity), given by the Eq.(5)

 = {-1, +1}

w = {-I, +I}

x = {-1, +1}

τ = {-1, +1}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201765143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SHIKHA GUPTA, et al.: MUTUAL LEARNING IN TREE PARITY MACHINES USING CUCKOO SEARCH ALGORITHM FOR SECURE PUBLIC KEY EXCHANGE

1664

1

K

ii
τ

 (5)

So, the output τ is the measure of the number of inactive

hidden units (σi = -1) in the neural network i.e. τ = +1 when even

number of hidden neurons are not active (even parity) and τ = -1

when odd number of hidden neurons are not active (odd parity).

3. CUCKOO SEARCH ALGORITHM

Cuckoo Search Algorithm is defined as a meta-heuristic

search algorithm proposed by Yang and Deb [4, 5]. It is inspired

by the behaviour of some of the cuckoo species. The algorithm

simulates the obligate brood parasitic behaviour of some cuckoo

species in combination with Lévy flight patterns of some birds

and fruit flies. The cuckoo bird is known to not construct its nest;

rather it lays its eggs in the nest of another host bird. Few host

birds have the ability to discern their own eggs from others. A host

bird that identifies the eggs of unknown origins can either throw

away the egg or abandon the nest altogether and build a nest

somewhere else. To prevent this, some species of female parasitic

cuckoos have evolved to mimic the distinctive features (i.e.

pattern, colour etc.) of the eggs of a few chosen host species. This

increases the survivability of the eggs by reducing the probability

of the eggs being spotted and abandoned. CS algorithm is a robust

algorithm that can be applied to various mathematical models and

optimisation problems [6].

The basic rules of the cuckoo search algorithm are defined as

follows [4]

• Each cuckoo selects a nest and lays only one egg at a time

into the randomly chosen nest.

• The best nests with high quality of eggs will be taken over

to the next generation.

• The availability of host nests is fixed and then a host bird

identifies the cuckoo egg with the probability of Pa = {0, 1}

then in this case the host bird can either throw the egg away

or abandon the nest and build a new nest somewhere else.

The new solution xt+1 is generated using the Eq.(6),

1 ()t t

i ix x Levy (6)

where, i is used to denote the cuckoo, while mean entry wise

multiplication. α is step size used in the problem. Levy function

is defined by the Eq.(7)

 ~ ,1 3Levy u t (7)

This distribution with infinite mean and variance is used to

provide a random walk for the cuckoo at each consecutive step.

The pseudocode of CS algorithm is given in below:

Algorithm 1 Cuckoo Search (CS) Algorithm

Begin

Initialise the population of n host nests xi where i =1,2,…,n

Calculate individual fitness of the nests, Fi

While (stop condition)

Generate a new solution xj using Lévy flight for a randomly

chosen cuckoo

Determine the corresponding fitness value Fj

Select a nest randomly (say xk)

If (Fj > Fk)

Replace xj by xk

End if

Abandon worst nests by Pa(0 < Pa < 1) and build a new

solutions (using Lévy flight)

Rank the solutions and maintain a best solution

End while

End

4. PROPOSED MODEL

Two TPMs with similar models starting from different initial

weight vectors synchronise to achieve identical weights when

given same initial vectors as input and are trained based upon their

output bit. The synchronised weights of the network are used as

the secret keys for encryption. This means that neural networks

like TPM achieve synchronisation via the process of mutual

learning to create an ephemeral channel for key exchange. In the

proposed model, a combination of CS Algorithm and TPM is used

to generate keys required for encryption. The generation of

optimal weights using CS algorithm leads to faster convergence

of TPM. The architecture of which is given in Fig.2.

The optimal weights are generated using CS algorithm. The

population of host nests xi is initialised randomly between the

range [-L, +L]. The fitness function is taken as parabolic and is

defined as:

 () sgn() ()F x x L G x (8)

Fig.2. Proposed model for a Cuckoo Search algorithm based

Tree Parity Machine

where, G(x) is defined as,

 2

0

0

x L

G x x L x L

x L

 (9)

Based on the fitness function of each nests, worst nests are

abandoned while new nests are built via Lévy flight. This cycle is

repeated till coincident weights are received after consecutive

iterations.

Algorithm 2 Process of Synchronisation

Cuckoo

Search

Algorithm

Randomly initialized weights

Final weights after

synchronization

Fitness

Function

Best solution from

CS as optimal

weights

Next

generation

of nests

Tree Parity

Machine

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2018, VOLUME: 08, ISSUE: 03

1665

Begin

Initialise weight vector using CS algorithm in range [-L, +L]

While (not synchronised)

Generate a random input vector xi

Compute the values of hi and σi

Compute the value of the output (i.e. parity) of the network τ

If (τA = τB)

Apply one of the learning rules to the weights

End if

End while

En;d

One of the following learning rules can be employed for the

process of synchronisation:

• When using Hebbian learning rule [7], the networks update

weight according to the output bit as shown in Eq.(10):

, , ,(() ())A B

i j i j i j iw g w x (10)

• When using Anti-Hebbian learning rule [8], the networks are

trained opposite to the output

, , ,(() ())A B

i j i j i j iw g w x (11)

• If the synchronisation is independent of output, one can use

random-walk learning rule [9]

, , ,(() ())A B

i j i j i j iw g w x (12)

The learning rules have to make sure to be in agreement with

the original premise of weights being in range [-L, +L]. This is

done by resetting the value of weight outside the range to the

nearest boundary value by the function g(x) defined as,

sgn()

()
x L x L

g x
x otherwise

 (13)

This process of updating weights is repeated until

synchronisation is finished. Further application of the learning

rule is unable to destroy the synchronisation since process of

updating uses current weight vector and input which are identical.

4.1 GENERATION OF KEY STREAM

Once the networks are synchronised by the proposed

algorithm mentioned, the weight vectors of the networks act as

the secret key for both parties. To generate a key stream of desired

length, a feedback is employed in which the synchronised weights

become the new input vector xi to the network as defined by,

01,

01,

i

i

w
x
i w

 (14)

A new set of optimal weights are generated by the process of

CS algorithm and the process of mutual learning is repeated to

receive a new set of synchronised weights which are appended to

the original key stream of larger length. The process is repeated

till a key stream of desired length is produced and is ready to be

used. The key generated now can be used for encryption by

exploiting any stream cipher. The key stream generated can also

be used in one-time pad by computing a XOR of it with the plain

text to produce the desired cipher text.

4.2 SECURITY ATTACKS

The exchange of secret key is considered secure only when an

adversary cannot reproduce the secret key when the algorithm of

exchange is known as well as the information transferred between

the involved parties. It is generally computationally impossible

for the adversary to determine the secret key. In the case of tree

parity machines the initial weights vectors generated by CS

algorithm are kept secret. Only the input vector xi and the output

τ are interchange over the public network. Keeping the internal

network configuration of both parties secret is the basis of the

security involved in key-exchange protocol in TPMs. The major

attacks on the TPM involves Regular Flipping Attack (RFA) and

Majority Flipping Attack (MFA) [10]. In RFA, an adversary

spoofs one of the parties during the synchronisation process. In

the event of the differing output between adversary and the

spoofed party, the adversary changes the sign of one of its hidden

unit (i.e. sign is “flipped”). In MFA, success is dependent on the

cooperation among a group of attackers [11]. This cooperation is

the reason for increase in probability of the attack.

5. RESULTS

The above algorithm was implemented using both randomly

initialised weights as well as using CS algorithm. Here number of

input units, N = 3 and the weight range, L = 4. The number of

iterations averaged over 100 observations are calculated while

varying the number of hidden layers and shown in Table.1.

Table.1. Number of iterations with varying number of hidden

units using random and CS to initialise weights averaged over

100 observations

Number of hidden

neurons (K)

Using Random

Weights

Using weights

initialised by CS

algorithm

4 134 84

10 371 276

20 742 673

30 1624 1212

The number of iterations are decreased significantly by using

CS algorithm for weight vector initialisation. It has resulted in

~30% decrease in number of iterations on an average.

Table.2. Number of iterations for synchronisation when varying

the range of weights using random and CS initialise weights

averaged over 100 observations

Weight

Range (L)

Using Random

Weights

Using weights initialised

by CS algorithm

4 312 176

5 742 293

6 987 322

7 1423 404

Similarly the effect of CS algorithm was observed by

changing the weight range from 4 to 7 with N = 3, K = 100. The

results of the same can be observed from Table.2. We can observe

that using CS, the synchronisation steps are decreased

SHIKHA GUPTA, et al.: MUTUAL LEARNING IN TREE PARITY MACHINES USING CUCKOO SEARCH ALGORITHM FOR SECURE PUBLIC KEY EXCHANGE

1666

tremendously i.e. >50% decrease is observed. In Fig.3 documents

the change in synchronisation steps while changing L and N with

K = 100.

Fig.3. Iterations for synchronisation with varying weight range

(L) and input (N) using CS initialisation

(a)

(b)

Fig.4. Parties and attacker synchronisation with (a) Random

weights (b) CS weights

The difference between naive attack from an attacker for

random and CS initialisation is compared with N = 100, K = 3, L

= 3 and shown in Fig.4. Again, CS weights synchronise faster

thereby decreasing the success probability of naive attacks. The

success probability of MFA is shown in Fig.5. Comparing both

weight initialisations. It can be seen that increasing the weight

range significantly decreases the success probability of an attack.

In addition to that CS implementation greatly boosts the security

of the key exchange protocol.

Fig.5. Majority flipping attack (MFA) success probability while

varying weight range (L) with both initialisations

The success probability of RFA is shown in Fig.6 for varying

weight range and input neurons. We can see that apart from

increasing weight range, even increasing the input neurons

decreases the probability of a successful attack.

Fig.6. Random Flipping Attack (RFA) for varying weight range

(L) and input neurons (N)

It is clearly observable that CS weights make the

implementation converge faster and more secure from security

attacks.

6. CONCLUSION

Neural networks like TPM with their ability to synchronize

with each other through the process of mutual learning open a new

field of study in cryptography. The inner configuration and

architecture of these networks prove to be fascinating.

Incorporating these networks with meta-heuristic techniques like

Cuckoo Search Algorithm improves the overall security of these

networks. In this paper a novel approach is defined for the process

ISSN: 2229-6956 (ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, APRIL 2018, VOLUME: 08, ISSUE: 03

1667

of synchronization of TPM. The use of CS algorithm proves to

provide faster convergence and synchronization of TPMs using

mutual learning. There is considerable decrease in number of

iteration required for synchronization when weight vector of the

network are initialized with CS algorithm improving the viability

of these networks in cryptography. Therefore neural cryptography

could be the future of secure key exchange and a meta-heuristic

approach could prove to be useful. In future the use of mutual

learning in neural cryptography leads to be a novel applications

for generating key streams.

REFERENCES

[1] Whitfield Diffie and Martin Hellman, “New Directions in

Cryptography”, IEEE Transactions on Information Theory,

Vol. 22, No. 6, pp. 644-654, 1976.

[2] Ido Kanter, Wolfgang Kinzel and Eran Kanter, “Secure

Exchange of Information by Synchronization of Neural

Networks”, Europhysics Letters, Vol. 57, No. 1, pp. 141-148,

2002.

[3] Pravin Revankar, W.Z. Gandhare and Dilip Rathod, “Neural

Synchronization with Queries”, Proceedings of

International Conference on Signal Acquisition and

Processing, pp. 233-239, 2010.

[4] Xin-She Yang and Suash Deb, “Cuckoo Search via Levy

flights”, Proceedings of International Conference on Nature

and Biologically Inspired Computing, pp. 331-336, 2009.

[5] Xin-She Yang and Suash Deb, “Engineering Optimization

by Cuckoo Search”, International Journal of Mathematical

Modelling and Numerical Optimization, Vol. 1, No. 4, pp.

330-343, 2010.

[6] Natalia Caporale and Yang Dan, “Spike Timing-Dependent

Plasticity: A Hebbian Learning Rule”, Annual Review of

Neuroscience, Vol. 31, pp. 25-46, 2008.

[7] Wolfgang Kinzel, “Theory of Interacting Neural Networks”,

Proceedings of International Conference on Disordered

Systems and Neural Networks, pp. 311-318, 2002.

[8] Wolfgang Kinzel and Ido Kanter, “Neural Cryptography”,

Proceedings of 9th International Conference on Neural

Information Processing, Vol. 3, pp. 688-695, 2002.

[9] Alexander Klimov, Anton Mityagin and Adi Shamir,

“Analysis of Neural Cryptography”, Proceedings of

International Conference on the Theory and Application of

Cryptology and Information Security, pp. 23-29, 2002.

[10] Lanir N. Shacham, et al., “Cooperating Attackers in Neural

Cryptography”, Physical Review E, Vol. 69, No. 6, pp. 137-

146, 2004.

[11] Jiawei Yuan and Shucheng Yu, “Privacy Preserving Back-

Propagation Neural Network Learning made Practical with

Cloud Computing”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 25, No. 1, pp. 212-221, 2014.

[12] Ning Cao et al., “Privacy-Preserving Multi-Keyword

Ranked Search over Encrypted Cloud Data”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 25,

No. 1, pp. 222-233, 2014.

[13] R. Tso, X. Huang and W. Susilo, “Strongly Secure

Certificate Less Short Signatures”, Journal of Systems and

Software, Vol. 85, No. 6, pp. 1409-1417, 2012.

[14] Ahmed M. Allam, Hazem M. Abbas and M. Watheq El-

Kharashi, “Authenticated Key Exchange Protocol using

Neural Cryptography with Secret Boundaries”, Proceedings

of International Conference on Neural Networks, pp. 23-34,

2013.

[15] Thuan Thanh Nguyen, Anh Viet Truong and Tuan Anh

Phung, “A Novel Method based on Adaptive Cuckoo Search

for Optimal Network Reconfiguration and Distributed

Generation Allocation in Distribution Network”,

International Journal of Electrical Power and Energy

Systems, Vol. 78, pp. 801-815, 2016.

[16] R. Rao, “Review of Applications of TLBO Algorithm and a

Tutorial for Beginners to Solve the Unconstrained and

Constrained Optimization Problems”, Decision Science

Letters, Vol. 5, No. 1, pp. 1-30, 2016.

