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Abstract 

In Neural Cryptography, Artificial Neural Networks are used for the 

process of key generation and encryption. Tree Parity Machine (TPM) 

is a single layer neural network that approaches symmetric key 

exchange using the process of mutual learning. This method is 

exploited to design a secure key exchange protocol, where the sender 

and the receiver TPMs are synchronized to obtain an identically tuned 

weight vectors in both the networks. The synchronized TPMs are then 

capable of generating a key stream. The time required for 

synchronization depends on the initial weight vectors which are 

randomly initialized. In the proposed method, the process of 

synchronization is expedited using Cuckoo Search (CS) Algorithm 

used for the generation of optimal weights. 
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1. INTRODUCTION 

Cryptography is the practice of establishing secure 

communication between two parties by preventing unauthorised 

access by an adversary to maintain the confidentiality and 

integrity of data. It describes the procedure to transmit data 

between involved parties such that any eavesdropper is unable to 

retrieve the original message. Cryptographic techniques are based 

on private key and public key cryptography. In private key 

cryptography single key is used for both encryption and 

decryption and in public key two keys are used one for encryption 

and other for decryption. Though public key cryptography is not 

considered god for security but still it plays an important role in 

maintaining the key exchange between the two parties. Public key 

exchange protocols have a special place in cryptography ever 

since it has been introduced by Diffie and Hellman [1]. This 

protocol enables the party to share the common secret key on 

public communication channel without compromising the 

security concerns of procurement of key by an adversary. Neural 

cryptography creates a channel for secure key exchange by mutual 

learning for synchronisation of special kind of neural networks 

called Tree Parity Machines (TPM) [2]. The communicating 

networks receive identical inputs, and are trained on the basis of 

the outputs they generate. This process leads to synchronisation 

of the TPMs wherein the synaptic weights of the networks update 

and converge to an identical set of weight vectors, once the 

synchronisation process is completed [3]. These identical weights 

serve as the secret key crucial for the transmission of data. In this 

paper a new model for synchronisation is proposed where Cuckoo 

Search Algorithm is exploited to expedite the process of 

synchronisation. 

The remaining paper is divided in following sections: Section 

2 and 3 describes a brief of tree parity machine and cuckoo search 

algorithm. In section 4, proposed model have been explained and 

analysed. In section 5 results are analysed along with future 

directions followed by section 6 that concludes the paper. 

2. TREE PARITY MACHINE (TPM) 

TPMs are special breed of feed forward neural networks that 

possess the ability of synchronisation. The Fig.1 shows the 

general structure of TPM. 

 

Fig.1. An example of Tree Parity Machine with K = 3 and N = 4 

The neural network has K hidden units, which each have their 

own receptive fields i.e. each hidden unit has N inputs while there 

is only one output neuron. The network accepts binary input, 

 xi,j  {-1, +1} (1) 

The weight vector associated with the inputs of the network, 

is a set of discrete numbers ranging from -L to +L, 

 wi,j  {-L, -L+1,..., L-1, L} (2) 

where i = 1, 2,..., K denotes the ith hidden unit of the TPM and j = 

1, 2,…, N denotes the corresponding input to the hidden unit. Now 

the output of the hidden neurons of the neural network is defined 

by the weighted sum of its input vector. A function is defined as 

shown in Eq.(3) 
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The Eq.(3) shows the local field of hidden neurons in a 

network. The output σi uses the signum function as the activation 

function with hi as the input shown in Eq.(4). 

 σi = sgn(hi) (4) 

The network output is defined as the product of the hidden 

units (or parity), given by the Eq.(5) 

 

 = {-1, +1} 

w = {-I, +I} 

x = {-1, +1} 

τ = {-1, +1} 
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So, the output τ is the measure of the number of inactive 

hidden units (σi = -1) in the neural network i.e. τ = +1 when even 

number of hidden neurons are not active (even parity) and τ = -1 

when odd number of hidden neurons are not active (odd parity). 

3. CUCKOO SEARCH ALGORITHM 

Cuckoo Search Algorithm is defined as a meta-heuristic 

search algorithm proposed by Yang and Deb [4, 5]. It is inspired 

by the behaviour of some of the cuckoo species. The algorithm 

simulates the obligate brood parasitic behaviour of some cuckoo 

species in combination with Lévy flight patterns of some birds 

and fruit flies. The cuckoo bird is known to not construct its nest; 

rather it lays its eggs in the nest of another host bird. Few host 

birds have the ability to discern their own eggs from others. A host 

bird that identifies the eggs of unknown origins can either throw 

away the egg or abandon the nest altogether and build a nest 

somewhere else. To prevent this, some species of female parasitic 

cuckoos have evolved to mimic the distinctive features (i.e. 

pattern, colour etc.) of the eggs of a few chosen host species. This 

increases the survivability of the eggs by reducing the probability 

of the eggs being spotted and abandoned. CS algorithm is a robust 

algorithm that can be applied to various mathematical models and 

optimisation problems [6]. 

The basic rules of the cuckoo search algorithm are defined as 

follows [4] 

• Each cuckoo selects a nest and lays only one egg at a time 

into the randomly chosen nest. 

• The best nests with high quality of eggs will be taken over 

to the next generation. 

• The availability of host nests is fixed and then a host bird 

identifies the cuckoo egg with the probability of Pa = {0, 1} 

then in this case the host bird can either throw the egg away 

or abandon the nest and build a new nest somewhere else. 

The new solution xt+1 is generated using the Eq.(6), 

 
1 ( )t t

i ix x Levy      (6) 

where, i is used to denote the cuckoo, while  mean entry wise 

multiplication. α is step size used in the problem. Levy function 

is defined by the Eq.(7) 

 ~ ,1 3Levy u t      (7) 

This distribution with infinite mean and variance is used to 

provide a random walk for the cuckoo at each consecutive step. 

The pseudocode of CS algorithm is given in below: 

Algorithm 1 Cuckoo Search (CS) Algorithm 

Begin 

Initialise the population of n host nests xi where i =1,2,…,n 

Calculate individual fitness of the nests, Fi 

While (stop condition) 

Generate a new solution xj using Lévy flight for a randomly 

chosen cuckoo 

Determine the corresponding fitness value Fj 

Select a nest randomly (say xk) 

If (Fj > Fk) 

Replace xj by xk 

End if 

Abandon worst nests by Pa(0 < Pa < 1) and build a new 

solutions (using Lévy flight) 

Rank the solutions and maintain a best solution 

End while 

End 

4. PROPOSED MODEL 

Two TPMs with similar models starting from different initial 

weight vectors synchronise to achieve identical weights when 

given same initial vectors as input and are trained based upon their 

output bit. The synchronised weights of the network are used as 

the secret keys for encryption. This means that neural networks 

like TPM achieve synchronisation via the process of mutual 

learning to create an ephemeral channel for key exchange. In the 

proposed model, a combination of CS Algorithm and TPM is used 

to generate keys required for encryption. The generation of 

optimal weights using CS algorithm leads to faster convergence 

of TPM. The architecture of which is given in Fig.2. 

The optimal weights are generated using CS algorithm. The 

population of host nests xi is initialised randomly between the 

range [-L, +L]. The fitness function is taken as parabolic and is 

defined as: 

 ( ) sgn( ) ( )F x x L G x     (8) 

 

Fig.2. Proposed model for a Cuckoo Search algorithm based 

Tree Parity Machine 

where, G(x) is defined as, 
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Based on the fitness function of each nests, worst nests are 

abandoned while new nests are built via Lévy flight. This cycle is 

repeated till coincident weights are received after consecutive 

iterations. 

 

Algorithm 2 Process of Synchronisation 
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Begin 

Initialise weight vector using CS algorithm in range [-L, +L] 

While (not synchronised) 

Generate a random input vector xi 

Compute the values of hi and σi 

Compute the value of the output (i.e. parity) of the network τ 

If (τA = τB) 

Apply one of the learning rules to the weights 

End if 

End while 

En;d 

One of the following learning rules can be employed for the 

process of synchronisation: 

• When using Hebbian learning rule [7], the networks update 

weight according to the output bit as shown in Eq.(10): 


, , ,( ( ) ( ))A B

i j i j i j iw g w x           (10) 

• When using Anti-Hebbian learning rule [8], the networks are 

trained opposite to the output 


, , ,( ( ) ( ))A B

i j i j i j iw g w x           (11) 

• If the synchronisation is independent of output, one can use 

random-walk learning rule [9] 


, , ,( ( ) ( ))A B

i j i j i j iw g w x           (12) 

The learning rules have to make sure to be in agreement with 

the original premise of weights being in range [-L, +L]. This is 

done by resetting the value of weight outside the range to the 

nearest boundary value by the function g(x) defined as, 


sgn( )

( )
x L x L

g x
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 (13) 

This process of updating weights is repeated until 

synchronisation is finished. Further application of the learning 

rule is unable to destroy the synchronisation since process of 

updating uses current weight vector and input which are identical. 

4.1 GENERATION OF KEY STREAM 

Once the networks are synchronised by the proposed 

algorithm mentioned, the weight vectors of the networks act as 

the secret key for both parties. To generate a key stream of desired 

length, a feedback is employed in which the synchronised weights 

become the new input vector xi to the network as defined by, 


01,

01,

i

i

w
x
i w


 


 (14) 

A new set of optimal weights are generated by the process of 

CS algorithm and the process of mutual learning is repeated to 

receive a new set of synchronised weights which are appended to 

the original key stream of larger length. The process is repeated 

till a key stream of desired length is produced and is ready to be 

used. The key generated now can be used for encryption by 

exploiting any stream cipher. The key stream generated can also 

be used in one-time pad by computing a XOR of it with the plain 

text to produce the desired cipher text. 

4.2 SECURITY ATTACKS 

The exchange of secret key is considered secure only when an 

adversary cannot reproduce the secret key when the algorithm of 

exchange is known as well as the information transferred between 

the involved parties. It is generally computationally impossible 

for the adversary to determine the secret key. In the case of tree 

parity machines the initial weights vectors generated by CS 

algorithm are kept secret. Only the input vector xi and the output 

τ are interchange over the public network. Keeping the internal 

network configuration of both parties secret is the basis of the 

security involved in key-exchange protocol in TPMs. The major 

attacks on the TPM involves Regular Flipping Attack (RFA) and 

Majority Flipping Attack (MFA) [10]. In RFA, an adversary 

spoofs one of the parties during the synchronisation process. In 

the event of the differing output between adversary and the 

spoofed party, the adversary changes the sign of one of its hidden 

unit (i.e. sign is “flipped”). In MFA, success is dependent on the 

cooperation among a group of attackers [11]. This cooperation is 

the reason for increase in probability of the attack. 

5. RESULTS 

The above algorithm was implemented using both randomly 

initialised weights as well as using CS algorithm. Here number of 

input units, N = 3 and the weight range, L = 4. The number of 

iterations averaged over 100 observations are calculated while 

varying the number of hidden layers and shown in Table.1. 

Table.1. Number of iterations with varying number of hidden 

units using random and CS to initialise weights averaged over 

100 observations 

Number of hidden 

neurons (K) 

Using Random 

Weights 

Using weights 

initialised by CS 

algorithm 

4 134 84 

10 371 276 

20 742 673 

30 1624 1212 

The number of iterations are decreased significantly by using 

CS algorithm for weight vector initialisation. It has resulted in 

~30% decrease in number of iterations on an average. 

Table.2. Number of iterations for synchronisation when varying 

the range of weights using random and CS initialise weights 

averaged over 100 observations 

Weight 

Range (L) 

Using Random 

Weights 

Using weights initialised 

by CS algorithm 

4 312 176 

5 742 293 

6 987 322 

7 1423 404 

Similarly the effect of CS algorithm was observed by 

changing the weight range from 4 to 7 with N = 3, K = 100. The 

results of the same can be observed from Table.2. We can observe 

that using CS, the synchronisation steps are decreased 
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tremendously i.e. >50% decrease is observed. In Fig.3 documents 

the change in synchronisation steps while changing L and N with 

K = 100. 

 

Fig.3. Iterations for synchronisation with varying weight range 

(L) and input (N) using CS initialisation 

 

(a) 

 

(b) 

Fig.4. Parties and attacker synchronisation with (a) Random 

weights (b) CS weights 

The difference between naive attack from an attacker for 

random and CS initialisation is compared with N = 100, K = 3, L 

= 3 and shown in Fig.4. Again, CS weights synchronise faster 

thereby decreasing the success probability of naive attacks. The 

success probability of MFA is shown in Fig.5. Comparing both 

weight initialisations. It can be seen that increasing the weight 

range significantly decreases the success probability of an attack. 

In addition to that CS implementation greatly boosts the security 

of the key exchange protocol. 

 

Fig.5. Majority flipping attack (MFA) success probability while 

varying weight range (L) with both initialisations 

The success probability of RFA is shown in Fig.6 for varying 

weight range and input neurons. We can see that apart from 

increasing weight range, even increasing the input neurons 

decreases the probability of a successful attack. 

 

Fig.6. Random Flipping Attack (RFA) for varying weight range 

(L) and input neurons (N) 

It is clearly observable that CS weights make the 

implementation converge faster and more secure from security 

attacks. 

6. CONCLUSION 

Neural networks like TPM with their ability to synchronize 

with each other through the process of mutual learning open a new 

field of study in cryptography. The inner configuration and 

architecture of these networks prove to be fascinating. 

Incorporating these networks with meta-heuristic techniques like 

Cuckoo Search Algorithm improves the overall security of these 

networks. In this paper a novel approach is defined for the process 
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of synchronization of TPM. The use of CS algorithm proves to 

provide faster convergence and synchronization of TPMs using 

mutual learning. There is considerable decrease in number of 

iteration required for synchronization when weight vector of the 

network are initialized with CS algorithm improving the viability 

of these networks in cryptography. Therefore neural cryptography 

could be the future of secure key exchange and a meta-heuristic 

approach could prove to be useful. In future the use of mutual 

learning in neural cryptography leads to be a novel applications 

for generating key streams. 
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