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Abstract—In this paper we study a predator-prey
system, modeling the interaction of two species with
diffusion and T -periodic environmental parameters.
It is a Leslie-Gower type predator-prey model with
Holling-type-II functional response. We establish
some sufficient conditions for the ultimate bound-
edness of solutions and permanence of this system.
By constructing an appropriate auxiliary function,
the conditions for the existence of a unique globally
stable positive periodic solution are also obtained.
Numerical simulations are presented to illustrate the
results.

Keywords-Reaction-diffusion equations, Predator-
prey model, Functional response, Permanence.

I. INTRODUCTION AND MATHEMATICAL

MODEL

The dynamical properties of the predator-prey
models can be used to analyze the relations be-
tween the prey and predator and to predicate
whether they can coexist. As we known, one of

the earliest and also the best known predator-
prey models is the Leslie-Gower model [16], [17],
which is a modificiation of the Lotka-Volterra
model [22]. The Leslie-Gower type model can
be described by the following autonomous bi-
dimensional system [16], [17]

du

dt
= u(a− bu)− αuv,

dv

dt
= v

(
c− βv

u

)
,

(1)

where u is the population of the prey and v is
the population of the predator. In (1) we assume
the prey grows logistically with carrying capacity
K = a

b and intrinsic growth rate a in the absence
of predation. The predation is assumed to be
proportional to the population size of the prey. The
predator grows logistically with intrinsic growth
rate c and carrying capacity c

βu(t) proportional to
the population size of prey (or prey abundance).
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The parameter β is a measure of the food quality
that the prey provides for conversion into predator
birth. The stability of the interior equilibrium is
studied in [25] by numerical methods. Lindstrom
[18] investigated the nonexistence, existence and
limit cycles. Hsu and Huang [13] prove that all
the solutions are bounded and positive if their
initial values are in the first quadrant, and study
the globally asymptotical stability of the interior
equilibrium using Liapunov function and LaSalle’s
invariance principle.
Aziz-Alaoui and Daher Okiye [3] argued that
a suitable predator-prey model should incorpo-
rate some kind of functional response, while the
predator species could have other food resource.
Basing on those assumption, they proposed a
predator-prey model with modified Leslie-Gower
and Holling-type II schemes [12] as follow:

du

dt
= u(a− bu)− αuv

u+ k1
,

dv

dt
= v

(
c− βv

u+ k2

)
,

(2)

where k1 is the half-saturation constant in the
Holling-type II functional response and k2 is a
measure of alternative prey densities in the en-
vironment, allowing the predator to persist when
the prey population disappears. The authors inves-
tigated the boundedness and global stability of the
system (2). Nindjin et al. [23] further incorporated
the time delay to the system considered in [3],
and they showed that time delay plays important
role on the dynamic behaviors of the system.
Yafia et al. [27] studied the limit cycle bifurcated
from time delay. For more works on Leslie-Gower
predator-prey model, one could refer to [1], [4],
[7], [8], [14], [26], [28], [29] and the references
cited therein.
To achieve further understanding it is now essential
to consider more general and hence more ”dif-
ficult” models. We will focus here on the case
in which the biological or environmental param-
eters are time-periodic, and will assume that the
species are free to move at random throughout
some bounded habitat. Under these assumptions,

we model the species interaction via a system of
reaction-diffusion equations of the form
∂u

∂t
−d1∆u=u

(
a(t, x)−b(t, x)u

)
− α(t, x)uv

u+k1(t, x)
,

∂v

∂t
−d2∆v=v

(
c(t, x)− β(t, x)v

u+k2(t, x)

)
,

(3)
where the function u(t, x) and v(t, x) determine
the densities of prey and predator, respectively, at a
point x and time t. Here the equations are assumed
to be satisfied in a cylinder x ∈ Ω̄, 0 < t < ∞,
where Ω is an open, bounded, smooth domain
in Rn. These equations are supplemented with
homogeneous Neumann boundary conditions

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,∞).

where n is the outward unit vector of the boundary
∂Ω which we assume is smooth, and the following
nonnegative initial values

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0 in Ω.

The various coefficients on the right-hand side
depend on both t and x modelling the fact that
effects vary in both time and space. The periodicity
of coefficients models seasonal fluctuations. d1

and d2, are positive diffusion coefficients reflecting
the non-homogeneous dispersion of populations.
Many authors studied the qualitative properties of
this system, but for the case for which the pa-
rameters are constant, using Neumann or Dirichlet
boundary conditions, see [8], [24], [27], [29].
Motivated by the papers mentioned above, we
deal here with the permanence and existence of
periodic solutions of the diffusive system (3).
The content of this paper is as follows. In section
2, we give conditions for the ultimate boundedness
of solutions and permanence of the system. In
Section 3, we establish conditions for the existence
of a unique periodic solution of the system. Nu-
merical simulations are presented in Section 4 to
illustrate the feasibility of our results.
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II. BOUNDEDNESS AND PERMANENCE

We analyze the permanence (dissipation and
persistence) of system (3) with non-negative initial
functions, this ensures the long-term survival (i.e.,
will not vanish in time) of all components of
system (3), under some conditions. We first recall
a well known result on the logistic equation.

Lemma 2.1: [30]. Assume that u(t, x) is de-
fined by

∂u

∂t
=d1∆u+ru

(
1− u

K

)
, x∈Ω, t>0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, x ∈ Ω,

(4)

then, limt→∞ u(t, x) = K.
Throughout the paper we always assume that:

(H): Functions a(t, x), b(t, x), c(t, x), α(t, x),
β(t, x) and ki(t, x), (i = 1, 2) are bounded
positive-valued functions on R+ × Ω̄ con-
tinuously differentiable in t and x, and are
periodic in t with a period T > 0.

For a bounded function φ(t, x), we denote

φm = inf
(t,x)∈R+×Ω

φ(t, x),

φM = sup
(t,x)∈R+×Ω

φ(t, x).

A. Dissipation

Proposition 2.2: All the solutions of (3)
initiated in the positive octant are nonnegative
and satisfy

lim sup
t→+∞

max
x∈Ω̄

u(t, x) ≤ aM

bm
,

lim sup
t→+∞

max
x∈Ω̄

v(t, x) ≤ cM

βm

(aM
bm

+ kM2

)
.

Proof
The nonnegativity of the solutions of (3) is ob-
vious since the initial value is nonnegative. We
consider now the second part of the theorem. For
convenience, we denote a = a(t, x), and similar

meaning to b, c, α, β, k1 and k2. From the first
equation of system (3), we have

∂u

∂t
= d1∆u+ u

(
a− bu

)
− αuv

u+ k1
,

≤ d1∆u+ u
(
aM − bmu

)
. (5)

From the comparison principle of the parabolic
equations [9], [11], it is easy to verify that
u(t, x) ≤ u(t), where u(t) is the spatially homo-
geneous solutions of

∂u

∂t
=d1∆u+u

(
aM−bmu

)
, x ∈ Ω, t > 0

∂u

∂n
= 0, x ∈ ∂Ω, t > 0

u(0, x) = u∗
(6)

where u∗ = max
x∈Ω

u(0, x). This implies, by using

Lemma 2.1, that

lim sup
t→+∞

max
x∈Ω̄

u(t, x) ≤ aM

bm
.

Then, for ε > 0 there exists T1 > 0 such that

u(t, x) ≤ η1 for t > T1, (7)

where η1 = aM

bm + ε.
Therefore, from the second equation of system (3)
and (7) and using the same reasoning, we have

∂v

∂t
= d2∆v + v

(
c− βv

u+ k2

)
≤ d2∆v + v

(
cM − βmv

η1 + kM2

)
for t > T1. Hence there exists T2 > T1 such that
for any t > T2

v(t, x) ≤ η2 (8)

where η2 = cM

βm (a
M

bm + ε+ kM2 ) + ε, which implies

lim sup
t→+∞

max
x∈Ω̄

v(t, x) ≤ cM

βm

(
aM

bm
+ kM2

)
.

Therefore, any positive solution of system (3) is
ultimately bounded, which completes the proof.
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B. Persistence

Definition 2.3: [5], [6] System (3) is said
to be persistent if for any positive initial data
(u0(x), v0(x)), there exist positive constants
ξ1 = ξ1(u0, v0), ξ2 = ξ2(u0, v0), such that the
solution (u(t, x), v(t, x)) of (3) satisfies

lim inf
t→+∞

min
x∈Ω̄

u(t, x) ≥ ξ1, lim inf
t→+∞

min
x∈Ω̄

v(t, x) ≥ ξ2

Proposition 2.4: Assume that

amkm1 β
m > αMcM

(aM
bm

+ kM2

)
(9)

then system (3) is persistent.
Proof
From (3), (7) and (8), it follows that for t ≥ T2,

∂u

∂t
= d1∆u+ u(a− bu)− αuv

u+ k1

≥ d1∆u+ u(am − bMu)− αMη2u

km1

= d1∆u+ u
(
am − αMη2

km1
− bMu

)
then from the comparison principle of the
parabolic equations, it is easy to verify that
u(t, x) ≥ u(t), where u(t) is the spatially homo-
geneous solutions of

∂u

∂t
=d1∆u+ u

(
am−α

Mη2

km1
−bMu

)
,

x ∈ Ω, t > 0,

∂u

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u∗

(10)

where u∗ = min
x∈Ω

u(0, x). Thanks to lemma 2.1, we

obtain,

lim inf
t→+∞

min
x∈Ω̄

u(t, x) ≥ 1

bM

(
am − αMη2

km1

)
.

Hence, there exists T3 > T2 such that for any
t > T3,

u(t, x) ≥ ξ1 (11)

where,

ξ1 =
1

bM

(
am − αMη2

km1
− ε
)
.

From the predator equation, it follows that

∂v

∂t
= d2∆v + v

(
c− βv

u+ k2

)

≥ d2∆v + v
(
cm − βMv

km2

)
.

Hence, there exists T4 > 0 such that for any t > T4

v(t, x) > ξ2, (12)

where

ξ2 =
cmkm2
βM

− ε.

Therefore, from (11) and (12), we obtain,

lim inf
t→+∞

min
x∈Ω̄

u(t, x)

≥ 1

bM

(
am −

αMcM

βm (a
M

bm + kM2 )

km1

)
,

lim inf
t→+∞

min
x∈Ω̄

v(t, x) ≥ cmkm2
βM

.

(13)

Thus, system (3) is persistent, which completes
the proof of Proposition 2.4. A direct application
of Proposition 2.2 and Proposition 2.4 gives the
following result.

Proposition 2.5: (Permanence) If condition (9)
holds, there exist positive constants 0 < ζ < η,
such that,

ζ ≤ lim inf
t→∞

min
x∈Ω̄

u(t, x) ≤ lim sup
t→∞

max
x∈Ω̄

u(t, x) ≤ η

ζ ≤ lim inf
t→∞

min
x∈Ω̄

v(t, x) ≤ lim sup
t→∞

max
x∈Ω̄

v(t, x) ≤ η

That is, model (3) is permanent.
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III. PERIODIC SOLUTIONS

A very basic and important problem in the
study of a population growth models with periodic
environment is the global existence and stabil-
ity of positive periodic solutions, which plays a
similar role as a globally stable equilibrium for
autonomous models [5], [11], [15], [19], [21].
In this section, we derive sufficient conditions
that guarantee existence, uniqueness and global
stability of a T -periodic positive solution of system
(3). For this aim, we consider the matrix M , which
reads as:

M=

2
(
aM−2bmζ− αmkm

1 ζ
(η+kM

1 )2

)
βMη2

(ζ+km
2 )2

βMη2

(ζ+km
2 )2 2

(
cM−2βmζ ζ+km

2

(η+kM
2 )2

)


(14)
where ζ and η are the bounds of any non-zero
arbitrary solution of system (3), initialing with
non-negative function, given by Proposition 2.5.

Proposition 3.1: Assume that condition (9)
holds, that is system (3) is permanent, if

µ(M) < 0, (15)

where µ(M) is the maximal eigenvalue of the
matrix M . Then, system (3) has a unique glob-
ally asymptotic stable strictly positive T -periodic
solution.
Proof
Let (u1(t, x), v1(t, x)) and (u2(t, x), v2(t, x)) be
two solutions of system (3), by Proposition 2.5,
these solutions are bounded by constants ζ and
η, where ζ = min{ξ1, ξ2} and η = max{η1, η2},
defined in section 2. Consider the function

U(t)=

∫
Ω

(
(u1(t,x)−u2(t,x))2+(v1(t,x)−v2(t,x))

2
)
dx

(16)
One has,
dU(t)
dt = 2

∫
Ω(u1 − u2)

(
∂u1

∂t −
∂u2

∂t

)
dx

+2
∫

Ω(v1 − v2)
(
∂v1
∂t −

∂v2
∂t

)
dx

= 2d1

∫
Ω(u1 − u2)∆(u1 − u2)dx

+2d2

∫
Ω(v1 − v2)∆(v1 − v2)dx

+2
∫

Ω(u1 − u2)[(
u1(a−bu1)− αu1v1

u1+k1

)
−
(
u2(a−bu2)− αu2v2

u2+k1

)]
dx

+2
∫

Ω(v1−v2)
[(
v1(c− βv1

u1+k2

)
−
(
v2(c− βv2

u2+k2

)]
dx

:= I1 + I2 + I3 + I4
(17)

It follows from the boundary condition in (3) that

I1 + I2 = 2d1

∫
∂Ω

(u1 − u2)∇(u1 − u2)dη

−2d1

∫
Ω

(∇(u1 − u2))2dx

+2d2

∫
∂Ω

(v1 − v2)∇(v1 − v2)dη

−2d2

∫
Ω

(∇(v1 − v2))2dx

=−2d1

∫
Ω

(∇(u1−u2))2dx−2d2

∫
Ω
(∇(v1−v2))2dx.

≤ 0.

For the third and fourth term in (17), we have

I3+I4 = 2
∫

Ω(u1−u2)
[(

(u1−u2)
(
a−b(u1+u2)

)
−αu1u2(v1 − v2) + k1(u1v1 − u2v2

(u1 + k1)(u2 + k1)

]
dx

+2

∫
Ω

(v1 − v2)
[
c(v1 − v2)

−β (v2
1u2 − v2

2u1) + k2(v1 − v2)(v1 + v2)

(u1 + k2)(u2 + k2)
dx
]
.

Note that

v2
1u2−v2

2u1 = (v1−v2)(v1u2+v2u1)−v1v2(u1−u2)

and

u1v1 − u2v2 = u1(v1 − v2) + v2(u1 − u2).

Therefore

I3 + I4 =

2
∫

Ω(u1 − u2)2
[
a− b(u1 + u2)− αk1v2

(u1+k1)(u2+k1)

]
dx

+2

∫
Ω

(v1−v2)2
[
c−β (v1u2 + v2u1) + k2(v1 + v2)

(u1 + k2)(u2 + k2)
dx
]
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+2
∫

Ω(u1 − u2)(v1 − v2)[
βv1v2

(u1+k2)(u2+k2) −
αu1

(u1+k1)

]
dx

≤ 2

∫
Ω

(u1−u2)2

[
aM−2bmζ− αmkm1 ζ

(η + kM1 )2

]
dx

+2

∫
Ω

(v1−v2)2

[
cM−2βmζ

ζ + km2
(η + kM2 )2

]
dx

+2

∫
Ω

∣∣∣(u1−u2)(v1−v2)
∣∣∣ βMη2

(ζ + km2 )2
dx

≤ µ(M)

∫
Ω

[
(u1−u2)2+(v1−v2)2

]
dx.

Using (15) yields,

U(t) ≤ U(0)eµ(M)t → 0 as t→∞ (18)

Thus, we have proved that ‖u1(t, x)−u2(t, x)‖ →
0 and ‖v1(t, x)− v2(t, x)‖ → 0 as t→∞, where
‖.‖ denotes the norm of the space L2(Ω).
Let p > n a positive integer and w(t, w0) =
(u(t, x, u0, v0), v(t, x, u0, v0)). By applying ex-
actly the same reasoning as in [2], we prove that
for some γ ∈ (1

2 + n
2p , 1), the solution {w(t, w0)}

is relatively compact in the space C1+θ(Ω̄,R2),
for 0 < θ < 2γ − 1− n/p. Therefore,

lim
t→∞

sup
x∈Ω
|u1(t, x)− u2(t, x)| = 0,

lim
t→∞

sup
x∈Ω
|v1(t, x)− v2(t, x)| = 0.

(19)

Now we consider the sequence

(u(kT, x, u0, v0), v(kT, x, u0, v0)) = w(kT,w0).

Then, {w(kT,w0), k ∈ N} is compact in the space
C(Ω̄) × C(Ω̄). Let ω̄ be a limit point of this
sequence, then w(T, w̄) = w̄. Indeed, it follows,
from w(T,w(knT,w0)) = w(knT,w(T,w0)) and
ω(knT,w(T, ω0))−w(knT, ω0)→ 0 as kn →∞,
that

‖w(T, w̄)−w̄‖C≤‖w(T, w̄)−w(T,w(knT,w0))‖C
+‖w(T,w(knT,w0))− w(knT,w0)‖C

+‖w(knT,w0)− w̄‖C → 0 as n→∞.

The sequence {w(kT,w0), k ∈ N} has a unique
limit point, otherwise, there are two limit points

w̄ = lim
t→∞

w(knT,w0) and ŵ = lim
t→∞

w(knT,w0).
But, thanks to (19) and ŵ = w(knT, ŵ), we get

‖w̄−ŵ‖C ≤
‖w̄−w(knT,w0)‖C+‖w(knT,w0)−ŵ‖C → 0
as n→∞.

(20)
Thus, w̄ = ŵ. Hence, the solution
(u(t, x, ū, v̄), v(t, x, ū, v̄)) is the unique periodic
solution of system (3). Finally, due to (19), we
conclude that this periodic solution is globally
asymptotically stable.

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations for a
given parameters range of system (3) are done to
support our analytical results obtained in Sections
3 and 4. We consider system (3) with d1 =
0.5, d2 = 0.8, a = 2 + 0.5 sin(2πt), b = 4 +
0.5 sin(2πt), α = 0.03 + 0.02sin(2πt), k1 =
1 + 0.2 sin(2πt), k2 = 1 + 0.5 sin(2πt), c =
1 + 0.6 sin(2πt) and β = 1 + 0.8 sin(2πt) .
Obviously, all the parameters have a common
period T = 1 in t, By a direct computation, we
can prove that all conditions in proposition 4 are
satisfied. Then, system (3) has a unique positive
1-periodic solution u(t, x), v(t, x) which is glob-
ally asymptotically stable. By applying Matlab to
simulate, we can obtain Figures 1-4. From these
figures, we see that system (3) is permanent and
has positive periodic solution.

V. CONCLUSION

The interacting species play important roles
in real ecosystem. In this paper, we have
studied time-periodic Leslie-Gower type predator-
prey model with diffusion and Holling-type-II
functional response whose growth rates and
interaction rates are periodic functions of time.
We have obtained sufficient conditions for
the persistence of (3) in Proposition 2.4. The
conditions are given in term of parameters of
the model. Biologically speaking, we may expect
the coexistence when the predator growth rate is
sufficiently small, or if the predation rate α is
small enough.
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Fig. 1. Periodic prey solution with respect to the time and
space variables.
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Fig. 2. The section of Fig. 1 with x = 0.

Next, we have investigated sufficient conditions
which ensure the existence of positive T -periodic
solutions of (3) in Proposition 3.1. The conditions
are given in term of the largest eigenvalue of
certain matrix. Our study demonstrates how
parameters of the model which are not constant
but vary in response to environmental fluctuations,
influence a species prosperity, and gives some
valuable suggestions for saving the two species
and regulating populations when the ecological
and environmental parameters are affected by
periodic factors such as the season switching.
Numerical simulations are carried out to support
our theoretical results.
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Fig. 3. Periodic prey solution with respect to the time and
space variables.
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Fig. 4. The section of Fig. 3 with x = 0.
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