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MiRNA targeting of key immunoregulatory molecules fine-tunes the immune response.

This mechanism boosts or dampens immune functions to preserve homeostasis while

supporting the full development of effector functions. MiRNA expression changes during

T cell activation, highlighting that their function is constrained by a specific spatiotemporal

frame related to the signals that induce T cell-based effector functions. Here, we update

the state of the art regarding the miRNAs that are differentially expressed during T cell

stimulation. We also revisit the existing data on miRNA function in T cell activation, with

a special focus on the modulation of the most relevant immunoregulatory molecules.

Keywords: T cell activation, microRNAs (miRNAs), immunoregulatory molecules, miRNA signature, CD4, CD8,

T lymphocyte

INTRODUCTION

MiRNAs are small (∼19–24 nucleotides) single-stranded non-coding RNA species that act as post-
transcriptional modulators; they control gene expression, either by promoting mRNAs degradation
or repressing their translation (1). More than 2,500 human mature miRNA sequences have been
already listed in MirBase (2) although the total amount of miRNAs is likely up to 10 times higher
(3). Friedman et al. (4) estimated that miRNAs could modulate around 60% of protein-coding
genes, indicating the relevance of these regulatory pathways in gene expression.

The miRNA repertoire changes upon T cell activation (5–11). Figure 1 summarizes miRNA
species described to be either upregulated or downregulated upon T cell stimulation. Different
studies have yielded data that may appear contradictory, likely due to T cell subset differences, the
origin of the sample (murine or human) and the strategy of stimulation. Additional differences stem
from the strategy used to evaluate miRNA expression, being arrays the most commonly employed
technique, together with RT-qPCR and Northern Blot.

Despite variability, some trends are very consistent, including downregulation of miR-26a, miR-
26b, miR-150, miR-181a, miR-223, and miR-342-3p; and upregulation of miR-155 and the miR-
17∼92 cluster (particularly miR-17-5p, miR-18a-5p, and miR-19b). MiR-146a was downregulated
in mouse T cells, but upregulated in human upon activation, while miR-31 behaved in the opposite
way, suggesting the existence of species-specific regulatory mechanisms.

In addition to variations in miRNA expression, it would be essential to consider the total
abundance of each miRNA in the cell. Interestingly, only 7 miRNAs accounted for around 60%
of the total sequencing reads in CD8+ T cells (8).

Beyond individual miRNA changes, it is important to highlight that miRNAs undergo a global
downregulation upon stimulation. In this regard, almost three times higher total miRNA array
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hybridization signal has been detected in mouse CD8+ naive T
cells compared to activated cells (8); similarly, an independent
study found a significant downregulation of the total amount of
miRNA in stimulated mouse and human CD4+ T cells compared
to non-stimulated controls (5).

LESSONS FROM MIRNA-DEFICIENT
MODELS

Dicer is an RNase III endonuclease that controls miRNA
biogenesis. It processes precursor miRNA (pre-miRNA) into
mature miRNA forms (12–14). Constitutive Dicer KO mice
display embryonic lethality (15), indicating the relevance of this
enzyme in development. Lineage-specific Dicer-deficient models
were therefore required to study the consequences of reduced
miRNA function in a tissue-specific manner.

Dicer-deficient CD4+ T cells were hyper-responsive to
TCR stimulation and produced IL-2 in the absence of co-
stimulation (16). After activation, CD4+ Dicer-deficient mice
showed reduced proliferation, higher levels of apoptosis and a
bias towards Th1 differentiation and IFN-γ release (17). In Th1
differentiation, IFN-γ production and a decline in IL-2 secretion
occurred earlier in Dicer-deficient than in wild-type CD4+ T
cells (17). Th2 cells presented reduced levels of GATA3 mRNA
and failed to suppress IFN-γ expression (17). Consistently,
similar phenotypes were observed in T cells lacking Drosha
or its RNA-binding cofactor DGCR8, which form a complex
responsible for primary miRNA transcript processing. Drosha-
deficient naïve CD4+ T cells differentiated into Th1 and Th2, but
expressed higher levels of IFN-γ than control cells (18). Similarly,
DGCR8-deficient T lymphocytes showed reduced proliferation
and an increase in IFN-γ secretion (19). A number of very
comprehensive reports have addressed the role of miRNAs in
T cell differentiation (20–24). In this review, immunoregulatory
molecules responsible for differentiation have been discussed
when closely related to T cell activation events.

CD4-specific Dicer deficiency also affects the regulatory T cell
compartment, impairing Tregs development in the thymus and
reducing their numbers in peripheral lymphoid organs (25). In
addition, deficient naïve CD4+ T cells activated in the presence
of TGF-β expressed significantly less FOXP3 than control cells
(25). Besides, several studies have demonstrated that miRNA
disruption in Treg cells leads to autoimmune diseases (18, 26, 27).

Dicer-deficient CD8+ T lymphocytes responded more rapidly
to activation in vitro, as indicated by faster CD69 up-regulation
and an earlier proliferative response, although their survival was
reduced after 2 days (28). CD8+ Dicer KO cells also showed
a delay in CD69 down-regulation after removal of the TCR-
activating stimulus, suggesting a sustained activation of cytotoxic

Abbreviations: AKT3, v-akt murine thymoma viral oncogene homolog 3; APC,

antigen-presenting cell; BIM, B-cell lymphoma 2 (Bcl-2) interacting mediator of

cell death; CTLA-4, Cytotoxic T lymphocyte-associated antigen 4; GVHD, Graft

versus host disease; IL, Interleukin; PD-1, Programmed Death 1; PI(3,4,5)P3,

phosphatidylinositol-(3,4,5)-triphosphate; PI(4,5)P2, phosphatidylinositol-(4,5)-

biphosphate; PTEN, phosphatase and tensin homolog; TCR, T-cell receptor; Tfh, T

follicular helper; TGF-β, Transforming Growth Factor- β; Treg, regulatory T cell;

tTreg, Thymic-derived regulatory T cells; UTR, untranslated region.

lymphocytes in the absence of miRNAs (28). Furthermore, CD8+

Dicer-deficient cells failed to produce an efficient in vivo effector
response, including lower proliferation and impaired cytokine
production (IFN-γ and TNF-α) (28).

Models with impaired miRNA synthesis machinery highlight
the importance of miRNAs as positive (booster) and/or negative
(brake) regulators of T cell development and function, which is a
major focus of this review (Figure 2).

MiR-146a mainly acts as a “brake” miRNA, as miR-146a-
deficient mice develop chronic inflammation and autoimmunity
(29). CD4+ and CD8+ T cells from miR-146a deficient mice
display less apoptosis and increased proliferation, expression of
activationmarkers (CD25 and CD69) and effector cytokines (IL2,
IFN-γ, and IL-17A) (30). Likewise, miR-125b is another negative
regulator of T cell function, contributing to the maintenance of
the naïve state in human CD4+ T cells, in which it appears at
high levels (31). This effect is at least partly achieved via targeting
key molecules for T cell activation, e.g., BLIMP-1, IL-2Rβ, IL-
10Rα, and IFN-γ (31). Conversely, other miRNAs boost the
immune response. For instance, miR-142-deficient mouse T cells
showed reduced proliferation, deregulated cytokine expression
and decreased secretion of pro-inflammatory cytokines such as
IFN-γ, IL-17, and IL2 in response to activation (32, 33). Other
examples of enhancer miRNAs are miR-155 and miR-17∼92;
miR-155-depleted mice are immunodeficient (34), whereas miR-
17∼92-deficient T cells exhibited reduced antitumoral responses
(35).

IMMUNOREGULATORY MOLECULES AS
MIRNA TARGETS

T cell activation requires that the TCR recognizes a specific
antigen bound to the MHC on the surface of an APC in
the presence of co-stimulation. PI3K, AKT and mTOR are
crucial mediators of T cell activation. Their positive signaling,
downstream the TCR, is counter-balanced by negative regulators
such as PTEN and BIM. Costimulatory signals are provided
by surface receptors expressed on T lymphocytes that interact
with specific ligands on APCs, and can be either activating
(such as CD28 and ICOS) or inhibitory (like CTLA-4 and PD-
1). These activating and inhibitory events are integrated into
a net response that triggers the activation and/or repression of
transcription factors (NFAT, AP-1, NF-κB, and others). Their
nuclear localization promotes the synthesis of immune effector
molecules, e.g., cytokines. MiRNAs also control the activation
and integration of these pathways to support T cell effector
functions while maintaining immune homeostasis. Herein,
we review the miRNA-mediated regulation of key molecules
involved in T cell activation.

Cell Survival and Signaling Molecules
BIM
The balance between BIM and BCL-2 molecules is essential for
the fate of T lymphocytes, and their expression is tightly regulated
by miRNAs, promoting either apoptosis or survival. BIM is
a pro-apoptotic regulator and tumor suppressor downstream
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FIGURE 1 | MiRNAs differentially expressed upon T cell stimulation. MiRNAs described in at least two different studies are summarized. Different subsets of T cells

(both mouse and human) were activated with either antibodies against CD3 alone (Ab), or together with antibody against CD28 (Abs), or with specific peptides (OVA or

gp33-41). Cells were stimulated during different lengths of time ranging from 18h (18 h) to 7 days (7 d). The studies included in the table are: A (5), B (6), C (7), D (8),

E (9), F (10), G (11). Whenever more than one detection method was used, only consistent data obtained with at least two techniques was selected (8). Most studies

evaluated miRNA expression with miRNAs arrays, some together with RT-qPCR and Northern Blot, as indicated (x).
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FIGURE 2 | Overview of miRNA modulation on positive and negative immune-regulator molecules. Signaling coming from TCR and costimulatory molecules is

integrated by the T lymphocyte promoting cell survival, proliferation and production of effector molecules, such as cytokines. This complex network is fine-tuned by

miRNAs that target key immunoregulatory molecules, supporting either T cell activation (booster) or inhibition (brake). MiRNAs exert their function by targeting the

mRNA 3′UTR in the cytoplasm, although for simplicity sake some have been depicted in the nucleus, close to their targeted immunoregulators. In PI3K, C and R

designated the catalytic and regulatory subunits, respectively.

of AKT3, an important mediator of TCR signaling (36, 37).
It destabilizes mitochondrial membrane, inducing CASPASE-9
activation and apoptosis. Within the miR-17∼92 cluster, miR-
19 and miR-92 target BIM 3′UTR mRNA (38). MiR-148a is
upregulated in mouse Th1 cells after sustained activation (39). It
also targets BIM, promoting cell survival (39). MiR-155 indirectly
regulates BIM by targeting SHIP-1, which is a phosphatase that
reduces AKT activity (40). In turn, AKT represses FOXO3,
which is a transcription factor that promotes BIM expression,
thus miR-155 limits BIM expression (40). Conversely, miR-150
promotes apoptosis by downregulating AKT3, which induces the
accumulation of BIM (41). Human CD4+ T cells with high levels
of miR-150 display reduced proliferation, increased apoptosis
and lower T cell activation (41).

BCL-2
BCL-2 is an anti-apoptotic protein that antagonizes BIM,
stabilizing the mitochondrial membrane and preventing its
permeabilization (42). Treatment of mice with experimental
autoimmune encephalomyelitis with 3,3′-Diindolylmethane

(a plant-derived anti-inflammatory compound), induced the
upregulation of miR-16 in brain CD4+ T cells and suppressed
BCL-2; consistently, miR-16 overexpression in mouse CD4+ T
cells downregulated BCL-2 (43). Interestingly, CD4+ T cells from
relapsing-remitting multiple sclerosis patients (an autoimmune
disease elicited by activated autoreactive T lymphocytes)
displayed lower levels of miR-15a and miR-16, correlating with
higher levels of their validated target BCL-2 mRNA (44, 45).

Cell Cycle Regulators
Molecules involved in cell cycle progression are essential
mediators of T cell proliferation. miR-142-null T cells displayed
gross cell cycle alterations, with cells differentially arrested in
S and G2/M phases (32). Cell-cycle defects were associated to
the transcription factors E2F7 and E2F8, which are putative
targets for miR-142. MiR-142 is likely responsible of maintaining
low levels of both molecules in resting T-cells and limiting
their increase upon activation. Treatment of mice with miR-
142 antagomir markedly increased survival and reduced clinical
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symptoms in a murine GVHDmodel, suggesting a potential new
therapeutic strategy (32).

Cyclins are also directly targeted by miRNAs. Several miRNAs
(miR-27b, miR-29b, miR-150, and miR-223) promote CYCLIN
T1 downregulation in human resting CD4+ T cells. The levels
of these miRNAs decrease upon activation, correlating with
an upregulation of CYCLIN T1 (46). MiR-16 downregulates
CYCLIN E1 in mouse CD4+ T cells (43). Another molecule
involved in cell cycle progression is CDK4, a target of miR-491 in
mouse CD8+ T cells (47). MYC is a transcription factor involved
in cell cycle and proliferation, is targeted by let-7 in mouse CD8+

T cells (48) and by miR-451 in both mouse (49) and human (50)
CD4+ T cells.

mTOR
Mammalian Target Of Rapamycin (mTOR) is a metabolic
regulator that promotes protein synthesis and cell growth during
the onset of T lymphocyte function (51). mTOR kinase and
Raptor are part of the complex mTORC1, while mTORC2
includes mTOR and Rictor. Both miR-16 and let-7c target the
3′UTR of mTOR and RICTOR (16). Elevated mTOR activity
in Dicer-deficient CD4+ T cells and the subsequently increased
AKT phosphorylation is associated with a lower activation
threshold, overcoming the need of co-stimulation. MiRNA-
mediated mTOR down-regulation contributes to the correct
discrimination of activating and anergic stimuli and prevents co-
stimulation independent IL-2, IFN-γ and TNF-α overproduction
(16). mTOR signaling suppression is relevant for Treg induction.
In this regard, miR-16 and miR-15b, which are abundantly
expressed in Tregs, target RICTOR and mTOR mRNAs (52).
Furthermore, miR-150 and miR-99a cooperatively target mTOR,
promoting Treg induction (53).

Co-stimulatory Molecules
Membrane Receptors: ICOS and CD28
Inducible co-stimulatory (ICOS) molecule and CD28 are surface
receptors expressed on T cells that recognize specific ligands
on APCs, acting as TCR signaling positive regulators (54). In
germinal center responses, miR-146a upregulation in Tfh cells
downregulates ICOS by interacting with its ligand on germinal
center B cells, facilitating the termination of the immune
response (55). MiR-101 is highly represented in human naïve
CD4+ T cells and its transfection into the EL4 murine T cell
line downregulates ICOS (56). Regarding CD28, miR-181a-5p
overexpression in mouse T cells increases its levels (57), whereas
miR-150 limits CD28 co-stimulation by targeting the arrestin β-
2 protein (ARRB-2), with a subsequent increase in cAMP levels
and inhibition of LCK, PI3K and AKT (58).

Cytokines
MiRNA regulation of cytokine expression can be due to direct
cytokine mRNA targeting or targeting of transcription factors
such as NF-κB, NFAT, or AP-1 or their regulators, often affecting
multiple cytokines. For example, miR-146a is induced in mouse
CD4+ and CD8+ T cells upon TCR engagement through
NF-κB (30). This miRNA provides negative feedback regulation,
downregulating NF-κB by targeting TRAF6 and IRAK1 (30, 59).

Compared to wild-type cells, both CD4+ and CD8+ mouse T
cells lacking miR-146a exhibited a higher induction of genes
regulated by NF-κB, e.g., BCL-2, CD25, CD69, IL-2, IFN-γ, and
IL-17A (30). TRAF6 is also targeted by miR-146b in mouse Tregs
(60).

IL-2
IL-2 is one of the main signatures of T cell activation. MiRNA-
based IL-2 regulation relies on the inhibition of translation by
miR-181c-5p (downregulated during T cell activation), which
binds to the 3′UTR of IL-2 mRNA (61). It also depends on
the miRNA-based downregulation of transcription factors such
as NFAT or BLIMP-1. MiR-184 inhibits NFAT1 translation in
human CD4+ T cells. This is particularly relevant in cells
isolated from umbilical cord blood (62). MiR-568 transfection
into human CD4+ T cells inhibited IL-2 expression after
activation, through NFAT5 downregulation (63). MiR-20b also
downregulated IL-2 through NFAT5 targeting (64). MiR-31
upregulates IL-2 by inhibiting RHOA, a small GTPase which
suppresses NFAT (65, 66). It also targets the kinase suppressor of
RAS2 (KSR2), which inhibits the COT/TPI2 signaling pathway
(enhancer of IL-2 expression through NFAT and AP-1) (67).
MiR-9 (upregulated in activated human CD4+ T cells) targets
BLIMP-1, de-repressing IL-2 transcription (68). MiR-146a is
upregulated around 8 days after stimulation in human CD4+ and
CD8+ T cells, impairing IL-2 production, by targeting AP-1 (69).

IFN-γ
IFN-γ release orchestrates Th1 immune responses by activating
different cell lineages, e.g., dendritic cells, macrophages or NK
cells. MiR-125b maintains T cell naïve state by targeting IFN-γ
among other genes (31). Several miRNAs repress IFN-γ: miR-
24-3p (70) and miR-181a-5p in human CD4+ T cells (70, 71);
miR-24 and miR-27a in activated human CD8+ T cells (72); and
miR-29 directly (73) and indirectly, by downregulating T-BET
and EOMES, in mouse CD4+ T cells (19). On the other hand,
miR-19b is required for normal IFN-γ production, restoring
IFN-γ expression in miR-17∼92-deficient mouse Th1 cells (35).
MiR-9 suppresses BLIMP-1 and BCL-6 (repressors of AP-1 and
T-BET, respectively), increasing IFN-γ secretion in activated
human CD4+ T cells (68). Murine miR-21 KO CD4+ T cells
re-stimulated in vitro produced more IFN-γ (74). Moreover,
IFN-γ responsiveness is regulated by miR-155, which targets
IFN-γRα in activated mouse CD4+ T cells, contributing to Th1
differentiation (75).

IL-4
T cell activation stimulates the production of IL-4, leading
to Th2 responses (76, 77). Its release is controlled directly
by miR-24 [78] and miR-340 (78), or through the targeting
of specific transcription factors and kinases/phosphatases. IL-4
triggers the upregulation of GATA3 dependent STAT6, repressing
Th1 differentiation and inducing IL-4 production in a positive
feedback loop. Conversely, MiR-27 targets the transcription
factor GATA3 (79). BMI1 binds to GATA3, preventing its
degradation. CD4+ T cells from MS patients display increased
expression of miR-27b, miR-128 and miR-340 (78). These
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miRNAs inhibited Th2 development by targeting BMI1 (78).
MiR-155 targets the 3′UTR of c-MAF mRNA, which is another
transcription factor involved in IL-4 expression (34). MiR-21
contributes to IL-4 expression, since in vitro re-stimulated miR-
21-null mouse CD4+ T cells produced less IL-4 than wild-type
cells (74). Both miR-19a and miR-19b rescued IL-4 production in
miR-17∼92 cluster-deficient cells by targeting PTEN, SOCS1 and
A20 (80).

IL-17
TCR signaling promotes expression of the proinflammatory
cytokine IL-17 (81–83). IL-17 expression depends on the
transcription factor RORγt downstream of STAT3. miR-20b
targets both molecules in mouse CD4+ T cells (84). RORγt
transcription is promoted by HIF-1α, which is targeted by miR-
210 (85). In turn, STAT3 is inhibited by the E3 SUMO-protein
ligase PIAS3, a target of miR-301a that increases IL-17 secretion
(86). MiR-212 targets BCL-6 3′UTR, which is a repressor of
Th17 differentiation (87). JARID2, a chromatin-binding protein,
recruits the polycomb repressive complex 2 (PRC2) and silences
transcription of IL22, IL10, ATF3, TBX21, or EOMES through
histone methylation (88). MiR-155 inhibits JARID2, releasing
the repression of ATF3, which promotes IL-17 (88). ETS-1, a
transcription factor that inhibits Th17 differentiation, is a target
of miR-155 (89) and miR-326 (90). Li et al. (91) reported IL-17
downregulation due to IL-23R inhibition by let-7f.

Inhibitory Molecules
Membrane Receptors: CTLA-4, PD-1, CD69
CTLA-4 and PD-1 are both co-inhibitory receptors that repress
TCR signaling via binding to co-stimulators expressed by APCs
(54). CTLA-4 (a target of miR-145) is very abundant in human
peripheral blood Tregs, in which miR-145 is downregulated
(92). MiR-155 also targeted CTLA-4 in mouse (93) and human
(94) CD4+ T cells. MiR-155 overexpression in human CD4+

T cells promoted proliferation, and could underlie chronic
inflammation in atopic dermatitis, in which it is highly expressed
also by CD4+ T cells present in skin lesions (94). MiR-138 targets
CTLA-4 and PD-1, promoting tumor-regression by inhibiting
tumor-infiltrating Tregs (95). MiR-181a-5p overexpression in
mouse T cells decreased CTLA-4 expression, while increasing
CD28 levels (57).

CD69 is an early surface marker of lymphocyte activation
(96). Dicer KO CD8+ T cells up-regulated CD69 more rapidly
upon stimulation and retained the expression longer after stimuli
removal (28), indicating a potential miRNA-based repression of
CD69 in naïve stages that restrains activation. MiR-130b and
miR-301a increased their levels during CD8+ T cell activation
and downregulated CD69 (28). MiR-92, which is downregulated
in lamina propria leukocytes from rhesus macaques with chronic
simian immunodeficiency virus infection, also targets the 3′UTR
of CD69 mRNA (97).

Kinases and Phosphatases
TCR signaling is mediated by downstream kinases and
phosphatases, which undergo a tight regulation that ensures
functional activation while avoiding hyperreactivity.

PI3K regulatory subunits
Upon TCR and co-receptors engagement, PI3K phosphorylates
PI(4,5)P2. PIK3R1 gene encodes the regulatory subunits p85, p50,
and p55 (98). MiRNAs upregulated in CD4+ activated human T
cells, e.g., miR-155 and miR-221 downregulate PIK3R1 (9). MiR-
132-3p is upregulated in mouse dendritic cell-activated CD4+ T
lymphocytes, targeting PIK3R1 mRNA (6).

TCR Inhibitory phosphatases
Phosphatases downstream the TCR pathway counteract
signaling by dephosphorylation. Downregulation of some of
these phosphatases by miR-181a-5p generates high levels of
phosphorylated intermediates in steady-state (57). MiR-181a-5p
targets the phosphatases PTPN22, DUSP5 and DUSP6, which
dephosphorylate LCK, ZAP70, and ERK1/2; and SHP-2, which
mediates negative costimulatory signals from CTLA-4 (57).
Therefore, the expression of this miRNA contributes to reduce
the activation threshold, increasing the strength and sensitivity
of the T cell to peptides with lower affinity (57). In elderly
individuals, reduced expression of miR-181a in CD4+ naïve T
cells is a cause of the declined T cell responsiveness associated
with age (99).

PTEN
PTEN dephosphorylates PI(3,4,5)P3, antagonizing PI3K. As
such, PTEN curbs T cell activation, preserving self-tolerance.
Transgenic mice overexpressing miR-17∼92 cluster developed
lymphoproliferative and autoimmune pathologies associated to
the reduced expression of PTEN and BIM (38). PTEN is
downregulated by several miRNAs that are increased upon T cell
activation: miR-21 (100), miR-214 (7) and the miR-17∼92 cluster
[miR-17-5p (38), miR-19 (38), and miR-19b (35)]. Consistently,
miR-21 and miR-214 expression increased T cell proliferation
(7, 100).

Cytokines

IL-10
IL-10 is an important anti-inflammatory cytokine mainly
produced by Th2 and Tregs. It counteracts CD28 signaling
and suppresses the expression of IFN-γ and IL-2. IL-10 is
directly targeted by miR-142-3p, miR-142-5p (101), miR-let-7e
(102), let-7c (103, 104), let-7b (104), let-7f (104), and miR-
106a (105). MiRNAs further regulate IL-10 post-transcriptionally
by modulating JARID2, NFAT5, p85-β or the programmed cell
death protein 4 (PDCD4). JARID2 silences IL-10 and is a target
of miR-155, which thus promotes IL-10 expression (88). MiR-568
(downregulated upon human CD4+ T cell activation) reduced
IL-10 by targeting NFAT5 (63). NFAT5 was also targeted by
miR-20b (64). MiR-126 is highly increased after Treg stimulation
and promotes IL-10 expression (106), and miR-126 targeting of
p85-β and PI3K/AKT pathway modulation is responsible of IL-
10 release (106). MiR-21 is upregulated in CD4+ T cells from
systemic lupus erythematosus patients, and its inhibition led to
a decrease in IL-10 production (107). MiR-21 positive regulation
of IL-10 secretion likely depends on its targeting of PDCD4, a
translation inhibitor (107).
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TGF-β
TGF-β is expressed in naïve T cells preventing T cell activation
until sufficient TCR stimulation downregulates the TGF-β
type 1 receptor (108–110). TGF-β induces FOXP3, a key
transcription factor that promotes Treg differentiation (111).
In addition to IL-10 modulation, miR-568 (63) and miR-
126 (106) also regulate TGF-β release. In CD4+ mouse T
cells from draining lymph nodes, miR-466a-3p (upregulated
in mice after skin allograft) targets TGF-β2, limiting Treg
generation (112). MiRNAs also regulate TGF-β function at
different levels by targeting upstream molecules involved in
cytokine production, TGF-β receptors and effector molecules
of the TGF-β signaling pathway. GARP is a transmembrane
protein specifically expressed in Tregs that cleaves the precursor
form of TGF-β1 (113). GARP is targeted by miRNAs which
are less abundant in human Tregs than in T helper subsets,
e.g., miR-142-3p, miR-185, and miR-181a/b/c/d (113, 114). MiR-
17 targets TGFBR2 (TGF-β receptor II) in mouse and human
CD4+ T cells (35, 115). In addition, it has been found that a
set of miRNAs upregulated in naïve CD4+ T cells from multiple
sclerosis patients target TGFBR1 and/or SMAD4 (both involved
in the TGF-β signaling pathway) limiting differentiation into
Tregs (116).

CONCLUDING REMARKS

MiRNA-mediated modulation of molecules involved in T cell
activation remains far from being fully understood, although
strides have beenmade in recent years. There is a need to advance
towards a “network study” of miRNA function. Considering
more than one miRNA in experimental designs increases its
technical complication, but also enables models that simulate the
complexity of the physiological scenarios, in which individual

miRNAs interact with a set of targets and each target in turn can

be regulated by several miRNAs, at different levels, either directly
targeting the molecule or indirectly regulating its expression via
targeting its receptor and/or transcription factors.

Finally, integrating basic and clinical research (e.g., cancer,
autoimmunity, and GVHD) could help to achieve a better
understanding of T cell immune-regulation to design new
strategies for therapy in T cell related malignancies.
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